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Connexin 32 (Cx32) is a fundamental protein in the peripheral nervous system (PNS)
as its mutations cause the X-linked form of Charcot–Marie–Tooth disease (CMT1X),
the second most common form of hereditary motor and sensory neuropathy and a
demyelinating disease for which there is no effective therapy. Since mutations of the
GJB1 gene encoding Cx32 were first reported in 1993, over 450 different mutations
associated with CMT1X including missense, frameshift, deletion and non-sense ones
have been identified. Despite the availability of a sizable number of studies focusing
on normal and mutated Cx32 channel properties, the crucial role played by Cx32 in
the PNS has not yet been elucidated, as well as the molecular pathogenesis of
CMT1X. Is Cx32 fundamental during a particular phase of Schwann cell (SC) life? Are
Cx32 paired (gap junction, GJ) channels in myelinated SCs important for peripheral nerve
homeostasis? The attractive hypothesis that short coupling of adjacent myelin layers by
Cx32 GJs is required for efficient diffusion of K+ and signaling molecules is still debated,
while a growing body of evidence is supporting other possible functions of Cx32 in the
PNS, mainly related to Cx32 unpaired channels (hemichannels), which could be involved
in a purinergic-dependent pathway controlling myelination. Here we review the intriguing
puzzle of findings about Cx32 function and dysfunction, discussing possible directions
for future investigation.
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INTRODUCTION

Connexin 32 (Cx32) is a 32 kDa protein of the connexin family, abundantly found in liver
(Paul, 1986), but it is also expressed in many other tissues, including the central nervous
system (CNS) and the peripheral nervous system (PNS) (Scherer et al., 1995; Rash et al.,
2001). Mutations in the GJB1 gene, which encodes Cx32, are the leading cause of the X-linked
dominant form of Charcot–Marie–Tooth disease (CMT1X or CMTX1), the second most common
form of hereditary motor and sensory neuropathy and a disease for which there is no cure
(Kleopa and Scherer, 2006; Kleopa et al., 2012). Since mutations were first reported in 1993
(Bergoffen et al., 1993), over 450 different mutations associated with CMT1X including missense,
frameshift, deletion and non-sense ones have been identified according to The Human Gene
Mutation Database (HGMDr; Stenson et al., 2014). In both nerves and ganglia of the PNS,
Cx32 localizes only in myelinating Schwann cells (SCs), mainly to the paranodes, the periodic
interruptions in the compact myelin called Schmidt–Lanterman incisures, and the two outer
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layers of myelin (Scherer et al., 1995; Meier et al., 2004;
Procacci et al., 2008). Elucidation of the molecular function of
Cx32 in myelinating SCs is a requirement for understanding how
different mutations lead to the sequence of events that end in
demyelination and axonal loss in CMT1X patients. Despite the
availability of an incredible number of studies, mostly in vitro,
focusing on normal and mutated Cx32 channel properties, an
interpretative framework is still lacking.

Cx32 Gap Junction Channels in
Non-compact Regions of Myelinating
Schwann Cells
Minute intracellular gap junction (GJ) channels are formed in
non-compact regions of SC myelin when hexamers of Cx32
(connexons or hemichannels) spanning opposite myelin layers
dock end-to-end (Meier et al., 2004), providing a fast diffusive
radial path between the abaxonal and adaxonal region (Balice-
Gordon et al., 1998). This has led to the attractive hypothesis that
Cx32 GJ channels are critical for the passage of K+ and signaling
molecules across the myelin sheath of SCs, whose function is not
only to myelinate axons but also to maintain their long-term
functional integrity (Nave and Trapp, 2008). The overlap in
the distribution of Cx32 and Cx29 at incisures and paranodes
suggests that they both contribute to reflexive junctions (Altevogt
et al., 2002; Li et al., 2002), even if immunogold labeling for
Cx29 did not reveal ultrastructurally defined GJs at incisures
or directly linking successive paranodal loops (Li et al., 2002).
Furthermore Cx29 does not form junctional channels when
expressed in cultured cells (Altevogt et al., 2002; Ahn et al., 2008),
neither Cx29 human ortholog Cx31.3 (Sargiannidou et al., 2008).
Cx43 is also highly expressed in paranodal regions of myelinating
SCs of adult wild-type (WT) and Cx32-null mice (Zhao et al.,
1999). In adult rat, staining of Cx43 along myelin sheath and
SC bodies was observed, but lower than Cx32 (Mambetisaeva
et al., 1999), whereas an immunohistochemical study of human
peripheral nerves revealed that anti-Cx43 antibody stained
cytoplasm around the nucleus of SCs but not myelin (Yoshimura
et al., 1996). Cx26 is also expressed in myelinating SCs of
neonatalWTmice (Zhao et al., 1999), but not in those of neonatal
rats (Mambetisaeva et al., 1999), supporting the conclusion
that connexin expression in SCs is, at least in part, species-
dependent, so direct investigation in the human nerve would be
needed.

