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Cryptochromes (CRYs) are a class of flavoproteins that sense blue light. In animals,
CRYs are expressed in the eyes and in the clock neurons that control sleep/wake
cycles and are implied in the generation and/or entrainment of circadian rhythmicity.
Moreover, CRYs are sensing magnetic fields in insects as well as in humans. Here, we
show that in the fruit fly Drosophila melanogaster CRY plays a light-independent role
as “assembling” protein in the rhabdomeres of the compound eyes. CRY interacts with
actin and appears to increase light sensitivity of the eyes by keeping the “signalplex” of
the phototransduction cascade close to the membrane. By this way, CRY also enhances
light-responses of the circadian clock.
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INTRODUCTION

Nearly all living organisms use daily patterns of day and night to entrain their endogenous
circadian clocks. These responses utilize photic input from both visual photoreceptors and
non-visual photopigments (reviewed in Golombek and Rosenstein, 2010; Johnsson et al., 2015).
Cryptochromes (CRYs; from the Greek κρυπτóχρώµα, hidden color) are a class of flavoproteins,
non-visual photopigments present in plants and animals, which sense blue light. CRYs are
involved in the generation and/or synchronization of circadian rhythms of plants and animals, in
developmental processes in plants and in the sensing of magnetic fields in a number of species
(Yoshii et al., 2009; Gegear et al., 2010; Chaves et al., 2011; Foley et al., 2011; Fedele et al., 2014).
The two principal types of CRYs are the light-sensitive plant/insect type 1 CRY and the mammalian
type 2 CRY; the latter is a component of the molecular circadian clockwork and retains light
responsiveness only under special conditions (Griffin et al., 1999; Kume et al., 1999; Hoang et al.,
2008; Fedele et al., 2014). However, mammals own multiple CRYs of the same type and some
arthropods (e.g., mosquitoes, butterflies and krill) have both types of CRYs (Zhu et al., 2005; Yuan
et al., 2007; Biscontin et al., 2017).

The fruit fly Drosophila melanogaster possesses a single form of type 1 CRY, which appears
to have different functions. (1) In Drosophila circadian clock neurons, CRY acts as circadian
photopigment (Emery et al., 1998, 2000; Stanewsky et al., 1998); upon light-activation, it
interacts with the clock protein Timeless (TIM) and provokes its degradation via the proteasomal
pathway, therefore resetting the molecular clock (Ceriani et al., 1999; Peschel et al., 2009).
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(2) In peripheral tissues, including the compound eyes, CRY
appears to be an integral component of the molecular clock
(Ivanchenko et al., 2001; Krishnan et al., 2001; Collins et al.,
2004). (3) In the compound eyes and in a clock neuron
subgroup, CRY is additionally associated with the cytoplasmic
membrane and appears to interfere with the phototransduction
cascade (Mazzotta et al., 2013) and with light-inducedmembrane
depolarization (Fogle et al., 2011, 2015). (4) In the lamina, CRY
seems to be involved in the degradation of the presynaptic
protein Bruchpilot (BRP), therefore contributing to visual
plasticity (Damulewicz et al., 2017).

The function of Drosophila CRY in the photoreceptor cells
of the compound eyes is so far not well understood. In its
C-terminus, CRY carries several protein-protein interaction
motifs, including two class III PDZ-binding motifs that
play a role in the assembly of large protein complexes
involved in signaling processes (PDZ = Postsynaptic density
protein 95, Drosophila disk large tumor suppressor, Zonula
occludens-1 protein; Hemsley et al., 2007; Mazzotta et al.,
2013). In the photoreceptor cells, CRY interacts through its
PDZ binding motifs in a light-dependent manner with the
scaffolding protein INAD (Inactivation No Afterpotential D)
which seems, in turn, to enable interaction between CRY
and other phototransduction components (Mazzotta et al.,
2013). INAD is important to gather the components of
the phototransduction cascade at the membrane of the
rhabdomeres and it is bound to F-actin filaments via myosin
III (NINAC; Montell, 1999). Especially in the dark, INAD
binds via its PDZ-domains 4/5 to TRP-channels and keeps
them in the rhabdomeres—ready for activation, whereas
after light-adaptation TRP channels move into the cell body
(Montell, 2007). Most interestingly, CRY appeared to enhance
photosensitivity mainly during the night perhaps by enhancing
the interaction between INAD, NINAC and F-actin and hence
increasing the activation of TRP channels (Mazzotta et al.,
2013). However, this hypothesis limps, because the CRY-INAD
interaction has only been found after light exposure and
it has not yet been demonstrated that CRY is present in
the rhabdomeres. Furthermore, if CRY is indeed involved in
photoreception, one should also see differences in fly daily
activity patterns when CRY is missing in the compound
eyes. The compound eyes have been shown to fine-tune
daily activity according to fluctuations in environmental
light (Schlichting et al., 2014, 2015). In particular, they
seem responsible for setting the ratio of diurnal/nocturnal
activity. Flies generally prefer being active at low light
intensities and consequently reduce diurnal activity with
increasing daylight intensity (Rieger et al., 2007). This response
is solely mediated by the compound eyes with a special
importance of photoreceptor cells 1-6 (Schlichting et al., 2014,
2015).

