
OPINION
published: 02 July 2018

doi: 10.3389/fnmol.2018.00224

Frontiers in Molecular Neuroscience | www.frontiersin.org 1 July 2018 | Volume 11 | Article 224

Edited by:

Alexej Verkhratsky,

University of Manchester,

United Kingdom

Reviewed by:

Yuriy Pankratov,

University of Warwick,

United Kingdom

*Correspondence:

Yingfei Xiong

yfxiong@139.com

Mu Jin

jinmu0119@tom.com

Zhuan Zhou

zzhou@pku.edu.cn

†These authors have contributed

equally to this work.

Received: 29 March 2018

Accepted: 07 June 2018

Published: 02 July 2018

Citation:

Xiong Y, Sun S, Teng S, Jin M and

Zhou Z (2018) Ca2+-Dependent and

Ca2+-Independent ATP Release in

Astrocytes.

Front. Mol. Neurosci. 11:224.

doi: 10.3389/fnmol.2018.00224

Ca2+-Dependent and
Ca2+-Independent ATP Release in
Astrocytes
Yingfei Xiong 1,2*†, Suhua Sun 1†, Sasa Teng 1, Mu Jin 1,3* and Zhuan Zhou 1*

1 State Key Laboratory of Biomembrane and Membrane Biotechnology and Peking-Tsinghua Center for Life Sciences and

PKU-IDG/McGovern Institute for Brain Research, Institute of Molecular Medicine, Peking University, Beijing, China,
2Department of Neurosurgery, Affiliated Hospital of The Air Force Institute of Aeromedicine, Beijing, China, 3Department of

Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China

Keywords: glial transmitter, ATP, astrocyte, exocytosis, P2X7, calcium, mechanical stimulation

Like neurons, astrocytes are abundant in the central nervous system. They contact all types of cells
in the brain, communicate with them, and modulate their activity by releasing gliotransmitters,
including glutamate, ATP, etc. (Newman, 2003; Halassa and Haydon, 2010; Hamilton and Attwell,
2010; Volterra et al., 2014; Verkhratsky and Nedergaard, 2018), although the role of astrocytes
in neurotransmission is still debated (Nedergaard and Verkhratsky, 2012; Fiacco and McCarthy,
2018).

ATP is considered to be a powerful extracellular messenger in both the peripheral and central
nervous systems (Edwards et al., 1992; Fields and Stevens, 2000; Burnstock, 2007; Verkhratsky
et al., 2009). Via activating multiple receptors in glia and neurons, ATP signaling participates in
many important functions including cell development and synaptic plasticity (Evans et al., 1992;
Newman, 2003; Zhang et al., 2003; Agresti et al., 2005; Abbracchio et al., 2009; Butt, 2011; Wurm
et al., 2011; Verkhratsky et al., 2016). However, unlike the mechanism of neurotransmission via
quantal exocytosis (Katz, 1959, 1969; Augustine and Neher, 1992; Neher, 1998; Sudhof, 2004;
Pankratov et al., 2006, 2007; Sudhof and Rothman, 2009), the mechanisms by which ATP is
released remain controversial. Because ATP is easily hydrolyzed, monitoring its real-time release
is a challenge.

EARLY STUDIES OF NON-QUANTAL ATP RELEASE FROM
ASTROCYTES

Early studies usually applied indirect methods such as dye-uptake, ATP analog labeling, and
luciferase-luciferin system tests to indirectly detect ATP release (Duan et al., 2003). Based on these
studies, ATP was thought to be released through specific channels, such as connexin/pannexin
hemichannels, “maxi-anion” channels, and P2X7 receptor channels (Figure 1A, Stout et al., 2002;
Duan et al., 2003; Bao et al., 2004; Suadicani et al., 2006; Kang et al., 2008; Liu et al., 2008; Iglesias
et al., 2009; Bennett et al., 2012). These studies used indirect measurements based on measuring
dyes or currents through channels that can pass molecules larger than ATP.

QUANTAL ATP RELEASE UNDER PHYSIOLOGICAL CONDITIONS

Patch-clamp recording via sniffer cells (Young and Poo, 1983; Liu et al., 2011) is a powerful tool
with which to investigate the ATP release mechanism due to its high spatiotemporal resolution
(Hollins and Ikeda, 1997; Pangrsic et al., 2007; Karanauskaite et al., 2009; Lalo et al., 2014; Liu
et al., 2014; Lee et al., 2015). By using ATP-sniffer cells, Lalo et al. recorded quantal ATP release
in astrocytes freshly isolated from mouse cortex. ATP is released by Ca2+-dependent exocytosis
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FIGURE 1 | Ca2+-dependent and Ca2+-independent ATP release in astrocytes. (A) Two types of ATP release: Ca2+-dependent quantal release and