Cx32 Hemichannels May Participate in the
Myelination Process of Schwann Cells
In the PNS, electrical stimulation of myelinated nerves triggers
axonal ATP release which induces Ca2+ increases in the
cytosol and the mitochondrial matrix of the surrounding
SCs via P2Y receptor activation (Lev-Ram and Ellisman,
1995; Lyons et al., 1995; Mayer et al., 1997; Stevens and
Fields, 2000; Ino et al., 2015). This neuron-to-SC pathway
is likely to have an important role in proper myelination as
in vivo chronic suppression of the purinergic-mediated signaling
inhibits correct myelin formation and causes hypomyelination
(Ino et al., 2015). Cx32 hemichannels in myelinating SCs may

contribute to regulate the myelination process by enhancing the
intracellular and intercellular propagation of this Ca2+ signaling
by a regenerative ATP-induced ATP release mechanism.
The presence of functional Cx32 hemichannels was recently
hypothesized based on connexin-mediated ATP release observed
during electrical stimulation of mice sciatic nerves (Nualart-
Marti et al., 2013). Indeed, themolecularmachinery ideally suited
to support a Cx32-mediated purinergic signaling throughout
SCs is actually present in peripheral nerves, given that Cx32,
IP3R and P2Y receptors are found together in the paranodes
and in the outer layer of SCs (Martínez-Gómez and Dent,
2007; Toews et al., 2007) and Cx32 hemichannels can release
ATP (Cotrina et al., 2000; Belliveau et al., 2006; De Vuyst
et al., 2006; Nualart-Marti et al., 2013). Indeed, comparing
SCs cultured from sciatic nerves of WT and Cx32-null mice,
Cx32 was found to enhance the intercellular Ca2+ waves
spreading without contribution of Cx32 GJs (Zhao et al., 1999).
As the Ca2+ wave propagation was mediated by extracellular
release of ATP, it can reasonably be inferred the involvement of
Cx32 hemichannels. The same consideration applies to another
work (Freidin et al., 2009) using primary cultures of purified SCs
from sciatic nerve which suggests a link between Cx32 expression
and GGF2 (a growth factor which controls SC proliferation
and differentiation), which does not involve Cx32-mediated GJ
communication.

Other Possible Functions of Cx32 in
Myelinating Schwann Cells
GJB1 gene depletion results in a mitotic phenotype from the
genome-wide phenotypic profiling performed by the Mitocheck
consortium (Neumann et al., 2010). Mitotic instability and
CMT1X phenotype were linked to increased CaMKII activity
in both human and murine fibroblasts carrying the G12S and
S26L mutations of Cx32 as normal mitosis and motor function
of mutant mice were partially recovered by CaMKII inhibitors
(Mones et al., 2012, 2014). Cx32-S26L hemichannel dysfunction
due to altered CaMKII activity was also proposed (Mones et al.,
2014), supporting the notion that a CaM-dependent pathway
controls the hemichannel gating by cytosolic Ca2+ of α and β

connexin isoforms (DeVuyst et al., 2006, 2009; Zhang et al., 2006;
Zhou et al., 2009; Hu et al., 2018). As found in oligodendrocytes
(Waggener et al., 2013), CaMKII may be also critical in SCs for
the well balanced equilibrium between dynamic remodeling and
kinetic stability of the actin cytoskeleton required for efficient
myelination.

