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A-type voltage-gated potassium (Kv) channels are major regulators of neuronal

excitability that have been mainly characterized in the central nervous system. By

contrast, there is a paucity of knowledge about the molecular physiology of these Kv

channels in the peripheral nervous system, including highly specialized and heterogenous

dorsal root ganglion (DRG) neurons. Although all A-type Kv channels display pore-forming

subunits with similar structural properties and fast inactivation, their voltage-, and

time-dependent properties and modulation are significantly different. These differences

ultimately determine distinct physiological roles of diverse A-type Kv channels, and

how their dysfunction might contribute to neurological disorders. The importance

of A-type Kv channels in DRG neurons is highlighted by recent studies that have

linked their dysfunction to persistent pain sensitization. Here, we review the molecular

neurophysiology of A-type Kv channels with an emphasis on those that have been

identified and investigated in DRG nociceptors (Kv1.4, Kv3.4, and Kv4s). Also, we

discuss evidence implicating these Kv channels in neuropathic pain resulting from injury,

and present a perspective of outstanding challenges that must be tackled in order to

discover novel treatments for intractable pain disorders.

Keywords: Kv channel, A-type, dorsal root ganglion, pain, Kv1.4, Kv3.4, Kv4

INTRODUCTION

Inactivating voltage-gated K+ (Kv) currents were first characterized in neurons from the marine
gastropod Onichidium verruculatum and were subsequently described as “A-type” (Hagiwara
et al., 1961; Nakajima, 1966; Connor and Stevens, 1971a,b; Neher, 1971). Although distinct
voltage-dependencies of inactivation and sensitivities to K+ channel antagonists allowed the
functional dissection of A-type Kv currents, the molecular correlates remained unknown
for many years. The cloning of the gene encoding the Drosophila Shaker channel opened
the door to the discovery of homologous Kv channel genes from vertebrates and a better
understanding of the diversity, structure, function, and modulation of specific A-type Kv channels
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(Papazian et al., 1987; Rudy, 1988; Stühmer et al., 1989; Pak
et al., 1991; Salkoff et al., 1992). Mammalian A-type Kv channels
include: Kv1.4 (KCNA4), Kv3.3 (KCNC3), Kv3.4 (KCNC4),
Kv4.1 (KCND1), Kv4.2 (KCND2), and Kv4.3 (KCND3) (Stühmer
et al., 1989; Baldwin et al., 1991; Pak et al., 1991; Rudy et al.,
1991; Schröter et al., 1991; Vega-Saenz de Miera et al., 1992;
Serôdio et al., 1996). Although the discovery of these genes
was transformational, the identification and reconstitution of the
native channels underlying the corresponding diversity of A-
type Kv currents in the nervous system has been challenging.
The discovery of Kv channel accessory subunits has helped
determine the function, modulation and diversity of Kv channels
in their native neuronal environment (Covarrubias et al., 2008;
Maffie and Rudy, 2008; Marionneau et al., 2009; Kanda and
Abbott, 2012; Weingarth et al., 2013; Jerng and Pfaffinger,
2014). Knockout animals and knockdown techniques are also
helping dissect the molecular correlates and function of fast
inactivating potassium currents in the nervous system (Malin and
Nerbonne, 2000, 2001; Akemann and Knöpfel, 2006; Hu et al.,
2006; Hurlock et al., 2008; Zagha et al., 2008; Norris et al., 2010;
Carrasquillo et al., 2012; Ritter et al., 2012; Rowan et al., 2016;
Hermanstyne et al., 2017; Kaczmarek and Zhang, 2017). The
rat dorsal root ganglion (DRG) mainly expresses Kv1.4, Kv3.4,
Kv4.1, and Kv4.3, which will be the primary focus of this review
(Figure 1, Table 1). Although the membrane currents produced
by these A-type Kv channels exhibit similar fast inactivating
profiles, their subcellular distribution, biophysical properties,
and mechanisms of inactivation and modulation differ greatly
(Table 1). For instance, whereas Kv1.4 and Kv3.4 channels are
generally found in axons and nerve endings, Kv4 channels
are generally somatodendritic in the central nervous system
(Sheng et al., 1992; Trimmer and Rhodes, 2004; Strassle et al.,
2005; Lai and Jan, 2006; Kim and Hoffman, 2008; Clark et al.,
2009; Huang et al., 2017). Therefore, A-type Kv channels play
distinct roles along different subcellular compartments of diverse
neuronal subtypes. Determining these roles in heterogeneous
and highly specialized DRG neurons and the pathophysiological
implications are topical subjects of active investigation. Multiple
reviews have been recently published on the roles of diverse
DRG ion channels on pain signaling under physiological and
pathological conditions (Rasband et al., 2001; Dib-Hajj et al.,
2009; Cregg et al., 2010; Dubin and Patapoutian, 2010; Julius,
2013; Wemmie et al., 2013; Tsantoulas and McMahon, 2014;
DiFrancesco and DiFrancesco, 2015; Bernier et al., 2017; Queme
et al., 2017). However, to the best of our knowledge, no specific
reviews have been published on the function, dysfunction and
diversity of A-type Kv channels in the DRG, which are likely
to play specialized critical roles in different compartments
of primary sensory neurons. This article attempts to fill this
gap by reviewing original discoveries in this area including
recent studies demonstrating the physiological and molecular
properties of A-type Kv channels in the pain pathway and how
their dysfunction might contribute to pathological pain states.
Ultimately, this knowledge would stimulate further work to
better understand these ion channels and help identify viable
therapeutic interventions to treat pain disorders.

