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Orofacial pain and headache disorders are among the most debilitating pain conditions.

While the pathophysiological basis of these disorders may be diverse, it is generally

accepted that a common mechanism behind the arising pain is the sensitization of

extra- and intracranial trigeminal primary afferents. In the present study we investigated

gene expression changes in the trigeminal ganglia (TRG), trigeminal nucleus caudalis

(TNC) and peripheral blood mononuclear cells (PBMC) evoked by Complete Freund’s

Adjuvant (CFA)-induced orofacial inflammation in rats, as a model of trigeminal

sensitization. Microarray analysis revealed 512 differentially expressed genes between

the ipsi- and contralateral TRG samples 7 days after CFA injection. Time-dependent

expression changes of G-protein coupled receptor 39 (Gpr39), kisspeptin-1 receptor

(Kiss1r), kisspeptin (Kiss1), as well as synaptic plasticity-associated Lkaaear1 (Lkr) and

Neurod2 mRNA were described on the basis of qPCR results. The greatest alterations

were observed on day 3 ipsilaterally, when orofacial mechanical allodynia reached its

maximum. This corresponded well with patterns of neuronal (Fosb), microglia (Iba1),

and astrocyte (Gfap) activation markers in both TRG and TNC, and interestingly also in

PBMCs. This is the first description of up- and downregulated genes both in primary

and secondary sensory neurones of the trigeminovascular system that might play

important roles in neuroinflammatory activation mechanisms. We are the first to show

transcriptomic alterations in the PBMCs that are similar to the neuronal changes. These

results open new perspectives and initiate further investigations in the research of

trigeminal pain disorders.
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INTRODUCTION

Orofacial pain and headache disorders are among the most
debilitating pain conditions. While the pathophysiological basis
of these disorders may be diverse, it is generally accepted
that a common mechanism behind the arising pain is the
sensitization of extra- and intracranial trigeminal primary
afferents. The trigeminal nerve provides most of the sensory
innervation to the face and oral cavity as well as the meninges
where the nociceptive primary afferents are closely associated
with the vasculature. The cell bodies of these neurons are
located in the trigeminal ganglion (TRG) and their central
projections terminate in the trigeminal nucleus caudalis (TNC).
It has been described that there is convergence of extra- and
intracranial primary afferents in the TNC (Burstein et al., 1998).
Sensitization of these secondary nociceptive neurons might
be responsible for the phenomenon of the facial allodynia
developing in primary headaches (Burstein et al., 2000). A similar
mechanism could induce the headache associated with disorders
of extracranial structures. Inflammation of the temporal artery,
temporomandibular joint, sinuses or orbit can induce headache
which could have the same characteristics as the primary
disorders. Co-morbidity of migraine and temporomandibular
disorders has also been reported (Romero-Reyes and Uyanik,
2014).

Inflammatory pain models adapted to the orofacial area
induce trigeminal sensitization and can constitute a possible
way to understand the mechanisms of pain associated with
orofacial disorders and headaches (Krzyzanowska et al., 2011;
Krzyzanowska and Avendaño, 2012; Romero-Reyes et al.,
2013). A commonly used model of peripheral inflammation
in animals is injection of Complete Freund’s Adjuvant (CFA)
(Ren and Dubner, 1999; Takeda et al., 2007; Krzyzanowska and
Avendaño, 2012; Gregory et al., 2013). Orofacial inflammation
induces mechanical hyperalgesia/allodynia on the face by
activation/sensitization of trigeminal primary and secondary
sensory neurons (Iwata et al., 2017).

Since the mechanisms of trigeminal sensitization are not
known, global transcriptomic analysis allows an unbiased
approach to reveal key pathways responsible for the
pathophysiological changes (Perrino et al., 2017). Gene
expression changes in the trigeminal ganglion (TRG) had been
assessed by microarray analysis after CFA injection in whisker
pad (Okumura et al., 2010) or masseter muscle (Chung et al.,
2016). However, no study has evaluated TRG gene expression
changes in parallel with the central gene expression variances in
the trigeminal nucleus caudalis (TNC) and correlate it with the
time course and extent of facial allodynia. This comprehensive
approach might facilitate the identification of differentially
regulated genes with a relevant role in the cascade of events
resulting in the sensitization of primary and secondary trigeminal
neurons. Moreover, there is growing evidence that transcriptome

Abbreviations: TRG, trigeminal ganglion; TNC, trigeminal nucleus caudalis;
PBMC, peripheral blood mononuclear cells; CFA, Complete Freund’s Adjuvant;
Iba1, Ionized calcium binding adaptor molecule 1; Gfap, Glial fibrillary acidic
protein.

changes in the central nervous system could be reflected in
peripheral blood cells. Investigation of gene expression changes
in migraine patients identified differential expression of major
genes from the peripheral blood (Gardiner et al., 1998; Hershey
et al., 2004, 2012; Du et al., 2006; Plummer et al., 2011; Gerring
et al., 2017). Gene transcription changes of PBMCs have not been
analysed in animal models of trigeminal sensitization, although
it could provide a good opportunity to compare with human
data.

The aim of the present study was to follow the temporal
changes of facial mechanonociceptive thresholds and gene
expression in TRG, TNC neurones and PBMCs after CFA
inflammation usingmicroarray and qPCR analyses in order to get
a better insight into the mechanisms of trigeminal pain disorders.