Recently (Fowler et al., 2013), by employing a proteomic
approach in murine liver, it has been reported that Cx32 is
expressed in the inner mitochondrial membrane and interacts
with the outer mitochondrial membrane resident fraction of
syderoflexin-1 (SFXN-1), thus suggesting a putative role for
Cx32-SFXN1 axis as protein complex for mitochondrial plasma
membrane tethering. In Cx32-null mice, several mitochondrial
proteins are upregulated, indicating that Cx32 optimizes
mitochondrial bioenergetics by restricting rates of oxidative
phosphorylation (Fowler et al., 2017, communication at the
International GJ Conference).
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The X-Linked Form of
Charcot-Marie-Tooth Disease
CMT1X patients develop progressive distal muscle weakness
and amyotrophy, together with sensory abnormalities that
are most pronounced in the distal extremities (Vance, 1991;
Harding, 1995; Suter and Snipes, 1995). CNS disturbances,
mainly episodic but in some cases including static deafness
and cognitive impairment, can occur in CMT1X patients,
whereas the symptoms do not appear to correlate with the
stage and severity of the peripheral neuropathy (Abrams and
Freidin, 2015; Wang and Yin, 2016). Nerve electrophysiological
and pathological analysis show intermediate slowing of
conduction and length-dependent axonal loss, with more
prominent axonal degeneration than de/remyelination (Kleopa
et al., 2012), which supports the hypothesis that axonal
abnormalities precede demyelination (Vavlitou et al., 2010).
Interestingly, these studies together show that clinical and
pathophysiological features of patients lacking the entire coding
region of Cx32 are similar to that of most other patients
with CMT1X, suggesting that most mutations cause loss-of-
function (Shy et al., 2007; Kleopa, 2011). Functional analysis
of Cx32 mutations (mainly CMT1X-related) using various
expression systems has revealed a plethora of alterations
that could schematically subdivided in classes, not mutually
exclusive, which range from mutations that cause loss of
channel formation to those that retain electrical coupling
but show altered permeation properties or defective gating
mechanisms:

1. Cx32 protein is not synthesized (Ionasescu et al., 1996;
Ainsworth et al., 1998; Abrams and Freidin, 2015).

2. Mutant Cx32 protein is normally transcribed but little protein
is expressed in the cell, such as in a frameshift of Cx32 at
amino acid 175 (Deschenes et al., 1997). Some GJB1 gene
mutations in non-coding regions controlling Cx32 expression
should belong to this category (Tomaselli et al., 2017).

3. Mutant Cx32 protein is properly synthesized but not
transported to the plasma membrane, causing abnormal and
possibly toxic accumulation in intracellular compartment
such as the endoplasmic reticulum (ER), the Golgi apparatus
or the cytoplasm. This condition results for mutations W3D
(Kalmatsky et al., 2012), W3Y (Martin et al., 2000), Y7D
(Kalmatsky et al., 2012), G12S (Deschenes et al., 1997; Wang
et al., 2004; Kalmatsky et al., 2009; Mones et al., 2014), R32E
(Fleishman et al., 2006), M34K (Yum et al., 2002), M34T
(Yum et al., 2002), V38M (Yum et al., 2002), A39P and
A39V (Kleopa et al., 2002), A40V (Yum et al., 2002), F51L
(Abrams et al., 2017), C53S (Yoshimura et al., 1998), T55I
(Kleopa et al., 2002; Sargiannidou et al., 2009; Abrams et al.,
2017), R75P and R75Q (Yum et al., 2002), R75W (Yum
et al., 2002; Sargiannidou et al., 2009; Abrams et al., 2013),
E102del (Abrams et al., 2017), V140E (Kleopa et al., 2006),
R142E (Fleishman et al., 2006), R142Q (Abrams et al., 2017),
R142W (Deschenes et al., 1997; Vanslyke et al., 2000; Jeng
et al., 2006; Abrams et al., 2017), L143P (Kleopa et al., 2006),
E146R (Fleishman et al., 2006), R164Q (Kleopa et al., 2002;
Abrams et al., 2017), R164W (Kleopa et al., 2002), C168Y