Here, we show that CRY is present in the rhabdomeres
of all photoreceptor cells, that it interacts with F-actin and
may therefore enhance the binding of the phototransduction
cascade signaling components to the rhabdomere cytoskeleton.
In contrast to the CRY/INAD interaction, the CRY/F-actin
binding is light-independent, possibly retaining the signaling

components close to the membrane and ready for activation
during day and night. Indeed, CRY in the rhabdomeres is
not degraded by light, thus permitting the interaction with the
signaling components even during long lasting light-exposure.
Flies lacking CRY (cry01 mutants) shift less activity from
the day into the night in response to increasing day-light
intensities, suggesting that the compound eyes of such flies
are less light-sensitive. The wild-type (WT) behavior is fully
rescued by expressing CRY in photoreceptor cells R1–6. The
role of CRY in enhancing light sensitivity appears to be largely
independent of its photoreceptive function, because it persists
in red light by which CRY cannot be excited: cry01 mutants
need significantly longer to follow phase-shifts of red light-dark
cycles than WT flies and this behavior can be partially rescued
by expressing CRY in photoreceptor cells R1–6. We propose
a model for CRY action in the eyes that, given the ability
of human CRY to interact with actin, might also apply in
humans.

MATERIALS AND METHODS

Fly Stocks
To eliminate genetic background effects, cry01 mutants
(Dolezelova et al., 2007) were back-crossed to WT ‘‘CantonS’’
(WTCantonS) or to WT ‘‘Lindelbach’’ (WTLindelbach; Schlichting
et al., 2014) for five generations and later compared to the
relevant WT strains. Rescue experiments were conducted with
ninaE-gal4 (Bloomington #30540) and uas-cry (Emery et al.,
1998) crossed into the cry01 background. As controls served the
offspring of crosses between ninaE-gal4 and uas-cry flies and the
cry01 mutants, respectively. Co-immunoprecipitation (Co-IP)
was performed with yw;tim-gal4/+; uas-HAcry/+ (Dissel et al.,
2004).

Co-immunoprecipitation and 2D SDS PAGE
Co-immunoprecipitation was performed as in Mazzotta et al.
(2013). The 2D electrophoresis was performed according to
Khoudoli et al. (2004), with some modifications. Protein
complexes were solubilized by heat treatment (5 min at 95◦C)
in presence of 100 mM DTT and 0.2% SDS, precipitated in
80% acetone at −20◦C and solubilized for 6 h in resuspension
buffer (30 mM Tris Base, 7 M Urea, 2 M Thiourea, 1.2%
CHAPS, 0.14% ASB14, 0.25% Ampholytes, 43 mM DTT), with
the addition of 60 mM Acrylamide after 3 h, in order to
alkylate the proteins (Mineki et al., 2002). Isoelectric focusing
(IEF) was performed in 7 cm IPG strips of pH range 4–7
(ReadyStripTM_Bio-rad); strips have been passively rehydrated
for 16 h and then iso-electro focused by a two-phase protocol:
30 min at 250 V, 3 h and 30 min at 5500 V and 500 V until
the complete focusing. After IEF, strips were equilibrated in
Equilibration buffer (50 mM Bis-Tris pH 6.4, 6 M Urea, 30%
(w/v) glycerol, 2% SDS) containing 50 mM DTT for 20 min and
360 mM Acrylamide for further 20 min. Strips were then placed
on a 4%–12% pre-cast ‘‘ZOOM NuPAGE gel’’ (Invitrogenr)
with the help of a 0.5% agarose matrix and run at room
temperature at 50 V.
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Protein Identification by Mass
Spectrometry
After separation on the gel, Coomassie-stained protein spots
were excised and in-gel digested, as previously described (Wilm
et al., 1996; Mazzotta et al., 2013). MALDI-TOF and LC-MS/MS
data were analyzed by the online MASCOT software (Matrix
Science1) against the Drosophila sequences of the Swiss-Prot
database (release 2012_04).

Yeast-Two-Hybrid Assays
The experiments were performed in the EGY48 yeast strain
(MATα, ura3, trp1, his3, 3LexA-operator-LEU). Full-length
hCRY2 and dCRY were fused to the LexA moiety in the bait
vector (pEG202), while full-length hActin-Beta, dActin-5C and
dActin-57B were fused to the ‘‘acid-blob’’ portion of the prey
vector (pJG4–5; Golemis and Brent, 1997).

The full-length hCry2 coding sequence was amplified
from pSO2002 plasmid (pSO2002 was a gift from Aziz
Sancar_Addgene plasmid #25842; Ozgur and Sancar, 2003). The
full-length hActin-Beta coding sequence was amplified from
cDNA retro-transcribed from the Universal Human Reference
RNA, a pool of total RNA from 10 human cell lines (Agilent
Technologies, Santa Clara, CA, USA). The full-length dActin-
5C and dActin-57B coding sequences were amplified from
cDNA extracted from heads of w1118 flies. The primers used
are listed in Supplementary Table S1; all the cloning have
been performed by using the In-Fusionr HD Cloning Kit
(Clontech). The constructs were fully sequenced to assess the
in-frame insertion of the cDNA and to control for unwanted
mutations. The reliable expression of bait and prey fusions
was confirmed by immunoblot (Supplementary Figure S1).
Protein extracts were obtained as in Ausbel (1998), subjected
to SDS/PAGE (NuPAGE-Invitrogen), and probed with specific
anti-LexA (AbCam; 1:3.000) and anti-HA (Sigma; 1:5.000)
antibodies. Expected molecular weights for the tested fusions are
listed in Supplementary Table S2.