MATERIALS AND METHODS

Animals
Twenty male Wistar rats (Toxicoop Zrt., Hungary) weighing
between 200–300 g were used. Animals were kept under standard
light-dark cycle (12-h light/dark cycle) and temperature (24–
25◦C) conditions, food and water were provided ad libitum,
in the local animal house of the Pécs University Department
of Pharmacology and Pharmacotherapy. In order to minimise
stress, all rats were habituated to handling and the light restraint
used for the facial von Frey test for 3 days prior to the start of the
experiments.

The study was carried out in accordance with the Ethical
Codex of Animal Experiments of the University of Pécs and
the 1998/XXVIII Act of the Hungarian Parliament on Animal
Protection and Consideration Decree of Scientific Procedures of
Animal Experiments (243/1988). The protocol was approved by
the local Ethics Committee on Animal Research of University of
Pécs (license No.: BA02/2000-9/2011).

CFA Injection
Orofacial inflammation was induced by unilateral s.c. injection
of 50 µl complete Freund’s adjuvant (CFA; Sigma-Aldrich, Saint
Louis, USA; killed mycobacteria suspended in paraffin oil; 1
mg/ml) into the whisker pad of male rats, while under ketamine
(72 mg/kg) and xylazine (8 mg/kg) anaesthesia. In the second
series of experiments, a control group received the same volume
of saline injection.

Microarray
Orofacial inflammation-associated gene expression was analysed
using Agilent microarray platforms. Rat TRG tissue samples
were collected from animals 7 days after receiving s.c. CFA
injection (n = 8). Animals were anaesthetized with thiopental
(100 mg/kg i.p.) and sacrificed by exsanguination. TRGs were
excised and snap-frozen in liquid nitrogen. Contralateral sides
of CFA-injected rats served as controls. Total RNA were isolated
from snap-frozen samples using RNeasy Mini Kit (Qiagen,
Carlsbad, CA) and high-quality samples (RIN > 8.0) were
used for subsequent expression analyses. Sample labelling, array
hybridization and primary data analysis was performed by
ArrayStar Inc. (Rockville, MD, USA). Briefly, total RNA samples
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were amplified and labelled with Cy3-dCTP. Labeled amplicons
were purified, fragmented and hybridized to rat LncRNA Array
v1.0 (4 × 44K, Arraystar Inc.) slides. One-color microarray-
based gene expression analysis was used. After hybridization
slides were washed, fixed and scanned. Gene expression data files
were deposited toNCBI’s Gene ExpressionOmnibus (Edgar et al.,
2002) and are accessible through GEO Series accession number
GSE111160.

Orofacial Pain Sensitivity Tested With Von
Frey Filaments
In a second experiment, mechanical pain thresholds of the
orofacial region were determined with a series of von Frey
filaments. Tests were performed on days 0 (control day) before
and 1, 3, 7 after CFA (n = 9)/saline (n = 3) injection.
Animals were lightly restrained using a soft cotton glove in
order to allow an easier habituation, then a set of calibrated
nylon monofilaments (Stoelting, Wood Dale, Illinois, U.S.A)
was used with increasing strengths (0.8–12 g) to measure facial
mechanosensitivity. Filaments were applied in ascending order,
starting from the 5.2 g filament during control measurements and
the 0.8 g filament after CFA treatment. The mechanonociceptive
threshold was defined as the lowest force evoking at least two
withdrawal responses (face stroking with the forepaw or head
shaking) out of five stimulations.

Experimental Setup of the Second
Experiment
At each time point (1, 3, and 7 days) animals (n = 3) were
anaesthetized with thiopental and blood was collected by cardiac
puncture. Tissue samples (TRG, TNC) were quickly frozen in
liquid nitrogen and stored at −80◦C until RNA extraction and
real-time PCR processing.

Isolation of Peripheral Blood Mononuclear
Cells
Mononuclear cells were purified from fresh peripheral blood
according to Ficoll-PaquePREMIUM (Cat. No. 17-5446-02, GE
Healthcare, Budapest, Hungary) manufacturer’s instructions.
Fresh anticoagulant-treated blood and an equal volume of
balanced salt solution (final volume of 8ml) were transferred to
15ml sterile centrifuge tubes. The mixture was carefully overlaid
on 5ml Ficoll-PaquePREMIUM and centrifuged 40min at 2,100
RPM, 20◦C. The mononuclear layer was transferred into a new
15ml centrifuge tube, suspended with approximately 6ml of
salt solution and centrifuged 15min at 2300 RPM, 20◦C. The
supernatant was removed and the pellet was resuspended in
another 6ml of salt solution, followed by another centrifugation
(10min, 2300 RPM, 20◦C). After the removal of the supernatant
the cells were resuspended with 1ml of TRI Reagent (Molecular
Research Center, Inc., Cincinnati, OH, USA) and transferred to
Eppendorf and stored at−80◦C until use.