(Abrams et al., 2017), P172R (Yoshimura et al., 1998),
V177A (Abrams et al., 2017), E186K (Deschenes et al., 1997;
Vanslyke et al., 2000), N205I (Yum et al., 2002), E208K
(Deschenes et al., 1997; Martin et al., 2000; Vanslyke et al.,
2000; Wang et al., 2004), Y211X and C217X (Yum et al.,
2002).

4. Mutant Cx32 protein is transported and inserted in the
membrane to form hemichannels but no plaques or functional
GJ channels are found. This condition results for mutations
W3S (Martin et al., 2000), R15W (Abrams et al., 2001), R22G
and R22P (Ressot et al., 1998), C60F (Omori et al., 1996),
R75D-R75E-R75P-R75Q-R75V (Abrams et al., 2013), L90H
(Ressot et al., 1998), H94Y (Abrams et al., 2001), V95M
(Ressot et al., 1998), V139M (Omori et al., 1996; Deschenes
et al., 1997; Abrams et al., 2001, 2017), R142Q and R164W
(Abrams et al., 2017), P172S (Ressot et al., 1998), N175Y
(Nakagawa et al., 2011), S182T (Wang et al., 2004), E208L
(Ressot et al., 1998), E208K (Castro et al., 1999), Y211X
(Ressot et al., 1998; Castro et al., 1999; Wang et al., 2004),
I214X (Rabadan-Diehl et al., 1994), R215Q (Castro et al.,
1999), R215W (Omori et al., 1996; Castro et al., 1999), R215X
(Rabadan-Diehl et al., 1994; Castro et al., 1999), C217X
(Rabadan-Diehl et al., 1994).

5. Mutant Cx32 protein forms electrically conductive
GJ channels and hemichannels presenting with
altered properties in respect to WT channels,
e.g., decreased/increased channel number, distribution,
gating sensitivity or unitary permeability to physiologically
crucial ions and molecules. Studies of functionality refers
to mutations N2A-N2D-N2E-N2Q (Oh et al., 1999), G12S
(Abrams et al., 2001), V13L (Martin et al., 2000; Wang et al.,
2004), R15Q (Abrams et al., 2001; Wang et al., 2004), R22Q
(Wang et al., 2004), S26L (Oh et al., 1997; Bicego et al.,
2006; Mones et al., 2014), I30N (Oh et al., 1997; Wang et al.,
2004), M34T (Oh et al., 1997), V35M (Oh et al., 1997; Wang
et al., 2004), V38M (Oh et al., 1997), S42E (Oh et al., 1999),
L56F (Ressot et al., 1998), V63I (Wang et al., 2004), Y65C
(Wang et al., 2004), R75A-R75H-R75K-R75L (Abrams et al.,
2013), R75Q (Wang et al., 2004), Q80R (Wang et al., 2004),
S85C (Abrams et al., 2001), P87A (Oh et al., 1997), H94Q
(Abrams et al., 2001), V95M (Wang et al., 2004), E102G
(Oh et al., 1997; Ressot et al., 1998; Abrams et al., 2003),
R107W (Wang et al., 2004), Del 111–116 (Oh et al., 1997;
Ressot et al., 1998; Bicego et al., 2006), W133R (Wang et al.,
2004), Y151C (Abrams et al., 2017), L156R (Wang et al.,
2004), P158A-R164W-P172S (Wang et al., 2004), N175D
(Gong et al., 2013), V181A (Abrams et al., 2003), V181M
and R183C (Abrams et al., 2017), G199R (Wang et al.,
2004), N205S (Kleopa et al., 2002; Wang et al., 2004), R215X
(Rabadan-Diehl et al., 1994), C217X (Rabadan-Diehl et al.,
1994; Castro et al., 1999), R220X (Rabadan-Diehl et al.,
1994; Omori et al., 1996; Deschenes et al., 1997; Ressot et al.,
1998; Castro et al., 1999; Revilla et al., 1999; Bicego et al.,
2006; Katoch et al., 2015; Carrer et al., 2018), R223X and
N226X (Rabadan-Diehl et al., 1994), R238H (Castro et al.,
1999), L239I (Abrams et al., 2017), C280G (Castro et al.,
1999; Kleopa et al., 2002), S281X (Castro et al., 1999).
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Most of these studies were limited to testing only GJ
channel electrical conductance, so minimal information is
available about specific permeability to important molecules up
to 1 kDa (e.g., second messengers), which could explain why
some mutants appear as ‘‘functional’’ with respect to the WT.
Limited information is also available about gating/permeability
dysfunction of mutant Cx32 hemichannels, analyzed in the
following studies: S26L (Mones et al., 2014), S85C (Abrams
et al., 2002), D178Y (Gómez-Hernández et al., 2003), E208K-
Y211X-R215X-R215W-R215Q-C217X (Castro et al., 1999),
R220X (Castro et al., 1999; Carrer et al., 2018), F235C
(Liang et al., 2005), R238H-R265X-C280G-S281X (Castro et al.,
1999).