Quantification of β-galactosidase activity was performed in
liquid culture as in Ausbel (1998), either in dark or under a white
saturating light (10,000 lx), and the experiment was repeated
three times. Statistic analysis was performed with Graphpad
Prism v4 using one-way ANOVA followed by Tukey’s multiple
comparisons test.

Immunostaining of Retinas and Brains
Retinas were dissected from male flies at the age of 6–9 days.
After raising the flies either in constant darkness, in constant
darkness followed by a 2 h exposure to white LED light
(1000 lux) or 1 h before lights-off (Zeitgeber Time ZT11) and
lights-on (ZT23), respectively, in regular 12:12 h light-dark cycles
(500 lux) they were immediately fixed in 4% paraformaldehyde
(PFA) in phosphate buffered saline (PBS; pH = 7.4) for
2.75 h in darkness. Afterwards retinas were dissected in PBS
with 0.1% Triton X-100 (PBST; pH = 7.4). Blocking, washing
and incubation with the primary and secondary antibody
was performed analogous to Hsiao et al. (2012) with the

1http://www.matrixscience.com

modification of a 2-day incubation in the primary antibody
solution. The primary antibody solutions contained 5% normal
goat serum, PBST and antibodies against CRY (1:2000; Yoshii
et al., 2008) and Rh1 (1:30; 4C5, Developmental Studies
Hybridoma Bank, Iowa City, IA, USA). For visualization
of CRY and Rh1, secondary fluorescent antibodies (Alexa
Fluor 555 nm and 647 nm, respectively) were applied at a
dilution of 1:200 overnight. For visualizing actin, Phalloidin
conjugated with ALEXA Fluor 488 nm (1:200) was added to
the solution with the secondary antibodies. For E3 ubiquitin
ligase (UBE3A) staining a primary UBE3A antibody was applied
at 1:1000 (Lu et al., 2009), visualized with ALEXA Fluor
555 nm (1:200) and co-stained with Phalloidin-conjugated
ALEXA Fluor 488 nm (1:200). The latter stainings were
done at ZT11 and ZT23 during the regular light-dark
cycle.

Brains were dissected in parallel from the same heads of
which the retinas were dissected at ZT11 and ZT23 of the
light-dark cycle. They were immunostained with anti-CRY
(1:2000) and anti-Pigment-Dispersing Factor (PDF, 1:2000; C7,
Developmental Studies Hybridoma Bank, Iowa City, IA, USA)
following the same procedure and incubation time as for the
retinas. Secondary antibodies were Alexa Fluor 555 nm for
visualizing CRY and Alexa Fluor 647 nm for visualizing PDF.

Microscopy and Image Analysis for CRY
Staining Level
After mounting on glass slides with Vectashield (Vector
Laboratories, Burlingame, CA, USA) image stacks from retinas
were recorded using the laserscanning microscope (Leica TSC
SPE with Leica DM 5500 Q microscope, Leica, Germany) with
a 20× glycerol objective (NA 0.6). Confocal settings for CRY
(555 nm) were the following: pinhole 1; 35% laser, 700 gain,
−0.1 offset, 2 µm section thickness, 4.5 magnification for the
retinas and 1.5 magnification for the brains. These settings
were kept constant for all experiments. No manipulations of
brightness and contrast were performed before absolute CRY
staining intensity was measured in single confocal pictures of
retinas and brains. Staining intensity was measured with ImageJ
(FIJI, available at http://fiji.sc/Downloads) in gray-level values
within a 9 × 9 pixel area within and outside the stained
structures.

In the brains, the 9× 9 pixel area was laid into each of the four
PDF positive large ventrolateral neurons (l-LNvs) of one brain
hemisphere and into an area close but outside of them in order
to monitor background staining. The CRY-staining values of all
four l-LNvs were averaged for each brain hemisphere and the
background subtracted. This was done for 12 brain hemispheres
to obtain the average CRY staining at ZT11 and ZT23 of the
light-dark cycle.

In the retinas, the 9 × 9 pixel area was laid into the
rhabdomeres and into the cytoplasm (soma) of photoreceptor
cells R1–6 as well as into inter-rhabdomeric space (background).
This was done in four different ommatidia of the same retina,
respectively. The values of all ommatidia (rhabdomeres and
soma) were averaged and the background subtracted. This
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measure was repeated for 12 retinas of the different samples
(DD, 2hL, ZT11 and ZT23), respectively, and average gray
values were obtained for rhabdomeric and cytoplasmic retina
staining.

For showing pictures in the figures, image size, brightness and
contrast of the pictures were adjusted with GIMP (2.8.6, Kimball
and Mattis) and Powerpoint 2010 (Microsoft Office) or Corel
Photopaint (CorelDraw Graphics Suite X6, 64 bit).