Quantitative Real-Time RT-PCR (qRT-PCR)
Purification of total RNA was carried out according to the
TRI Reagent manufacturer’s (Molecular Research Center, Inc.,
Cincinnati, OH, USA) protocol up to the step of acquiring

the aqueous phase. Briefly, tissue samples were homogenized
in 1ml of TRI Reagent, and then, 200 µl of bromo-chloro-
propane (Sigma-Aldrich, Saint Louis, USA) was added. RNA
was purified from the aqueous phase using the Direct-zol RNA
MiniPrep kit (Cat. No. R2052; Zymo Research, Irvine, CA, USA)
according to the manufacturer’s protocol. Briefly, 400 µl of the
aqueous phase was mixed with 400 µl absolute ethanol, the
mixture was loaded onto the column, washed, and the RNA
was eluted in 50 µl of RNase-free water. The quantity and
purity of the extracted RNA were assessed on Nanodrop ND-
1000 Spectrophotometer V3.5 (Nano-Drop Technologies, Inc.,
Wilmington, DE, USA). 200 ng of PBMCs/TRG and 250 ng
of TNC total RNA was reverse transcribed using Maxima First
Strand cDNA Synthesis Kit (Cat. No. K1642, ThermoScientific,
Santa Clara, CA, USA) according to the manufacturer’s
instructions. qRT-PCR was performed on a Stratagene Mx3000P
qPCR System (Agilent Technologies, Santa Clara, USA).
PCR amplification was performed using SensiFast SYBR Lo-
ROX Kit (Cat. No. BIO-94020). Transcripts of the reference
genes glyceraldehyde 3-phosphate dehydrogenase (Gapdh),
hypoxanthine phosphoribosyltransferase 1 (Hprt1), beta-2-
microglobulin (β2m) and Peptidyl-prolyl cis-trans isomerase
(Ppia) were detected in all samples. Ppia and Hprt1 for PBMCs
and β2m, Hprt1 for TRG and TNC samples were eventually
chosen as internal controls, the geometricmean of their Cq values
was calculated. Primers of similar efficiencies were used and
2−11Cq fold change values were calculated. Sequences of primers
used for qRT-PCR are given in Supplementary Table 1.

Statistical Analysis
The raw microarray data were analysed using R and
Bioconductor (Gentleman et al., 2004; R Development Core
Team, 2008) The data were quantile normalised to reduce
technical noise with Limma package (Ritchie et al., 2015). The
statistical testing for differential expression was also performed
using Limma, which applies linear modeling with a modified
t-test to calculate the p-values and fold change values. One-way
analysis of variance (ANOVA) followed by Tukeys’ multiple
comparison tests on RT-PCR data and in case of mechanical pain
threshold detection two-way ANOVA with repeated measures
followed by Bonferroni’s post-test for time-matching samples
were performed using GraphPad Prism software (GraphPad
Software, Inc., La Jolla, CA, USA). Probability values p ≤ 0.05
were accepted as significant. Results are presented as the mean±

standard error of the mean (SEM). Log2 mRNA fold change data
measured by qPCR were further analysed by hierarchical cluster
analysis (1-Pearson correlation and average linkage method) and
then visualised by heat map using the free web tool Morpheus
(Morpheus)1.

Functional Classification of Differentially
Regulated Genes
The functional enrichment analyses against Gene Ontology (GO)
(Ashburner et al., 2000; The Gene Ontology Consortium, 2017),

1https://software.broadinstitute.org/morpheus/ Broad Institute, Cambridge, MA,
USA.
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TABLE 1 | The top 25 up- and downregulated genes.

ID FC P.Value SystematicName GeneSymbol Description EnsemblID EntrezGene

948 5.20 0.0381 MRAK049104 NA lncRNA (chromosome 1) NA NA

11131 4.55 0.0353 TC598318 NA NA NA NA

9725 4.35 0.0214 NM_199489.3 Ccr7 C-C motif chemokine receptor 7 ENSRNOG00000010665 287673

5534 4.34 0.0076 NM_001011951.1 Sf3b4 splicing factor 3b, subunit 4 ENSRNOG00000021181 295270

12278 4.29 0.0010 NM_001037518.1 Defb23 defensin beta 23 ENSRNOG00000023477 641621

519 4.28 0.0218 NM_001000099.1 Olr1640 olfactory receptor 1640 ENSRNOG00000048857 290049

13893 4.13 0.0236 NM_001106821.1 Atm ATM serine/threonine kinase ENSRNOG00000029773 300711

40839 4.08 0.0135 NM_134399.2 Mk1 Mk1 protein ENSRNOG00000019657 171436

6132 4.01 0.0172 NM_001106551.1 Lkaaear1 LKAAEAR motif containing 1 ENSRNOG00000024815 296483

10158 3.83 0.0477 NM_001013956.1 RGD1309049 similar to RIKEN cDNA

4933415F23

ENSRNOG00000014123 301306

10494 3.80 0.0138 NM_001013147.1 Axl Axl receptor tyrosine kinase ENSRNOG00000020716 308444

2571 3.78 0.0404 NM_019128.4 Ina internexin neuronal intermediate

filament protein, alpha

ENSRNOG00000020248 24503

12538 3.73 0.0232 NM_198133.2 Uts2b urotensin 2B ENSRNOG00000038512 378939

3346 3.72 0.0156 NM_001047878.1 F5 coagulation factor V ENSRNOG00000057855 NA

6931 3.71 0.0198 uc.339+ NA lncRNA (chromosome 7) NA NA

5544 3.70 0.0316 NM_001001034.1 Olr199 olfactory receptor 199 ENSRNOG00000029755 405920

9136 3.69 0.0250 NM_012735.1 Hk2 hexokinase 2 ENSRNOG00000006116 25059

4102 3.67 0.0212 NM_001001010.1 Olr283 olfactory receptor 283 ENSRNOG00000030782 405384