Figure 1 outlines a graphical summary of: (i) possible
functions of Cx32 in myelinating SCs; and (ii) the available
information about in vitro functional studies of Cx32 mutations.
Interestingly, the expression and function of some Cx32 mutants
are cell-dependent, e.g., mutants R75Q, M34T, V38M, R164W,
Y211X, C217X that reach the plasma membrane in non-human
non-glial Xenopus oocytes and N2A cells (Oh et al., 1997; Castro
et al., 1999;Wang et al., 2004), fail to reach the plasmamembrane
in human cells (HeLa) and cultured rat SCs (Kleopa et al., 2002;
Yum et al., 2002).

Together with the Cx32-null mouse (Nelles et al., 1996; Anzini
et al., 1997; Balice-Gordon et al., 1998; Scherer et al., 1998, 2005;
Zhao et al., 1999; Nicholson et al., 2001; Freidin et al., 2015;
Sargiannidou et al., 2015; Kagiava et al., 2016), which displays a
progressive peripheral neuropathy, a limited number of CMT1X
mice models has been developed, including mutations G12S
(Mones et al., 2012, 2014), S26L (Mones et al., 2012, 2014), T55I
(Sargiannidou et al., 2009), R75W (Sargiannidou et al., 2009),
R142W (Jeng et al., 2006), 175fs (Abel et al., 1999), C280G
(Huang et al., 2005), S281X (Huang et al., 2005).

DISCUSSION

A key feature that emerges from the study of CMT1X is that
Cx32 is a fundamental protein in the PNS as its dysfunction
cannot be compensated by other mechanisms. In particular,
loss of Cx32 in SCs of Cx32-null mice did not induce any
compensatory change in the expression of other connexins
(Nicholson et al., 2001). The expression of Cx32 in the PNS
appears regulated by the transcription factors SOX10 and
EGR2 which directly bind Cx32 promoter with synergistic
action (Bondurand et al., 2001). Robust expression of glial
fibrillary acidic protein (GFAP), the only non-myelinating
SC marker persisting in adult Cx32-null mice, suggests that
Cx32 is involved in regulating GFAP levels and coordinating
the program of myelin gene expression (Nicholson et al.,
2001). A recent microarray analysis of normal and injured
sciatic nerves of WT and Cx32-null mice supports a crucial
role for Cx32 in re-myelination of SCs (Freidin et al., 2015),
both in normal axonal maintenance and regeneration following
peripheral nerve injury, during which Cx32 is downregulated
(Scherer et al., 1995). The same study, together with others
(Kobsar et al., 2003; Groh et al., 2012; Klein et al., 2015),
indicates that loss of Cx32 dysregulates several genes associated

with immune response, thus contributing to the severity of the
disease.