Recording of Locomotor Activity Rhythms
and Data Analysis
Locomotor activity was recorded under constant temperature
(20◦C) from 2–6 day old male flies using the custom-made
system described in Schlichting and Helfrich-Förster (2015) or
the Drosophila ActivityMonitors from Trikinetics Incorporation
(Waltham, MA, USA). For the white-light experiments, flies
were exposed to a 1-week light-dark cycle (LD) of 12 h light
and 12 h darkness at either 10, 100, 1000 or 10,000 lux. The
average activity profile and the relative nocturnal activity level
were calculated as described in Schlichting and Helfrich-Förster
(2015). For the red-light/dark experiments, flies were exposed
to 12:12 h red-light/dark (RD) cycles (300 µW/cm2 red-light
during the light phase). After 6 days of recording, the RD cycle
was phase-delayed by 8 h. A second phase delay was performed
after the flies have phase-shifted their locomotor activity to
the first phase delay. Average actograms were calculated from
all flies of a given genotype with ActogramJ v0.9 (Schmid
et al., 2011) a plugin of Fiji, v1.0 (Schindelin et al., 2012) and
the number of days needed for the phase-shift as well as the
number of hours phase-shifted after 3 days was determined on
individual flies with the help of the Fiji tool ‘‘Acrophase’’ as
described in Eck et al. (2016). Briefly, the daily acrophase of
the rhythm was plotted into the actogram of each individual fly
(see Figure 4) and it was determined manually how long the fly
took for re-entrainment and by how many hours it has shifted
its acrophase on day 3 after the shift. This was done for both
phase shifts separately, and the measured values were averaged
for each fly.

Statistical Analysis
Statistical analysis was performed with Systat11 or Graphpad
Prism v4. After checking for normal distribution, data were
compared by either a one- or two-way ANOVA followed by
a pairwise comparison or Tukey’s multiple comparisons test
if normality was retained. If normality was rejected a Mann-
Whitney-U or Wilcoxon-test were applied.

RESULTS AND DISCUSSION

CRY Interacts With F-actin
F-actin, one of the major cytoskeletal components, is highly
expressed in the rhabdomeric microvilli of fly photoreceptors
and helps maintaining their structure (Arikawa et al., 1990). In
addition, F-actin seems to be involved in subcellular localization
and functional coupling of the phototransduction components,
putatively via interaction with the myosin III protein NINAC

(Figure 1A; Lee and Montell, 2004). NINAC also interacts with
the scaffolding PDZ-domain protein INAD (Figure 1A), possibly
contributing to movements of phototransduction components
into or out of the rhabdomeres and hence interfering with
photosensitivity and light-adaptation (reviewed in Montell,
2012). However, no such role of NINAC was found so far,
as its main function seems to lie in the inactivation of
Metarhodopsin by accelerating the binding of Arrestin (Liu et al.,
2008). Here, we asked whether CRY, which was also found to
interact with INAD (Mazzotta et al., 2013), could cover this
function.

A preliminary screening of an adult head cDNA library led
to the identification of dActin-57B as putative CRY partner.
Then, a Co-IP assay, followed by 2D electrophoresis and mass
spectrometry analysis, was performed on transgenic fly heads
overexpressing a hemagglutinin (HA)-tagged form of CRY
(HACRY) in all clock and photoreceptor cells by the use of
a tim-gal4 driver (Dissel et al., 2004). Flies were raised in
12:12 light:dark cycles and collected before lights-on andHACRY
was pulled-down using a HA-affinity matrix (See Supplementary
Materials and Methods). Two spots of ∼40 kDa (X1 and
X2 in Figure 1B) were observed in the sample but absent in
the negative control (Figure 1B). These protein bands were
digested in-gel and the peptide mixtures were analyzed by
liquid chromatography–tandemmass spectrometry (LC-MS/MS;
Wilm et al., 1996). Analysis of the LC-MS/MS data using the
MASCOT software yielded the identification of dActin-87E
and dActin-5C in spot X1 and of dActin-57B in spot X2
(Supplementary Table S3). In Drosophila melanogaster, the actin
family comprises six members: four of them, Act88F, Act79B,
Act57B and Act87E, are muscle specific actins, while Act5C
and Act42A are cytoplasmic. These two isoforms, ubiquitously
expressed during all developmental stages, differ for only two
amino acids (Supplementary Figure S2). Our MS results from
adult head extracts are consistent with the tissue expression
of the actin isoforms. Actin5C has been identified as a key
molecule in the formation of the luminal matrix (= inter-
rhabdomeric space), fundamental for shaping and positioning
of rhabdomeres for proper visual sensitivity (Nie et al., 2014).
Actin57B, the major species in larval intersegmental muscles,
is expressed also in adult cephalic and abdominal muscles
(Fyrberg et al., 1998), and is a key organizer in the assembly of
presynaptic active zone (AZ) that coordinates the synaptic release
machinery to facilitate neuronal communication (Blunk et al.,
2014).