Ca2+-independent non-quantal release. In the Ca2+-dependent pathway, secretory vesicles with packaged ATP are trafficked to the plasma membrane where they

dock and fuse with it on arrival of a stimulus; this typically depends on an increase of cytosolic Ca2+. In the Ca2+-independent pathway, ATP is released through

channels expressed on the astrocyte plasma membrane, such as the swelling-induced anion channel, connexin hemichannels activated by lower Ca2+

concentrations, and ionotropic purinergic receptor channels. (B) N-methyl-D-aspartate (NMDA)-induced Ca2+-dependent quantal ATP release from a freshly-isolated

astrocyte, recorded by a HEK293-P2X2 sniffer cell. (C) Typical MARA current (IP2X4) recorded with an HEK293A sniffer-cell expressing P2X4 (ATP sniffer) on an

astrocyte. The astrocyte was stimulated twice and the MARA signal was reproducible. Inset, cartoon of the experimental protocol for MARA recording; Upper right:

MARA vs Ca2+-dependent ATP release of burst quantal events from a rat chromaffin cell (RACC). (D) Two-step hypothesis of MARA-mediated brain diseases. Left.

Step 1: Stress induces upregulation of P2X7 receptor expression in astrocytes. The stressors include hypoxia (i.e., stroke and ischemia), trauma, and CNS diseases

associated with inflammation or neurodegeneration. Right. Step 2: Stretch leads to P2X7-mediated ATP release from astrocytes. The abundant ATP is an emergency

signal for the neural immune system that recruits and activates microglia in the ATP “hot-spots” and promotes disease. All data adapted from Xiong et al. (2018),

except B adapted from Lalo et al. (2014). All data with reproduction permission from the original publishers.
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following the activation ofmetabotropic and ionotropic receptors
or direct UV-uncaging. The ATP release is SNARE protein-
dependent and is eliminated by pretreatment with bafilomycin,
a blocker of vacuolar-type H-ATPase. The kinetics of sniffer-
cell responses are consistent with the millisecond time-scale,
suggesting that ATP exocytosis is from synaptic-like small
vesicles (Figures 1A,B). The ATP released from astrocytes (1)
activates P2X receptors in neighboring neurons to enhance
excitatory signaling, and (2) down-regulates inhibitory synaptic
signaling (Lalo et al., 2014).

In addition to the tiny quantal ATP release arising from Ca2+-
dependent exocytosis in freshly-isolated astrocytes, an earlier
report proposed that Ca2+-dependent lysosome exocytosis is
responsible for quantal ATP release in cultured astrocytes (Zhang
et al., 2007). They provided three lines of indirect evidence:
(1) the uptake of a fluorescent ATP analog, MANT-ATP, into
lysosomes; (2) the presence of ATP in biochemically-purified
lysosomes; and (3) the real-time visualization of Ca2+-dependent
lysosome exocytosis by total internal reflection fluorescence
microscopy imaging of a false neurotransmitter (FM2-10).
Although these data raised the possibility of quantal ATP release
via lysosomal exocytosis, direct recording of quantal ATP release
from glial lysosomes was absent.

STRETCH-INDUCED CA2+-INDEPENDENT
ATP RELEASE THROUGH P2X7
CHANNELS

It was our original goal to record quantal ATP release in cultured
hippocampal astrocytes using ATP-sniffer cells. To our surprise,
with three independent assays of lysosomal exocytosis, our real-
time sniffer recordings clearly denied ATP release by Ca2+-
dependent lysosomal exocytosis (Xiong et al., 2018). Instead,
following a gentle membrane stretch, Ca2+-independent non-
vesicular ATP release occurred in the cultured astrocytes (Xiong
et al., 2018). In contrast to the quantal spikes of ATP release
in chromaffin cells, the Mechanically-induced ATP Release
from Astrocytes (MARA) displays a single spike with distinct
kinetic characteristics. MARA is ∼300-fold greater in release
content and ∼50 times longer in duration (Figure 1C, upper
right inset). Mechanistically, MARA-mediated ATP release is
(1) Ca2+-independent, (2) not via lysosome exocytosis, and
(3) mitochondria-dependent (Xiong et al., 2018). The P2X7
receptor channel is essential for MARA-mediated ATP release,
because it is profoundly inhibited by Brilliant Blue G, a selective
P2X7 antagonist, as well as by RNA interference-based P2X7
knockdown (Xiong et al., 2018). Considering that the open
pore of the P2X7 channel allows the permeation of cytosolic
molecules of molecular weight ≤900 Da, P2X7 channels should
be able to release ATP (507 Da) (Yan et al., 2008; Nagasawa
et al., 2009), and other purines, such as AMP, ADP, or
adenosine. Together, MARA occurs when mechanical stretch
triggers ATP efflux through P2X7 channel pores in “activated”
astrocytes expressing P2X7 receptors in culture/in vitro or
hypoxia/trauma/disease in vivo (Nagasawa et al., 2009). Hypoxia
might decreasemitochondrial-dependent cytosolic ATP level and

partially compensate the MARA signal for the increase in P2X7
expression.