The identification of so-called ‘‘functional’’ CMT1X
mutations, which retain the capacity to ensure normal electrical
GJ coupling in vitro, suggests that permeability or gating
abnormalities of Cx32 channels are per se sufficient to trigger
a severe neuropathy. As Cx32 WT GJ channels are known to
be permeable to Ca2+, cAMP, cGMP, IP3 and ATP (Harris,
2007), it is possible that these ‘‘functional’’ mutations alter
second messenger or other cytoplasmic molecules signals,
causing downregulation in the expression of genes that are
required to maintain the myelinating state of SCs. In 1997,
Oh et al. (Oh et al., 1997) hypothesized that the primary
defect underlying CMT1X neuropathy in the presence of
Cx32 mutants forming electrically conductive channels is
the lower permeability of GJ channels to cAMP, which is
involved in myelin homeostasis in SCs (LeBlanc et al., 1992).
We have recently demonstrated that this theory is unlikely,
at least with regard to the most studied CMT1X mutant
(R220X; Carrer et al., 2018). Indeed, lack of Cx32 GJs in
myelinating SCs does not appear to cause a slower radial
diffusion of low molecular weight dyes along the myelin
sheath of Cx32-null mouse with respect to the WT due to
the presence of other connexins forming GJ channels (Balice-
Gordon et al., 1998). Nonetheless, Cx32-null mice develop a
late-onset peripheral neuropathy with demyelination features
similar to those found in humans with Cx32 mutations (Nelles
et al., 1996; Anzini et al., 1997; Scherer et al., 1998), indicating
that other functions performed by Cx32 in SCs could be
involved in the pathogenesis of the disease. The validity of
the Cx32-null mouse as a model of Cx32 function has been
strengthened by the demonstration that both transgenic and
lentiviral expression of Cx32 in myelinating SCs ameliorates
nerve pathology (Scherer et al., 2005; Sargiannidou et al.,
2015), improving motor performance (Kagiava et al., 2016).
The hypothesis that the key role of Cx32 in the myelination
process does not involve GJ channels was initially suggested in
Freidin et al. (2009) and supported by the recent observation
that defective Cx32 GJ plaque formation in 14 CMT1X
mutants correlates only with CNS abnormalities (Abrams et al.,
2017).

Despite the large amount of studies on mutant GJ properties,
Cx32 hemichannel dysfunction was poorly investigated.
Altered hemichannel gating properties could have devastating
consequences for cellular function due to loss of ionic gradients
and small metabolites and increased influx of Ca2+. A growing
body of evidence also indicates that ATP-mediated paracrine
signaling in SCs is critical for the myelination process, which
supports the hypothesis that alteration of Cx32 hemichannel
opening and ATP release could underlie CMT1X (Nualart-
Marti et al., 2013; Carrer et al., 2018). Little is known
about the physiological mechanism that controls opening
and closure of Cx32 hemichannels in response to [Ca2+]i
changes (Cotrina et al., 2000; Belliveau et al., 2006; De Vuyst
et al., 2006; Carrer et al., 2018), but we recently found that
Cx32 hemichannels carrying the pathological C-terminus
truncation R220X fail to open in response to a canonical
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FIGURE 1 | Possible functions of Cx32 in myelinating SCs and topology of Cx32 mutations. (A) Electrical activity of myelinated nerves triggers axonal K+ release,
whose recycling could involve Cx32 GJs located in SC paranodes and Schmidt–Lanterman incisures. Axonal firing also stimulates ATP release from volume-activated
anion channels (VAACs; Fields and Ni, 2010) which induces P2Y-mediated Ca2+ increases in the cytosol and the mitochondrial matrix of the surrounding SCs via IP3