3492 3.67 0.0159 uc.470+ NA lncRNA (chromosome X) NA NA

1789 3.66 0.0240 XR_005913 NA lncRNA (chromosome 16) NA NA

4451 3.64 0.0064 NM_173305.1 Hsd17b6 hydroxysteroid (17-beta)

dehydrogenase 6

ENSRNOG00000002597 286964

11677 3.63 0.0013 NM_001000387.1 Olr416 olfactory receptor 416 ENSRNOG00000029069 296678

6676 3.62 0.0322 NM_001107582.2 Pdcd1lg2 programmed cell death 1 ligand 2 ENSRNOG00000016136 309304

9724 3.61 0.0247 NM_153466.1 Gzmf granzyme F ENSRNOG00000028810 266704

5556 3.60 0.0103 NM_001099514.1 Vom2r48 vomeronasal 2 receptor, 48 ENSRNOG00000028538 686145

39867 −3.50 0.0007 NM_001047931.1 LOC498460 LRRGT00055 ENSRNOG00000028821 498460

41314 −3.62 0.0313 NM_001080939.1 Tas2r109 taste receptor, type 2, member

109

ENSRNOG00000032724 690572

38176 −3.63 0.0005 NM_001164826.1 RT1-Db2 RT1 class II, locus Db2 ENSRNOG00000030431 24981

44381 −3.64 0.0049 NM_001130497.1 Pnpla5 patatin-like phospholipase

domain containing 5

ENSRNOG00000022296 300108

35607 −3.67 0.0016 MRAK078136 NA lncRNA (chromosome 1) NA NA

16902 −3.73 0.0186 uc.163+ NA NA NA NA

41319 −3.76 0.0102 NM_001012084.1 Adh6 alcohol dehidrogenase 6 NA NA

37492 −3.78 0.0025 NM_001003979.1 Tmprss11c transmembrane protease, serine

11C

ENSRNOG00000033910 408213

36560 −3.87 0.0023 NM_001000338.1 Olr619 olfactory receptor 619 ENSRNOG00000021473 295843

43356 −4.15 0.0009 NM_022673.2 Mecp2 methyl CpG binding protein 2 ENSRNOG00000056659 29386

42598 −4.17 0.0001 NM_001017480.1 Hoxb7 homeo box B7 ENSRNOG00000007611 497985

38934 −4.62 0.0036 NM_052808.1 Bpifa2 BPI fold containing family A,

member 2

ENSRNOG00000013540 50585

38765 −4.64 0.0056 NM_001000575.1 Olr741 olfactory receptor 741 ENSRNOG00000053815 366120

37233 −4.69 0.0053 NM_012689.1 Esr1 estrogen receptor 1 ENSRNOG00000019358 24890

43878 −4.71 0.0017 NM_001000307.1 Olr485 olfactory receptor 485 ENSRNOG00000009747 295751

38741 −4.80 0.0043 NM_001001355.1 Olr905 olfactory receptor 905 ENSRNOG00000057325 288875

44809 −4.86 0.0006 NM_001109459.1 LOC685171 similar to protein disulfide

isomerase-associated 6

ENSRNOG00000058543 685171

40038 −4.88 0.0012 uc.400− NA lncRNA (chromosome 19) NA NA

43786 −5.14 0.0023 NM_001109285.1 C2cd4c C2 calcium-dependent domain

containing 4C

ENSRNOG00000008026 500798

43442 −5.40 0.0004 uc.225+ NA lncRNA (chromosome 4) NA NA

40720 −5.65 0.0041 NM_001000692.1 Olr25 olfactory receptor 25 ENSRNOG00000046609 404897

41996 −6.14 0.0014 uc.47− NA lncRNA (chromosome 6) NA NA

43609 −6.60 0.0018 NM_001000394.1 Olr428 olfactory receptor 428 ENSRNOG00000030460 296689

36293 −8.03 0.0021 XR_008902 NA lncRNA (chromosome 19) NA NA

44472 −9.20 0.0012 NM_019326.1 Neurod2 neuronal differentiation 2 ENSRNOG00000028417 NA

ID, microarray feature identifier; FC, expression ratio (fold-change) between CFA-treated and contralateral sample groups.
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KEGG (Kanehisa and Goto, 2000) and Reactome (Fabregat et al.,
2018) databases were performed using the topGO (Alexa and
Rahnenführer, 2016) and gage (Luo et al., 2009) packages in R.

RESULT

Microarray Analysis
The microarray data analysis identified 512 differentially
expressed (319 up- and 191 downregulated) transcripts between
the control (contralateral) and 7-day CFA (ipsilateral) samples
from TRG at a statistically significant level (p≤0.05) and with
fold change |FC|> 2 (Supplementary Table 2; Supplementary
Figures 1, 2). All but 15 of these have absolute fold change values
below 4. Original data files have been uploaded to the NCBI GEO
Database. The top 25 up- and downregulated genes are included
in Table 1. The most upregulated (5.20 fold) transcript was
found to be a lncRNA (MRAK049104) with unknown function.
The most downregulated transcript (−9.20 fold), Neurod2, is
involved in neuronal differentiation. Figure 1 shows the 44
differentially expressed genes at a significance level p≤ 0.001 and
|FC|> 2, including a number of olfactory, taste and pheromone
receptors, as well as the chemokine receptor (Ccr7) and the
estrogen receptor 1 (Esr1) genes as well as long non-coding
RNAs.