We decided to further investigate the interactions found by
library screening and CoIP using the yeast two-hybrid assay,
where a full-length dCRY, directly fused to LexA (bait), has been
challenged with the full-length dActin-5C or dActin-57B, as prey.
A fragment of PER, aa 233–685, was used as positive control of
the interaction: this fragment includes the major protein/protein
interaction domains of PER and it is known to interact with
dCRY only in presence of light (Rosato et al., 2001; Hemsley
et al., 2007). NINAC, that we had previously shown to bind
dCRY only in presence of INAD acting as bridge (Mazzotta
et al., 2013), was used as negative control. The yeast assay was
performed both in the light and in the dark, and a strong
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FIGURE 1 | Cryptochrome (CRY) interacts with F-Actin. (A) Putative position of CRY in the phototransduction cascade of the fly rhabdomere. The cartoon is
modified after Montell (2012). INAD (Inactivation No Afterpotential D) is a crucial PDZ-scaffold protein which gathers together many components of the cascade. It is
connected to F-actin via the MyosinIII protein NINAC as well as via CRY (according to the present results). In addition, INAD interacts with rhodopsin 1 (Rh1), the
transient-receptor-potential channels TRP and TRPL, Phospholipase C (PLC) and Phosphokinase C (PKC). (B) Coomassie blue-stained 2D gel of head protein
extracts co-immunoprecipitated with an anti-HA antibody. HACRY overexpressing flies (yw;tim-gal4/+;uas-HAcry/+) and relative control (yw;tim-gal4 (C-)) have been
reared in 12:12 LD and collected in the dark (ZT24). Protein complexes have been subjected to 2D separation (1st dimension: IPG STRIP pH 4–7; 2nd dimension
NuPage ZOOM gel 4%–12% Invitrogen). Red arrows indicate the spots relative to HACRY, while X1 and X2 are spots corresponding to putative HACRY partners.
(C) Yeast two-hybrid assays showing the light-independent interaction between dCRY and dAct-5C and dAct-57B. A fragment of PER (aa 233–685), known to
interact with dCRY in a light-dependent manner, and NinaC were used as positive and negative control of the interaction, respectively. The activity of the empty prey
vector is considered as background. Reported is the β-galactosidase activity (Miller units) normalized to the activity of PER(233–685) in light. Mean ± SEM of
seven independent clones, analyzed in triplicates, is shown. For the controls and for the “empty vector”, three clones were tested. Statistics: one-way ANOVA
followed by Tukey’s multiple comparisons test. Significantly different values are marked with different letters.

light-independent affinity between dCRY and both actins was
observed (Figure 1C).

CRY Is Expressed in the Rhabdomeres of
the Photoreceptor Cells and Remains
Stable After Photo Activation
Our data suggest that CRY is bound to F-actin during light
and darkness and could consequently stabilize INAD also
after prolonged illumination. This hypothesis requires CRY
to remain stably present under light, which is in contrast to
previous observations showing a quick degradation of CRY after
light onset in photoreceptor cells, clock neurons and S2 cells
(Emery et al., 1998; Koh et al., 2006; Peschel et al., 2006,
2009; Yoshii et al., 2008; Ozturk et al., 2011, 2013). To test
the presence of CRY in the rhabdomeres, we immunostained

retinas of flies kept in complete darkness from egg hatching
onward as well as retinas of flies initially raised under the
same conditions but then exposed for 2 h to bright light
(1000 lux). CRY immunostaining was not visible in cry01 mutants
(Supplementary Figure S3) but present in all rhabdomeres of
WT flies (Figure 2A, Supplementary Figure S4). No sign of
CRY degradation could be detected in the rhabdomeres after
2 h of light exposure (Figures 2A,B; Supplementary Figure S4).
Very similar, no reduction in rhabdomeric CRY staining could
be detected during the light phase of a regular light-dark cycle
(Figures 2B,C), whereas cytoplasmic CRY staining in the somata
of the photoreceptor cells was strongly reduced during the light
phase (=ZT11; Figures 2B,C; Supplementary Figure S5). The
latter coincides with the strong reduction of CRY-staining in
Western-blots during the light phase (Emery et al., 1998). Also,
in the PDF positive l-LNv clock neurons, CRY staining was
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FIGURE 2 | CRY is stably expressed in the rhabdomeres of the photoreceptor cells, co-localizes with actin but only marginally with Ubiquitin Ligase3. (A) Cross
sections of one ommatidium, respectively, stained with anti-Rh1 (magenta) and anti-CRY (green). No CRY staining is present in cry01 mutants, whereas in wild-type
(WT) flies CRY is detected in all eight photoreceptor cells including their rhabdomeres. After 2 h illumination with 1000 lux, rhabdomeric CRY staining did not
disappear. (B) Quantification of CRY staining intensity in the rhabdomeres and photoreceptor somata of WT flies raised in constant darkness (DD), after subsequent
2-h exposure to 1000 lux and under a regular 12:12 light-dark cycles at the end of the night (ZT23) and end of the day (ZT11), respectively. Means (± SEM) of