PHYLOGENY, STRUCTURE AND
INACTIVATION MECHANISMS OF A-TYPE
Kv CHANNELS

Inmammals, there are 12 subfamilies of Kv channels (Kv1–Kv12),
each with multiple members, that are phylogenetically related to
the Drosophila Shaker Kv channel. This is in part responsible
for the diversity of Kv currents observed in excitable and non-
excitable tissues. Whereas Kv1-6, Kv8 and Kv9 channels are
closely related to the original Shaker Kv channel, Kv7 and Kv10-
12 are more distant relatives. Like all Shaker-related Kv channels,
A-type Kv channels are tetrameric assemblies sharing the
essential structural features that characterize an individual pore-
forming α subunit (from the N-terminus to the C-terminus):
the tetramerization T1 domain; six membrane spanning regions
including voltage-sensing (S1–S4) and pore domains (S5–
S6); and a variable C-terminal domain (Figures 2–4). Despite
fundamental similarities that govern voltage dependent gating
and K+ selectivity, Kv1, Kv3, and Kv4 channels differ in many
significant ways (Table 1). Based on the biophysical properties
of Kv1.4, Kv3.4, and Kv4s in heterologous and native neuronal
systems, the A-type Kv currents can be readily parsed out
(Table 1). For instance, while Kv1.4 and Kv4s are low voltage-
activating, Kv3.4 is high-voltage activating. It is, however,
also possible to distinguish Kv1.4 from Kv4s because the first
undergoes slow recovery from inactivation, whereas the latter
generally undergo fast recovery from inactivation, even in the
absence of auxiliary subunits. Kv3.4 channels also share slow
recovery from inactivation, and it is particularly striking that
Kv4s exhibit the most hyperpolarized voltage dependence of
steady-state inactivation. From a molecular vantage point, Kv1.4,
Kv3.4, and Kv4 channels underlie relatively independent Kv
current systems because specific structural differences in the
T1 domain restrict the formation of heterotetrameric channels
to members of the same subfamily (Covarrubias et al., 1991;
Li et al., 1992). Distinct mechanisms of inactivation among A-
type Kv channels, however, are particularly responsible for the
biophysical profile of the corresponding Kv currents.