Gene Ontology
Gene set enrichment analysis was performed on the microarray
data to find common features of genes. The most differentially
expressed genes (|FC|>2, p ≤ 0.001) between the control
(contralateral) and 7-day CFA (ipsilateral) samples from
TRG were functionally annotated based on gene ontology
(GO), KEGG Pathway and Reactome terms to gain an
overview of the affected biological processes and pathways
(Table 2). The identified enriched GO terms include steroid
and carbohydrate metabolism, sensory perception and olfactory
transduction.

Mechanonociceptive Threshold
The facial mechanonociceptive threshold of CFA-injected rats
was significantly decreased compared to the contralateral side
starting from day 1 after injection. The allodynia reached its
maximum on day 3 (p ≤ 0.001), as the threshold change
was lower on day 7 (Figure 2). No significant changes in
the contralateral threshold were observed in the whisker pad
area.

RT-PCR Analysis
Validation of Differentially Expressed mRNAs in TRG

by Real-Time RT-PCR
To validate the microarray results, the transcription levels of
five differentially expressed, microarray-identified genes were
further determined using quantitative real-time RT-PCR. The
following genes were chosen for validation: Lkaaear1, Neurod2
(Table 1), as well as G-protein coupled receptor 39 (Gpr39),
kisspeptin (Kiss1) and kisspeptin-1 receptor (Kiss1r) (microarray
data not shown). The relative fold changes (up-regulated) of
Gpr39 and Lkaaear1 for CFA TRG samples were 3.04 and 4.01

FIGURE 1 | Heat map clustering of the most differentially expressed

transcripts for the comparison between CFA-treated and contralateral side

TRG samples. Pearson’s metrics has been used in hierarchical clustering of

the samples and filtered features. The clustering is based on the general

expression measurement similarity. Red colour means high expression and

green low expression. Each row represents one differentially expressed (DE)

feature (microarray feature identifiers) and each column represents one sample.

respectively, while the relative fold changes (down-regulated) of
Kiss1, Kiss1r and Neurod2 were−1.74,−2.63, and−9.2 (Table 1,
Supplementary Table 2). On day 7, Gpr39 and Kiss1r alterations
were similar to the microarray data (Figure 3). PCR results could
not confirm microarray data on Lkaaear1, Neurod2 and Kiss1.
Lkaaear1 presented decreased mRNA levels on day 7 compared
to contralateral CT side. In addition, we were unable to detect
Neurod2 expression changes in TRG with our PCR protocol.
We also chose to investigate the time course of neuronal and
activation marker expressions. Although Fosb, Ionized calcium
binding adaptor molecule 1 (Iba1), Glial fibrillary acidic protein
(Gfap) and Calcitonin gene-related peptide (Cgrp) were not listed
in microarray data, meaning no significant changes between the
two groups of interest, we analysed the variation of these mRNA
levels as well. No significant differences were detected on day
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TABLE 2 | Results of gene set enrichment analysis of a subset of genes differentially expressed between the control (contralateral) and 7-day CFA (ipsilateral) samples

from TRG as detected by microarray.

Term Annotated Significant Expected P-Value

GO.ID Biological process

GO:0008202 Steroid metabolic process 223 3 0.3 0.0031

GO:0005975 Carbohydrate metabolic process 400 3 0.54 0.0155

GO:0007600 Sensory perception 1,453 5 1.97 0.0380

GO:0050911 Detection of chemical stimulus involved in

sensory perception of smell

1,059 4 1.43 0.0487

CELLULAR COMPONENT

GO:0005576 Extracellular region 3,051 6 3.95 0.181

GO:0005615 Extracellular space 2,639 5 3.41 0.243

GO:0071944 Cell periphery 4,053 7 5.24 0.246

GO:0044421 Extracellular region part 2,763 5 3.57 0.276

GO:0016021 Integral component of membrane 4,420 7 5.72 0.334

GO:0031224 Intrinsic component of membrane 4,505 7 5.83 0.356

GO:0044425 Membrane part 5,350 8 6.92 0.381

GO:0005886 Plasma membrane 3,959 6 5.12 0.407

GO:0044464 Cell part 11,048 15 14.29 0.476

GO:0005623 Cell 11,071 15 14.32 0.486

MOLECULAR FUNCTION

GO:0004984 Olfactory receptor activity 1,059 4 1.21 0.0269

GO:0099600 Transmembrane receptor activity 1,749 5 2 0.0374

KEGG.ID KEGG pathway term

604 Glycosphingolipid biosynthesis - ganglio series 12 1 0.012067578 0.012014279

603 Glycosphingolipid biosynthesis - globo series 13 1 0.01307321 0.013010232

533 Glycosaminoglycan biosynthesis - keratan

sulfate

14 1 0.014078842 0.014005382

512 Mucin type O-Glycan biosynthesis 20 1 0.020112631 0.019959439

500 Starch and sucrose metabolism 28 1 0.028157683 0.027853402

4740 Olfactory transduction 842 3 0.846741754 0.036986751

Reactome.ID Downregulated reactome term GeneRatio BgRatio P-Value

R-RNO-8957275 Post-translational protein phosphorylation 2/5 74/5483 0.001750444

R-RNO-381426 Regulation of Insulin-like Growth Factor (IGF)

transport and uptake by Insulin-like Growth

Factor Binding Proteins (IGFBPs)

2/5 82/5483 0.002145931

Enrichment analysis for the differentially expressed filtered gene lists test whether the genes within a certain KEGG or Reactome pathway or GO term are statistically over-represented
in a given comparison.

7 related to the mentioned genes which further confirmed the
consistency and reliability of the microarray data.