(Continued)
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FIGURE 2 | Continued
12 independent retinas, respectively, are shown. In the rhabdomeres,
CRY-staining was not reduced after 2-h light-exposure (p = 0.404) and only
slightly at ZT11 during the regular light-dark cycle in comparison to the 2-h
light exposure (p = 0.001). During the light-dark cycle, CRY staining of the
rhabdomeres was the same at ZT23 and ZT11 (p = 1.0), but CRY staining in
the somata of the photoreceptor cells was much lower at ZT11 than at ZT23
(p < 0.001). CRY staining in the somata of the photoreceptor cells was very
high after keeping the flies in DD and was not significantly reduced after the
2-h light exposure (p = 0.275). (C) Examples of retinal CRY staining at
ZT23 and ZT11. During the day (ZT11) CRY was significantly lower than
during the night (ZT23) in the photoreceptor somata (p > 0.0001) but not in
the rhabdomeres (p = 1.0). Statistics: one-way ANOVA followed by Tukey’s
multiple comparisons test. (D) Co-localization of CRY and actin (visualized by
fluorochrome-conjugated Phalloidin) in the retina in two longitudinal views
(D1,D3) and one cross section (D2). The position of the cross section is
indicated by the broken white line in D1. Actin-Phalloidin staining was variable,
but always very strong in the fenestrated layer at the bottom of the retina (D1)
and in the distal retina just below the cristal cones (co; arrows in D1–D3). In
the latter place, actin surrounded the photoreceptor cells (arrows in D2). To a
weaker extent, actin was also always present in the rhabdomeres, where it
co-localized with CRY (D2, D3 and weakly in D1). (E) Co-localization of
ubiquitin ligase 3a (UBE3a) and actin in the retina in a longitudinal (E1) view
and a cross section (E2) at ZT23. The position of the cross section is
indicated by the broken white line in (E1). UBE3a was highly expressed in the
soma of the photoreceptor cells but only marginally in the rhabdomeres. Scale
bars: 5 µm.

extremely low at ZT11 in the light phase, whereas it was high
at ZT23 during the dark phase (Supplementary Figures S6, S7).
In comparison to CRY staining intensity in the clock neurons
that reached a mean pixel gray value of 80 during the night
(Supplementary Figure S6), CRY staining intensity in the retina
was much weaker. In the cytoplasm, it reached maximally a
mean pixel gray value of 40 after the flies had been kept in
prolonged darkness and a maximal value of 25 during the night
of a regular light-dark cycle (Figure 2B). In the rhabdomeres,
CRY was even lower and did not exceed a mean pixel gray
value of 25, even not after prolonged darkness. This explains
why CRY was so far not detected in the rhabdomeres and in
the cytoplasm of the photoreceptors cells only after prolonged
darkness (Yoshii et al., 2008) or on Western-blots during the
dark phase (Emery et al., 1998). Our findings indicate that CRY
is stably bound to rhabdomeric F-actin, which may prevent its
degradation in the proteasome during the light phase. In order to
test the co-localization of CRY and actin, we performed double-
staining with anti-CRY and fluorochrome-conjugated Phalloidin
that binds selectively to F-actin (Cooper, 1987). We found
actin-Phalloidin staining quite variable: in the rhabdomeres the
staining was sometimes weak (Figure 2D1), sometimes strong
(Figures 2D2,D3) and sometimes it was present also in the
cytoplasm of the photoreceptor cells (Figure 2E1). Nevertheless,
actin was always present in the rhabdomeres, where it nicely
co-localized with CRY (Figure 2D). It is unknown whether the
light-activated E3 ligase complex, essential for light-mediated
CRY degradation, is present in the rhabdomeres, but it is known
that the same E3 ligase complex components that induce CRY
ubiquitination, such as the BRWD3 protein Ramshackle and
the Cullin4-RING Finger E3 Ligase (CRL4) are associated with
chromatin and the nucleus (D’Costa et al., 2006; Jackson and

Xiong, 2009; Ozturk et al., 2013). To test whether proteins
of the E3 ligase complex are present in the rhabdomeres of
the photoreceptor cells, we stained retinas with an antibody
against the ubiquitin E3 ligase, UBE3A, which has previously
shown to be expressed in the fly compound eyes (Ramirez
et al., 2015). We found strong UBE3A staining in the cytoplasm
of the photoreceptor cells, but only very weak staining in the
rhabdomeres, suggesting that UBE3A is mainly expressed in the
cytoplasm (Figure 2E2). This was true at ZT11 and ZT23.

CRY in the Compound Eyes Contributes to
Measuring Daylight Intensity and Adapting
Fly Diurnal/Nocturnal Activity Levels
After having shown that CRY interacts with actin and is stably
present in the rhabdomeres of the compound eyes, we wanted
to test whether this has any biological meaning for the flies, in
addition to the already shown small visual impairments of cry01
mutants (Mazzotta et al., 2013). The fly circadian clock is known
to be very sensitive to light, and, therefore, it is an ideal system
to study possible influences of CRY (Hirsh et al., 2010; Vanin
et al., 2012; Vinayak et al., 2013). CRY is one of the major light-
input pathways to the clock neurons (Ozkaya and Rosato, 2012;
Zheng and Sehgal, 2012), but its role in the compound eyes for
circadian entrainment is so far not understood. The compound
eyes seem not important for fast clock responses to light
(Stanewsky et al., 1998; Yang et al., 1998; Emery et al., 2000;
Kistenpfennig et al., 2012), but they rather appear to fine-tune
fly daily activity to different light-conditions (Schlichting et al.,
2015) and to set the diurnal/nocturnal activity level ratio
(Bachleitner et al., 2007; Rieger et al., 2007). We could recently
show that photoreceptors R1–6 are responsible for measuring
daylight intensity and for reducing the amount of diurnal activity
with increasing daylight intensity (Schlichting et al., 2014). Most
importantly, the reduction of diurnal activity with increasing
light intensity is independent of a functional clock and can also
be observed in per01 mutants (Kempinger et al., 2009). Thus,
this behavior appears suited to measure the light-sensitivity of
photoreceptors R1–6 during the day in an easy way.