Kv1.4 and Kv3.4 Channels: N-Type
Inactivating A-Type Kv Channels
The neuronal Kv1.4 channel generally underlies a low voltage-
activating A-type Kv current mainly found in cell bodies and
axons (Rasband et al., 2001). It is modestly sensitive to 4-
aminopyridine and relatively insensitive to tetraethylammonium
(TEA) (Stühmer et al., 1989; Ludewig et al., 1993; Yao and
Tseng, 1994; Rasmusson et al., 1995). Fast inactivation of Kv1.4
is determined by the N-terminal inactivation domain (NTID),
which operates through a classical “ball-and-chain” mechanism
(N-type) similar to that originally identified in the Shaker
Kv channel (Murrell-Lagnado and Aldrich, 1993; Tseng-Crank
et al., 1993; Baukrowitz and Yellen, 1995; Oliver et al., 1998,
2004; Zhou et al., 2001). Its recovery from inactivation is,
however, slow (tens of seconds; Table 1). Additionally, NMR
studies have demonstrated that the Kv1.4 channel has two
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FIGURE 1 | Pain signal propagation in stereotypical nociceptive neurons of the mammalian DRG. The initiation, propagation, firing frequency, and shape of the action

potential that carries nociceptive information involves a large number of diverse ion channels with heterogeneous subcellular distributions along the primary sensory

neurons in the DRG. Mechanical, thermal, chemical, and inflammatory stimuli activate receptor ion channels in the periphery, giving rise to a depolarizing receptor

potential that might be large enough to initiate a nerve impulse at the action potential initiation site (AIS). Firing of the action potential and the properties of the action

potential waveform depend on the activities of an ensemble of voltage-gated ion channels and Ca++-dependent K+ channels. The action potential of nociceptors

propagates centrally along lightly myelinated A-delta fibers and unmyelinated C-fibers until it reaches the nerve ending in the superficial dorsal horn of the spinal cord,

where it evokes Ca++-dependent vesicular release of the excitatory neurotransmitter glutamate. At the glutamatergic nerve ending, certain Kv channels can shape

the action potential to regulate voltage-dependent Ca++ influx into the nerve ending and, consequently, nociceptive synaptic transmission. Glutamate excites the

secondary sensory neuron to relay the nociceptive information that eventually reaches pain perception centers in the brain.

inactivation domains, one that acts as a pore-occluding domain
and one that acts as a docking domain (Wissmann et al.,
2003). Deletion of either domain slows the rate of inactivation,
suggesting that both domains are necessary to promote rapid
inactivation in Kv1.4 channels. The Kv1.4 channel interacts
with Kvβ subunits related to NADPH reductases, which dock
directly below the intracellular T1 domain to modulate surface
expression and inactivation gating (Pongs and Schwarz, 2010).
In some instances, these subunits confer fast N-type inactivation
to other Kv1 channels, such as Kvβ1 when expressed with Kv1.1
or Kv1.2, which on their own are slow inactivating delayed
rectifier-type Kv channels (Pongs and Schwarz, 2010). N-type
inactivation induced by the Kvβ1 subunit, however, can be
negatively modulated by the leucine-rich glioma inactivated gene
1 (Schulte et al., 2006).

The neuronal Kv3.4 channel underlies a high voltage-
activating A-type Kv current found in axons and nerve terminals
(Rudy et al., 1999; Rudy and McBain, 2001; Brooke et al.,
2004; Kaczmarek and Zhang, 2017). It is hypersensitive to
4-aminopyridine and TEA at sub-millimolar concentrations, and
fast inactivation of Kv3.4 is determined by an N-type mechanism
that uses the channel’s NTID. Like Kv1.4, Kv3.4 recovery from
inactivation is relatively slow (Rudy et al., 1991; Schröter et al.,
1991). However, the NTIDs of Kv1.4 and Kv3.4 share no

homology. Most significantly, the Kv3.4 NTID bears several
protein kinase C (PKC) phosphorylation sites that are only
partially shared with Kv3.3 (Covarrubias et al., 1994; Beck et al.,
1998; Kaczmarek and Zhang, 2017). Phosphorylation of these
sites causes the Kv3.4 channel to switch from fast inactivating A-
type to slow/non-inactivating delayed rectifier-type (Covarrubias
et al., 1994; Beck et al., 1998; Antz et al., 1999; Ritter et al., 2012).
The Kv3.4 channel interacts with promiscuous KCNE β subunits,
which are single membrane spanning proteins that can modulate
trafficking and gating (Abbott and Goldstein, 2001; Pongs and
Schwarz, 2010; Kanda and Abbott, 2012; Kaczmarek and Zhang,
2017).