Gene Expression Analysis in TRG Tissues
WemeasuredmRNA levels of eight genes in TRG tissues on three
different time points after CFA injection. On day 1, CFA-induced
significant up-regulation of Kiss1r, as well as of neuronal (Fosb),
glial (Iba1), and astrocyte (Gfap) activation markers compared
to saline-treated control group. By day 3, seven genes reached
their maximum at a level of 9.18- (Gpr39), 2.97- (Lkaaear1), 9.51-
(Kiss1), 14.31- (Kiss1r), 117.82- (Cgrp), 7.40- (Fosb), and 27.80-
fold (Gfap). Iba1 reached a 3.6-fold peak at day 1 before declining.
mRNA levels of Lkaaear1, Kiss1r, Iba1 gradually decreased at
last time point until reaching a non-significant level compared
to saline-treated control side (Figure 3).

Gene Expression Analysis in TNC Tissues
Briefly, main changes in the relative gene expression were
observed directly 1, 3 and 7 days post-CFA treatment.
All measured mRNA levels, except Kiss1r, showed
significantly altered temporal change in TNC of CFA-
injected samples when compared to both CFA CT and
Saline CT, presenting a maximum at day 3 (p ≤ 0.001
or p ≤ 0.0001). There was no significant difference in
mRNA abundance of Kiss1r on different time points
(Figure 4).

Gene Expression Analysis in PBMCs
Finally, low but significant expressional changes of Lkaaear1
and Kiss1r gene mRNA in peripheral blood from CFA-treated
rats have been observed. Lkaaear1 displayed a gene expression
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FIGURE 2 | Changes in mechanical threshold in response to von Frey

filaments before and 1, 3, 7 days after CFA (50 µl s.c. complete Freund’s

adjuvant) inflammation. Orofacial thresholds in both ipsilateral and contralateral

sides were measured. Data are means ± S.E.M. (n = 9 at control and day 1;

n = 6 at day 3; n = 3 at day 7). Asterisks denote statistically significant

differences between contralateral (CT) and ipsilateral (CFA) sides (***p ≤ 0.001)

as analysed by two-way ANOVA followed by Bonferroni’s post-test.

pattern similar to Kiss1r, where Lkaaear1 presented a maximum
of 2.33 and Kiss1r a 3.86 fold change at day one. We noted no
significant changes in Gpr39 mRNA levels of PBMCs after CFA
exposure. Interestingly, Fosb and Iba1 seem to be up-regulated (p
≤ 0.01 or p ≤ 0.001) at each time point due to CFA treatment,
while Gfap only on day 7 (Figure 5).

Heat Map Plotting
Fold change data were plotted on a heat map to summarize
changes in mRNA levels measured by qPCR (Figure 6). Genes
with a similar level of expression were grouped into three major
clusters in TRG samples: 1. Kiss1r, Gpr39; 2. Kiss, Fosb, Lkr, Cgrp;
3. Gfap, Iba1. In the TNC, all but one gene fall into a large
cluster with highly similar temporal patterns, except for Kiss1r
that changed the opposite way, however, its alterations were not
found to be significant. Group 3 genes distinctly upregulated in
CFA-treated TRG samples on days 1 and 3 but not on respective
contralateral sides while they were substantially upregulated in
TNC samples from both sides on these days, as well as on day
7. Genes upregulated in TRG and TNC were also elevated in
PBMCs, although starting at an earlier time point (day 1) formost
genes.

DISCUSSION

To our knowledge, this is the first comprehensive study
which compared gene expression changes in the TRG, TNC
and peripheral blood leukocytes in an inflammatory orofacial
pain model. Simultaneous measurement of the transcriptional
changes of PBMCs had been suggested to reflect alterations in
the CNS (Arosio et al., 2014; Gerring et al., 2016; Srinivasan et al.,
2017). We described up- and downregulation of distinct genes
that are likely to be involved in the activation and sensitization of
primary and secondary trigeminal neurons.

The mechanisms of nociceptor sensitization after
inflammation have been extensively studied in rodents by
electrophysiological, histological and molecular biological
approaches (Hucho and Levine, 2007; Coste et al., 2008;
Matsumoto et al., 2010; Cady et al., 2011; Bernstein and Burstein,
2012; Weyer et al., 2016). Nevertheless, we cannot extrapolate
all the findings to the trigeminovascular system, since it is
considerably different from other regions of the somatosensory
system. As mentioned before, the central terminals of extra- and
intracranial trigeminal primary afferents converge considerably
in the TNC. As a consequence, inflammatory sensitization of
primary meningeal afferents and secondary trigeminal neurons
resulted in an enhanced response to cutaneous stimulation of the
face (Burstein et al., 1998; Levy et al., 2004). On the other hand,
experimental data also confirm that noxious stimulation (e.g.,
intranasal capsaicin), inflammation or nerve lesion on the face
can induce meningeal vasodilation or neurogenic inflammation
(Kunkler et al., 2011; Filipović et al., 2012). Intriguingly, it was
revealed that there are trigeminal afferents which project to both
the meninges and extracranial tissues (Schueler et al., 2013). Both
human and rodent data point out that gene expression of TRGs
is distinct from DRGs (Manteniotis et al., 2013; Flegel et al., 2015;
Kogelman et al., 2017; LaPaglia et al., 2017). Yet, there have only
been few rodent studies investigating gene expression changes in
the TRGs after chronic orofacial inflammation (Okumura et al.,
2010; Chung et al., 2016).