One important open question left by Xiong (Xiong et al., 2018)
is the identity of the mechanical sensor by which MARA initiates
mechanical-P2X7-ATP release in astrocytes. Since P2X7 itself
is not mechanosensor, we hypothesize that a mechanosensor
[such as piezo 1 protein (Zhao et al., 2018)] binds P2X7
and “transactivates” mechanical force to activate P2X7 [One
recent example of protein-transactivation is that a voltage-sensor
channel activates another binding protein of vesicle fusion-
pore (Chai et al., 2017)]. Following the discovery of MARA,
identification of this sensor is critical for treating possible
MARA-mediated brain diseases as proposed below. In addition
to P2X7 (Xiong et al., 2018), hemichannels such as connexins
(Stout et al., 2002) and large conductance Cl− channel (Liu
et al., 2008) have been reported to mediate the non-vesicular
ATP release from astrocytes. At present it is unclear about
the relative contributions to ATP release among these channel
types, because the stimulations in these studies were different.
These ATP-release pathways through different channels may play
condition-dependent roles in astrocytes’ functions.

A HYPOTHESIS OF MARA IN BRAIN
PROTECTION AND DISEASES

In contrast to the Ca2+-dependent quantal ATP release in
freshly-isolated astrocytes, the Ca2+-independent ATP release
event (MARA) in cultured astrocytes is ∼10,000 times greater
(Figure 1C). P2X7 is up-regulated under ischemic conditions
in vivo (Nagasawa et al., 2009), and this could contribute to the
release of large amounts of ATP from cellular sources, and in
the extracellular space it is quickly hydrolyzed to ADP, AMP,
and adenosine, which activate their receptors and play roles in
brain protection and damage (Neary et al., 2003; Choo et al.,
2013; Rodrigues et al., 2015). On the other hand, the large ATP
release via MARA would recruit microglia, leading to protective
or pathological pathways (Dou et al., 2012). Thus, we propose
that MARA could be a mechanism underlying brain diseases
such as those associated with hypoxia/ischemia and trauma,
as well as other neurological disorders (Parkinson’s disease,
Alzheimer’s disease, and epilepsy) (Figure 1D). Our hypothesis
is detailed as follows. The first step is MARA genesis, which is
dependent on P2X7 receptor expression. The expression level
of P2X7 receptors in astrocytes is up-regulated under either
of the two conditions: (1) in culture, which is an extremely
stressful condition lacking blood and other support for astrocytes
(Narcisse et al., 2005; Bartlett et al., 2014; Burnstock, 2017; Xiong
et al., 2018); and (2) in vivo, when astrocytes suffer stresses, such
as hypoxia (i.e., ischemia and stroke), trauma, or some CNS
diseases (for example, inflammation and/or neurodegeneration;
Ballerini et al., 1996; Narcisse et al., 2005; Nagasawa et al.,
2009; Burnstock, 2017). Indeed, few astrocytes express P2X7
receptors in the intact hippocampal slices under physiological
conditions (Nagasawa et al., 2009; Xiong et al., 2018). As the
P2X7 receptor is a key modulator of aerobic glycolysis, it has
an intrinsic ability to reprogram cell metabolism to meet the
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needs imposed by adverse environmental conditions (Amoroso
et al., 2012). The up-regulation of P2X7 receptors in astrocytes is
not only a form of adaptation to stress, but is also a necessary
preparation for MARA to execute its repair function in its
brain region (Figure 1D, step 1). The second step is MARA
activation following mechanical stimulation, which could be
generated by arterioles in vivo. Astrocytes regulate cerebral blood
flow to match the metabolic requirements of the brain (Gordon
et al., 2008) by eliciting the vasoconstriction or vasodilation of
arterioles. A tension change due to such vasoconstriction/dilation
is an effective physiological mechanical stimulus (membrane
stretch) for astrocytes, which are activated by deformation of
their surroundings on a timescale of milliseconds (Janmey and
Miller, 2011). Physiological arteriole stretch does not trigger
MARA because P2X7 receptors are rare in astrocytes under
normal conditions. When stresses such as hypoxia/trauma occur,
the expression of astrocytic P2X7 receptors is up-regulated, and
if the stress persists and exceeds a threshold, the abnormal
changes in arteriole tension directly trigger MARA (Figure 1D,
step 2). So, noxious stimuli up-regulate the P2X7 receptor
expression in astrocytes, and this can be considered as an adaptive
change in response to stress and the beginning of pathological
damage, because up-regulation of P2X7 receptor expression is
the prerequisite for non-quantal ATP release/MARA. When
the steady-state is disturbed, MARA occurs and triggers a
sustained increase in extracellular ATP, which then acts to alert
the presence of a “hot spot.” This signal recruits and activates
microglia, which scavenge and phagocytize injured cells and
cellular debris, increase the susceptibility of neurons to damage,

promote astrogliosis, and mount neuroinflammatory responses
(Parpura et al., 2012; Rivera et al., 2016). In this sense, both
astrocytes and microglia comprise the immune system of the
CNS: each of a vast number astrocytes performs an immobile
surveillance for its specific location in the brain, signaling stress,
while each microglia cell acts as a mobile patrol, responding
to the astrocytic “alert” signal—an unusually large increase in
extracellular ATP concentration. To a certain extent, MARA
from a few astrocytes recruits a few microglia to clear the site
and protect the brain. However, when the stress is excessive,
MARA from a large number of astrocytes may recruit too many
microglia, overkill healthy tissue, and cause irreversible brain
damage (disease).
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