Kv4 Channels: Non-N-Type Inactivating
A-Type Kv Channels
The neuronal Kv4.1, Kv4.2, and Kv4.3 channels underlie low-
voltage activating A-type Kv currents, mainly expressed in
somatodendritic compartments (Birnbaum et al., 2004; Jerng
et al., 2004; Shah et al., 2010; Carrasquillo and Nerbonne,
2014). They are only modestly sensitive to 4-aminopyridine and
highly insensitive to TEA. However, despite having an NTID-like
region, Kv4 channels in their native configuration, which includes
accessory β subunits, do not undergo N-type inactivation.
Instead, the NTID-like region acts as a binding domain for
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FIGURE 2 | A-type Kv1 channels in primary nociceptive neurons. Cartoon renderings of a Kv1 channel pore-forming a-subunit including characteristic

voltage-sensing and pore domains (VSD and PD, respectively) and cytoplasmic tetramerization domain (T1). The alpha subunit N-terminal inactivation domain (αNTID)

from one subunit is shown occluding the open pore. The NTID of the Kvβ1 subunit (βNTID) is similarly capable of occluding the open pore. As a result, the current

profile exhibits a fast decay over time. A-type Kv1.4 channels are expressed in the somata and axons of unmyelinated and lightly myelinated fibers.

FIGURE 3 | A-type Kv3.4 channels in primary nociceptive neurons. Cartoon rendering of the Kv3.4 channel displaying major functional domains of the pore-forming

α-subunit (Figure 2; VSD, PD, T1, and αNTID). The αNTID occludes the open pore to induce a fast inactivating current profile. Kv3.4 immunoreactivity has been

detected in somata, axons and nerve endings. In the latter location, attenuation of Kv3.4 function would prolong the AP and, thereby, potentiate glutamatergic

(glu-ergic) synaptic transmission, ultimately resulting in increased pain.

the Kv4 β subunits known as K+-Channel-Interacting-Proteins
(KChIPs) (An et al., 2000; Bähring et al., 2001; Pioletti et al.,
2006; Wang et al., 2007; Covarrubias et al., 2008; Jerng and
Pfaffinger, 2014). Under these conditions, Kv4 channels undergo
fast inactivation through a distinct mechanism involving an
apparent desensitization to voltage (Bähring and Covarrubias,
2011). Thus, in contrast to N-type inactivation present in
Kv1.4 and Kv3.4 in which the channel is inactivated only after

opening, closed-state inactivation is the primary pathway of
inactivation in neuronal Kv4 channels (Fineberg et al., 2012,
2016). Moreover, unlike Kv1.4 and Kv3.4, Kv4 channels, in
their native configuration, exhibit fast recovery from inactivation
(Amarillo et al., 2008; Jerng and Pfaffinger, 2014). Additionally,
Kv4 channels interact with another class of β subunits known as
dipeptidyl peptidase-like proteins (DPPs) that also impact Kv4
properties in native tissues (Nadal et al., 2003; Amarillo et al.,
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FIGURE 4 | A-type Kv4 channels in primary nociceptive neurons. Cartoon rendering of the Kv4 channel complex including the pore-forming a-subunit with its

characteristic Kv channel functional domains (Figure 2; VSD, PD, and T1). Two distinct accessory subunits are also part of this complex: KChIPs and DPPs. Whereas

KChIPs are cytoplasmic and bind to the vestigial αNTID to prevent N-type inactivation, DPPs are single-pass membrane spanning proteins that might interact with the

VSD to determine the native voltage dependence of Kv4 channels. In addition, the cytoplasmic N-terminal region of DPP6 increases unitary conductance through

long-range electrostatic interactions. Kv4.3 immunoreactivity has been detected mainly in somata of small-diameter DRG neurons. Based on the ability of Kv4

channels to regulate backpropagating APs in the CNS, and their particular subcellular localization in DRG neurons, they might act as ‘shock absorbers’ to actively

regulate AP propagation into and out of the soma.