Our microarray study revealed a high number of differentially
expressed olfactory, taste and pheromone receptor genes
between the ipsi- and contralateral sides 7 days after CFA
treatment. A large number of transcripts of chemoreceptors
had been detected in murine and human TRGs using next-
generation sequencing (Manteniotis et al., 2013), however
their involvement in trigeminal sensitisation is not known.
It is appealing to draw parallels between the perturbation of
TRG chemoreceptors in our model and the known phenomena
of an odour or perfume-triggered migraine, as well as odour
hypersensitivity, osmophobia, odour hallucination and taste
abnormalities associated with migraine (Schreiber and Calvert,
1986; Kelman, 2004; Goadsby et al., 2017). The microarray
analysis implicated thyroid hormone receptor beta which had
been previously associated with migraine (Gormley et al., 2015),
and chemokine signalling (Ccr7), among many others as well
as long non-coding RNAs (lncRNA) putatively involved in gene
regulation.

On the basis of these microarray results, we further
investigated the time-dependent changes of one of the most
upregulated genes (Lkaaear1) and the most downregulated
(Neurod2) gene with qPCR. Transcripts of genes with possible
roles in nociception, which also have the potential to be
future drug targets, were also chosen to be studied, such
as two G-protein-coupled receptors (Gpr39 and Kiss1r) and
the neuropeptide kisspeptin (Kiss1). Lkaaear1 encodes an
LKAAEAR motive containing protein with unclear function. It
is highly expressed in the brain and testis and during organ
development (NCBI Gene database)2 Neurod2 is involved in

2https://www.ncbi.nlm.nih.gov/gene/198437
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FIGURE 3 | Time course of normalized fold changes in the trigeminal ganglia of Gpr39 (A), Lkaaear1 (B), Kiss1 (C), Kiss1r (D), Cgrp (E), Fosb (F), Iba1 (G), and Gfap

(H) mRNA expression one, 3 and 7 days after CFA injection. The mRNA levels were normalised to β2m and Hprt1, as detailed in materials and methods. Data are

means ± S.E.M. (n = 3 at each time point). Asterisks denote statistically significant differences between CT Saline and CT/CFA groups (*p ≤ 0.05, **p ≤ 0.01, ***p ≤

0.001, ****p ≤ 0.0001), while hash marks label statistically significant differences between respective CT and CFA groups (#p ≤ 0.05, ##p ≤ 0.01, ###p ≤ 0.001,
####p ≤ 0.0001) as analysed by one-way ANOVA followed by Tukeys’ multiple comparison tests.

neuronal differentiation and has been implicated in synaptic
plasticity (Bayam et al., 2015; Chen et al., 2016). Gpr39 is
a Zn2+-sensing Gαq-coupled receptor which is expressed in
a wide range of tissues including some areas of the brain.
Activation of Gpr39 induces the release of Ca2+ via the
IP3 pathway. The receptor may play a role in depression,
and as a specific and direct sensor of Zn2+, in many
physiological functions where the cation is involved such as
synaptic transmission (Popovics and Stewart, 2011; Sato et al.,
2016). Kisspeptin, encoded by the Kiss1 gene, is considered
to have an emerging role in the neuroendocrine regulation
of reproduction and puberty (de Roux et al., 2003; Seminara,
2006; Kauffman et al., 2007; Colledge, 2009). Kisspeptin-
expressing neurons and Kiss1r are found in areas other than
the hypothalamus: amygdala, hippocampus, periaqueductal grey
(Oakley et al., 2009; Herbison et al., 2010). In addition, DRG
and dorsal horns neurons of the spinal cord have been shown
to express kisspeptin and Kiss1r, whose expression might
be upregulated due to intra-articular injection of CFA (Mi
et al., 2009). There are studies showing hyperalgesic effect of
peripheral and intrathecal kisspeptin (Spampinato et al., 2011).
Likewise, i.c.v. administration of kisspeptin-10 induces both

hyperalgesia and opioid antagonistic activity (Elhabazi et al.,
2013), suggesting its possible involvement in the regulation of
pain sensitivity.

We successfully reproduced the changes detected with the
microarray by qPCR in cases of Gpr39 and Kiss1r. Neurod2
transcripts were not detected in the TRG and Lkaaear1
expression was higher on day 3 but not on day 7 compared
to the contralateral side. It is important to highlight that
there was a delayed but considerable increase of mRNA
levels on the contralateral side of CFA-treated animals when
compared to saline-treated animals. This is consistent with earlier
reports found after inflammation or nerve injury of the hind
limbs in which structural and biochemical changes appeared
both centrally and in the periphery on the contralateral side
(Koltzenburg et al., 1999; Shenker et al., 2003) However, we did
not only use the contralateral side of CFA injected animals as
controls, but we also included a saline-injected group as well.
We aimed at keeping the animal number at a minimum level
and meanwhile taking into account the possible trauma caused
by only the injection itself. In addition, there was no detectable
allodynia on the contralateral side in our model, therefore the
comparison to the contralateral side is still valid from a functional
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FIGURE 4 | Time course of normalized fold changes in the trigeminal nucleus caudalis of Gpr39 (A), Lkaaear1 (B), Neurod2 (C), Kiss1 (D), Kiss1r (E), Cgrp (F), Fosb