If CRY in R1–6 contributes to measuring daylight intensity,
one would expect a slightly different diurnal/nocturnal activity
level ratio in cry01 mutants. In order to test this hypothesis,
we recorded diurnal/nocturnal activity of cry01 mutants under
12:12 light-dark (LD) cycles of different daylight intensities (10,
100, 1000 and 10,000 lux) and determined the percentage of
diurnal activity from whole-day activity (Figure 3A). We found
that the decrease in relative diurnal activity with increasing
daylight intensity was significantly stronger in WT flies than
in cry01 mutants. To ensure that CRY in the compound eyes
is responsible for the observed differences, we expressed CRY
under control of the rhodopsin1 promoter (ninaE) only in
R1–6 in an otherwise cry01 background. We found that such
flies behaved in a WT-like manner. They even decreased
diurnal activity with increasing light intensity slightly more
than WT flies (Figure 3B) what might be due to different
genetic backgrounds of the tested flies. Our results indicate
that CRY in R1–6 is indeed involved in measuring daylight
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FIGURE 3 | CRY in the compound eyes enhances sensitivity to daylight. (A) Average locomotor activity profiles of WT flies (WTCantonS), cry01 mutants
(cry01(WTCantonS)), cry01 controls and cry01 mutants with CRY rescued in photoreceptor cells 1–6 (R1–6) under light-dark cycles with different daylight intensities.
cry01 controls consist of ∼half ninaE-gal4;cry01 flies and half UAS-cry;cry01 flies, respectively. We pooled the two controls, because they behaved similarly
(p = 0.176). Flies were recorded under light-dark cycles with 12 h of light and 12 h of darkness (LD 12:12) with daylight intensities of 10, 100, 1000 and 10,000 lux,
respectively. Light period (bar on top) and activity during the day are shown in light gray whereas the dark period (bar on top) and activity during the night are shown
in black. Average activity profiles are normalized with maximal activity set to one. Faint gray lines above and below the average profiles represent standard errors of
the mean (+SEM). Number of recorded animals are given in the right top corner of the upper diagram. (B) Mean percentage diurnal activity of total daily activity (±
SEM) calculated for WT flies (WTCantonS), cry01 mutants (cry01(WTCantonS) and cry01 controls) and cry01 mutants with CRY rescued in photoreceptor cells 1–6 (R1–6)
under light-dark cycles with different daylight intensities. A two-way ANOVA showed that relative diurnal activity depended significantly on daylight intensity
(F(3,504) = 172.017; p < 0.001) and on the strain (F(3,5204) = 53.108; p < 0.001) and that there was a significant interaction between the two (F(9,522) = 11.882;
p < 0.001), indicating that diurnal activity decreased differently with increasing daylight intensity in the different strains. Post hoc analysis revealed significant
differences between cry01(WTCantonS) mutants and WTCantonS flies (p < 0.0001) as well as between cry01 controls (ninaE-gal4;cry01 and uas-cry;cry01 pooled) and
cry01 mutants with CRY rescued in photoreceptor cells R1–6 (ninaE-gal4;uas-cry;cry01; p < 0.0001). Statistics: two-way ANOVA followed by Tukey’s multiple
comparisons test.

intensity, probably by interfering with phototransduction in
these photoreceptor cells.

CRY Action in the Compound Eyes Does
Not Depend on Light-Activated CRY
WT flies can well entrain to 12:12 red-dark (RD) cycles
and this ability depends on Rh1 and Rh6 in the compound

eyes while it is independent of CRY (Helfrich-Förster et al.,
2002; Hanai et al., 2008). If our hypothesis is right and CRY
keeps the components of the transduction cascade close to the
photoreceptor membrane, the entrainability of the flies to red
light should be reduced when CRY is absent. To test this, we
compared the ability of WT flies and cry01 mutants (in two
different backgrounds) to follow an 8-h delay of a 12:12 RD
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FIGURE 4 | CRY is essential for a fast re-entrainment of the activity rhythms to delays of 12:12 red-dark cycles (RD). (A) Average actograms of WT flies (n = 53),
cry01 mutants (n = 60; both in the WT “Lindelbach” genetic background) and cry01 mutants with cry rescued in photoreceptors R1–6 (n = 48;
ninaE-gal4;uas-cry;cry01) plus relevant controls (n = 64; uas-cry;cry01). Bars on top represent the RD cycle (R = red, D = black) that is phase-delayed by 8 h two
times during the recording. The daily median of activity is indicated, as judgment of rhythm phase. (B) Quantification of the phase shifts. The left diagram shows the
number of days flies of different genotypes needed to re-entrain to the phase-delayed RD cycle (means ± SEM). The right diagram depicts the number of hours the
flies had phase-shifted at day 3 (means ± SEM). Numbers in columns indicate the number of tested flies. Strains that are significantly different from each other
(p < 0.05) are marked by different letters.