2008; Covarrubias et al., 2008; Maffie and Rudy, 2008; Jerng
and Pfaffinger, 2014). These accessory proteins help determine
the subthreshold range of membrane potentials over which
Kv4 channels typically operate in the brain (Dougherty and
Covarrubias, 2006; Dougherty et al., 2008; Maffie and Rudy,
2008). In addition, they are significantly responsible for the fast
recovery from inactivation that characterizes Kv4 channels and
determine the native unitary conductance (Kaulin et al., 2009).
In some instances, the intracellular N-terminus of specialized
DPPs can introduce fast N-type inactivation to Kv4 channels,
a role that resembles that of the Kvβ1 subunit acting on Kv1
channels (Dougherty and Covarrubias, 2006; Amarillo et al.,
2008; Jerng et al., 2009; Kaulin et al., 2009; Nadin and Pfaffinger,
2010).

A BRIEF HISTORY OF A-TYPE Kv
CURRENTS IN MAMMALIAN DRG
NEURONS AND PAIN

Early patch-clamping studies in acutely dissociated DRG neurons
reported low voltage-activating 4-aminopyridine-sensitive
A-type Kv currents predominately expressed in small-diameter
neurons (Kostyuk et al., 1981; Pearce and Duchen, 1994).
Suggesting a physiological role of these currents, exposure to
millimolar concentrations of 4-aminopyridine broadened the
action potential (AP) in these neurons (Pearce and Duchen,
1994). Gold et al. subsequently described three distinct A-type
Kv currents in acutely dissociated rat DRG neurons (Gold
et al., 1996). While the high voltage-activating A-type current

was predominately found in small, capsaicin positive neurons,
subthreshold A-type currents could be detected in small-
medium- and large-diameter neurons (Gold et al., 1996). Others
verified these observations independently and demonstrated
widespread expression of A-type Kv currents in DRG neurons
from rat, mouse, rabbit, and guinea pig (Safronov et al., 1996;
Everill et al., 1998; Stewart et al., 2003; Phuket and Covarrubias,
2009; Chen et al., 2011; Du and Gamper, 2013).

In multiple chronic pain models, A-type Kv currents in the
DRG are reduced. In a spinal nerve ligation model of chronic
pain, Everill, and Kocsis first showed reduced A-type Kv currents
in Aβ fibers (Everill and Kocsis, 1999). The affected current
was sensitive to 4-aminopyridine but not to dendrotoxin, a
Kv1.1/1.2/1.6-specific inhibitor (Everill and Kocsis, 1999). These
authors hypothesized that decreasing A-type currents in larger
sensory neurons (Aβ fibers) may increase firing of primary
afferent neurons in the injury model. Additional studies found
reduced A-type Kv currents in small-diameter DRG neurons
following 2,4,6-trinitrobenzenesulfonic (TNBS) acid induced
colitis and pancreatitis as well as models of temporomandibular
joint pain, gastric ulcers, and chronic nerve compression (Stewart
et al., 2003; Takeda et al., 2006; Xu et al., 2006; Yan et al.,
2007; Zhang et al., 2007). Multiple studies reported A-type Kv
current reduction possibly resulting from hyperpolarizing shifts
in the steady-state inactivation curves, which was associated with
increased AP firing (Everill and Kocsis, 1999; Stewart et al.,
2003; Takeda et al., 2006). Although dampening of the A-type Kv
currents in DRG neurons is linked to persistent pain in multiple
chronic pain models, the Kv channels underlying the decrease are
only beginning to be identified.
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FUNCTION AND DYSFUNCTION OF
A-TYPE KV CHANNEL SUBTYPES IN DRG
NEURONS

Kv1.4
Kv1.4 was first identified in cultured DRG neurons via
immunohistochemistry (Ishikawa et al., 1999). These studies
have shown expression of Kv1.4 in the neuronal soma and axon
(Figure 2) (Ishikawa et al., 1999; Rasband et al., 2001). In intact
ganglia, Kv1.4 channel immunoreactivity is the only Kv1 channel
in small diameter DRG neurons (Rasband et al., 2001) and is
the primary Kv1 channel found in isolectin B4 (IB4) positive
neurons (Vydyanathan et al., 2005). Kv1.4 immunoreactivity
supports electrophysiological recordings showing a Kv1.4-like
current in small to medium size DRG neurons (Gold et al.,
1996; Safronov et al., 1996; Everill et al., 1998; Vydyanathan
et al., 2005). Despite its presence, no specific pharmacological
tools are available to probe its role in DRG physiology,
forcing researchers to use less specific inhibitors like 4-
aminopyridine (Vydyanathan et al., 2005). Subsequent studies
confirmed the expression of Kv1.4 channels in the DRG using
immunohistochemistry, immunoblotting, and PCR (Yang et al.,
2004; Tanimoto et al., 2005; Takeda et al., 2008; Qian et al., 2009;
Cao et al., 2010; Duan et al., 2012; Zhu et al., 2012; Li et al.,
2014)