(G), Iba1 (H), and Gfap (I) mRNA expression one, 3 and 7 days after CFA injection. The mRNA levels were normalised to β2m and Hprt1, as detailed in materials and

methods. Data are means ± S.E.M. (n = 3 at each time point). Asterisks denote statistically significant differences between CT Saline and CT/CFA groups (**p ≤ 0.01,

****p ≤ 0.0001), while hash marks label statistically significant differences between respective CT and CFA groups (##p ≤ 0.01, ###p ≤ 0.001, ####p ≤ 0.0001)

as analysed by one-way ANOVA followed by Tukeys’ multiple comparison tests.
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FIGURE 5 | Time course of normalized fold changes in PBMC of Gpr39 (A), Lkaaear1 (B), Kiss1r (C), Fosb (D), Iba1 (E), and Gfap (F) mRNA expression one, 3 and 7

days after CFA injection. The mRNA levels were normalised to Ppia and Hprt1, as detailed in materials and methods. Data are means ± S.E.M. (n = 3 at each time

point). Asterisks denote statistically significant differences between respective Saline and CT/CFA groups (*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001) as

analysed by one-way ANOVA followed by Tukeys’ multiple comparison tests.

aspect and provides additional information based on this double
comparison.

We added Cgrp to the list of investigated markers to validate
the model, since it is a well-known mediator and even a novel
pharmacological target of migraine (Durham, 2006; Doods et al.,
2007; Benemei et al., 2009; Edvinsson et al., 2012; Bigal et al.,
2013; Russo, 2015). Moreover, its expression was shown to be
elevated in TRGs in rodent models of orofacial inflammation
(Yasuda et al., 2012; Shinoda and Iwata, 2013; Kuzawinska et al.,
2014). Our results are consistent with these previous findings,
Cgrp transcripts were significantly increased in the TRG at day
3 after CFA treatment corresponding to the peak of the facial
allodynia.

In addition to the TRG, we also examined the transcriptional
changes in the TNC, reflecting mechanisms involved in central

sensitization, as well as PBMCs in the peripheral blood. In the
TNC, significant changes were observed for the examined genes
with the exception of Kiss1r. Intriguingly, the Kiss1 expression in
the TNC was mirroring the changes of the receptor expression in
the TRGwhich suggests a presynaptic effect on primary afferents.
Lkaaear1 and Kiss1r expression were also significantly increased
in PBMCs with a similar time course.

Besides allodynia, as the main functional parameter, neuronal
and glial activation markers were also assessed by comparing
their gene expression profiles. Therefore, we determined the
widely-used neuronal activation marker Fosb, Gfap for astrocytes
and Iba1 for microglia (Nestler et al., 2001; Alibhai et al.,
2007; Knight et al., 2011). Gfap has been shown to play
a role in astrocyte migration, the function of the blood-
brain barrier, signal transduction pathways and neuron-glia
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FIGURE 6 | Summary of all qPCR results in TRG, TNC and PBMCs one, 3 and 7 days after CFA injection and in saline-treated controls. Fold change values were log2

transformed and plotted on a heat map. Rows: genes; columns: sample groups; scale: blue (low) to red (high). Hierarchical cluster analysis (1-Pearson correlation and

average linkage method) was performed. Dendrograms on the left side of each figure demonstrate similarities between expression patterns of genes.

interactions (Middeldorp and Hol, 2011). Iba1, also known as
AIF1 (Allograft Inflammatory Factor 1) expressed in various cells
such as monocyte/macrophages and activated T lymphocytes,
is mostly used as a microglia marker (Kelemen and Autieri,
2005; Pawlik et al., 2016). All the three activation markers were
significantly increased already at day 1 of the inflammation
in both TRGs and TNCs, peaked by day 3 and decreased by
day 7 when allodynia was declining. Remarkably and most
interestingly, a smaller but significant increase of expression
was also detectable in PBMCs which highlights the relevance of
blood transcriptomics data in CNS diseases. To our knowledge,
this is the first study to determine these transcripts in the
peripheral blood of experimental animals, however, there are
relevant human data for Gfap as a blood biomarker. It was first
presented in acute stroke diagnosis in adults (Niebrój-Dobosz
et al., 1994) and head trauma (Missler et al., 1999). Recently, it
has been suggested that Gfap might be a potential biomarker of
intracerebral haemorrhage (IHC) with symptoms of acute stroke
(Brunkhorst et al., 2010; Mayer et al., 2013; Foerch et al., 2015). It
is also an early marker of traumatic brain injury (Bembea et al.,
2011; Lei et al., 2015), during different phases of cardiopulmonary
bypass (Vedovelli et al., 2017), with predictiveness of neurological
outcome (Lei et al., 2015). It is clear that the measurement of
Gfap changes at the periphery is not a specific diagnostic tool
and it is too early to draw a final conclusion on its utility at
this stage. However, it would be interesting to see in future
studies whether it could have a prognostic value to predict
the conversion of orofacial pain or headache conditions from
episodic to chronic. In ourmodel, Gfap expression remained high
even at the end of the experiment which could reflect a persistent
neuroinflammation.

In conclusion, the main novelty of the present findings is
the description of some up- and downregulated genes at the
levels of both primary and secondary sensory neurones of
the trigeminovascular system that might play important roles
in neuroinflammatory activation mechanisms. Furthermore,

we are the first to show transcriptomic alterations in the
PBMCs that are similar to the changes detected in the
neuronal tissues. These results open new perspectives and
initiate further investigations in the research of trigeminal pain
disorders.
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