receptors (IP3R) of the endoplasmic reticulum (ER) and the mitochondrial calcium uniporter (MCU), respectively. The increase in the cytosolic Ca2+ concentration
([Ca2+]i) should be sufficient to trigger Cx32 hemichannel opening and ATP release, contributing to the intracellular and intercellular propagation of the Ca2+ signal.
Interaction between Cx32 hemichannels and mitochondria may play a role in cell bioenergetics as found in liver of Cx32-null mice (Fowler et al., 2013).
(B) Cx32 mutations belonging to classes 3-4-5 mentioned in the text are represented as colored circles (black-red-azure, respectively) associated to the
correspondent WT amino acid (white circle), where the topology of Cx32 domains is derived from the all-atom model of Cx32 connexon in Carrer et al. (2018).
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FIGURE 2 | In vitro analysis of human Cx32 GJ and hemichannel functionality. (A) Scheme of dual patch clamp experiment to derive the unitary GJ permeability to
cAMP in an isolated pair of Cx32-WT transfected HeLa cells, as in Carrer et al. (2018). At time zero, cAMP is injected in cell 1 under whole-cell recording conditions
(WC1) and its intercellular transfer is monitored by FRET variation (∆R/R0) of CEPAC sensor. (B) Three representative frames illustrate successive stages of an
experiment. Around 90 s after WC1, the whole-cell configuration is achieved also in cell 2 (WC2), delivering the same concentration of cAMP and deriving the
junctional conductance Gj from the current ij elicited by a 10 mV voltage difference (V j) between the two pipettes, as illustrated in the bright field image. (C,D) Time
course of the cell-averaged FRET signal and the junctional conductance Gj from the experiment in (B). (E) A confocal z-stack was performed at the end of the
experiment to derive cell 2 volume (Vcell 2), which is required to compute the single channel permeability Pu to cAMP, as described in Hernandez et al. (2007), where
γ is the single channel conductance. (F) Scheme of patch clamp experiment to study the hemichannel gating by [Ca2+]i in a single Cx32-WT transfected HeLa cell.
An IP3-dependent [Ca2+]i transient is stimulated by an extracellular puff containing 10 µM ATP. Cx32 hemichannel opening and closure were monitored in terms of
membrane conductance variation (∆Gm) computed by the periodic application (at 1 Hz) of a +10 µV voltage step lasting 100 ms. Contribution to ∆Gm by other
Ca2+-activated channels was kept negligible by specific blockers contained in the extracellular solution. (G) Representative frame sequence of an experiment using
Fura-Red Ca2+

i dye. (H,I) Time course from the experiment in (G) of the cell-averaged Fura-Red ∆R/R0 and the membrane conductance variation ∆Gm due to
opening and closure of Cx32-WT hemichannels. For further details, see Carrer et al. (2018).

IP3-mediated signal transduction cascade that elevates [Ca2+]i
(Carrer et al., 2018). A useful combination of patch-clamp and
optical fluorescence microscopy for dissecting Cx32 channel
properties is described in Figure 2. Interestingly, the gating
function of R220X hemichannels was completely restored
by both the intracellular and extracellular application of a
12 amino acid peptide that mimics the Cx32 cytoplasmic
loop, suggesting that the C-terminal domain of Cx32 is not
directly involved in the gating mechanism but acts as a
modulator.

Molecular determinants of permeability/gating properties
investigated in GJ channels and hemichannels of any connexin
isoform, including Cx32, are still debated (Peracchia, 2004;

Zhou et al., 2009; Oh and Bargiello, 2015), but their
elucidation could help to answer why different Cx32 mutations
cause a similar phenotype equivalent to a loss-of-function
in the PNS of CMT1X patients. In situ investigation of
signaling pathways mediated by Cx32 in pre-myelinating and
myelinated SCs is also a pre-requisite for understanding how
Cx32 dysfunction deregulates axon/SC homeostasis causing the
CMT1X phenotype.
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