cycle (Figure 4; Supplementary Figure S8). We found that
both WT strains needed about 3–4 days to accomplish the
shift, whereas the two cry01 mutants took about 7 days to do
so. This difference is highly significant (p < 0.001) and is a

strong indication for a role of CRY in Rhodopsin-based light
transduction that is independent of CRY’s own photoreceptive
capabilities. In order to test whether this role of CRY takes
indeed place in the compound eyes, we expressed cry in the
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Rh1 expressing photoreceptors R1–6 of cry01 mutants. Indeed,
we could partially rescue the WT speed to re-entrain to a
shifted RD cycle: ninaE-gal4;uas-cry;cry0 flies took 5 instead of
3–4 days to re-entrain completely (Figure 4; Supplementary
Figure S9). A reason for this partial rescue might be the
lack of CRY in the Rh6 containing inner photoreceptor cells
that also contribute to red light entrainment (Hanai et al.,
2008).

Human CRY2 Appears to Interact Also
With Human Actin Beta in a
Light-Independent Manner
Although vertebrate CRYs act as transcriptional regulators in
the circadian clock, they have been suggested to influence
the sensitivity of the pupillary light response in mammals, in
a fashion that is independent from a role as photopigment
(Owens et al., 2012). Humans possess two CRYs of type
2, both expressed in the retina. CRY2 mRNA seems to
be much more abundant than CRY1 mRNA in the adult
retina and CRY2 protein has been detected in most cells in
the ganglion cell layer (GCL) and in a subset of cells in
the inner nuclear layer (INL; Thompson et al., 2003). In a
very preliminary and purely indicative yeast two-hybrid assay,
we have challenged the full-length hCRY2, directly fused to
LexA (bait), with the full-length human Actin-beta (hActin-
Beta; reported to be one of the two non-muscle cytoskeletal
actins; RefSeq, NCBI Reference Sequence Database) as prey.
The assay, performed both in light and dark, has revealed
a light-independent interaction between the two proteins
(Figure 5). This suggests that also mammalian CRYs could
anchor to the actin cytoskeleton, raising the hypothesis that

FIGURE 5 | Human CRY2 also interacts with actin. Yeast two-hybrid assays
showing the light-independent interaction between hCRY2 and hActin-Beta.
β-galactosidase activity (Miller units) is reported. Mean ± SEM of
seven independent clones, analyzed in triplicates, is shown. For the “empty
vector”, three clones were tested. Statistics: t-Student.

they could stabilize the phototransduction complex to the
membrane of the intrinsically photosensitive retinal ganglion
cells (ipRGCs), therefore contributing to the inner retinal
photoreception.

CONCLUSION

We had previously uncovered a role for CRY in fly visual biology,
by the interaction with the phototransduction cascade (Mazzotta
et al., 2013). Here, we show that through this interaction it also
slightly increases light-sensitivity of the eyes, and WT flies may
sense day-light, nocturnal light and red light as being brighter
than cry01 mutants do. This role of CRY in the fly retina is
rather independent of its function as photopigment, as CRY
seems to act as a stabilizing protein keeping the INAD signalplex
linked to the F-actin and therefore to the rhabdomere internal
membrane.

This non-photoreceptive role of CRY in the retina could
be a feature shared with mammals. In fact, mammalian
CRYs are expressed in the retina, especially in the ganglion
cells responsible for circadian entrainment and pupillary
responses (Thresher et al., 1998; Thompson et al., 2003).
Nowadays, it is clear that melanopsin—not CRYs—in the retinal
ganglion cells is the major mammalian circadian photopigment
(Hattar et al., 2002; Panda et al., 2002; Ruby et al., 2002; Lucas
et al., 2003; Peirson and Foster, 2006). Nevertheless, several
reports suggest that CRYs affect circadian photoreception and
pupillary responses (Miyamoto and Sancar, 1998; Selby et al.,
2000; Van Gelder et al., 2003). Also, mammalian CRYs could
stabilize the phototransduction complex at the membrane of
retinal cells. This is conceivable because melanopsin ganglion
cells have an insect-like (rhabdomeric) phototransduction
cascade employing Gq/11-class G proteins and Phospholipase
C (PLC; Graham et al., 2008). This tempting hypothesis
is reinforced by our finding that human CRY2 is able
to interact with human Actin-Beta in a light-independent
manner.

The role for CRY we propose here is new and clearly different
from the recently shown CRY action at the membrane of the
large lateral ventral neurons, where light-activated CRY evokes
rapid membrane depolarization through the redox sensor of the
voltage-gated ß-subunit potassium channel hyperkinetic (Fogle
et al., 2015). Though, we cannot completely exclude such a role
for CRY in the photoreceptor cells, our results rather speak for
a role of CRY in stabilizing the signalplex components at the
rhabdomeres.
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