A number of signaling processes are capable of modulating
Kv1.4 biophysical properties and expression (Figure 2). The
fast inactivation kinetics of Kv1.4 are modulated by calcium
dependent phosphorylation cascades (Roeper et al., 1997).
Ca2+/calmodulin dependent protein kinase II (CaMKII) and
calcineurin regulate the inactivation profile of Kv1.4. CaMKII
phosphorylates S123, an N-terminal residue, which results
in slower inactivation kinetics and accelerated recovery from
inactivation (Roeper et al., 1997). Conversely, dephosphorylation
by calcineurin reverses these effects (Roeper et al., 1997).
Both key enzymes are regulated by Ca2+, which makes this
modulation of Kv1.4 dependent on intracellular changes
in Ca2+ concentration. Kv1.4 is also regulated by protein
kinase A (PKA). Neuronal activity induces PKA-dependent
phosphorylation of Kv1.4 Ser229, which reduces macroscopic
currents (Tao et al., 2005). Activation of transforming
growth factor β1 (TGFβ1) reduces Kv1.4 expression and
A-type current density (Zhu et al., 2012). Additionally,
a cysteine at position 13 has been shown to be involved
in oxidation dependent loss of inactivation (Ruppersberg
et al., 1991). Although all of these modulations may occur
in neurons, only modulation by TGFβ1 has been shown
to occur in DRG neurons (Zhu et al., 2012). Expression
of Kv1.4 mRNA is reduced by extracellular UTP through
P2Y2 receptors (Li et al., 2014). In heterologous expression
systems, the auxiliary subunits KCNE1 and KCNE2 can
coassemble with Kv1.4 channels and inhibit trafficking to
the cell membrane in a process which can be overcome by
heteromultimers consisting of Kv1.1 and Kv1.4 channels
(Kanda et al., 2011a,b). In addition, Kvβ2.1 subunits are
found in DRG neurons but their impact on Kv1.4 is unknown
(Rasband et al., 2001).

Even though Kv1.4 channels were shown
immunohistochemically in the DRG, little is known about
their role in controlling AP properties in this tissue. Indirect
evidence using 4-aminopyridine suggests that Kv1.4 channels in
IB4 positive neuronsmay control AP latency and firing frequency
(Vydyanathan et al., 2005). Decreases of Kv1.4-like currents
by TGFβ1 activation results in a depolarization of the resting
membrane potential, a decrease in rheobase, and broadening of
the AP (Zhu et al., 2012). However, the changes following TGFβ1
activation are likely not to result from Kv1.4 channels alone as
multiple channels would be affected by 4-aminopyridine.

Converse to the sparse data regarding Kv1.4 channel
physiology and modulation in the DRG, expression changes
associated with persistent pain have been well documented
(Table 2). In diabetic neuropathic pain, mRNA levels of Kv1.4
channels are significantly reduced and there is a reduction in
A-type Kv currents in medium to large DRG neurons (Cao
et al., 2010). This reduction in Kv1.4 channel mRNA and A-
type currents is dependent on brain derived neurotrophic factor
(BDNF). Treatment of neurons from diabetic animals with anti-
BDNF antibodies restores the currents and Kv1.4 transcripts
(Cao et al., 2012). Following an electrical burn injury, the
expression level of Kv1.4 channel mRNA and Kv channel current
density are reduced (Chen et al., 2011). In bone cancer, Kv1.4
protein expression is up-regulated on post-tumor day 14 with
a subsequent decline to control levels (Duan et al., 2012). This
upregulation was thought to be due to upregulation in non-
injured IB4 positive neurons (Duan et al., 2012). Knockdown of
Kv1.4 channels using siRNA induces mechanical allodynia and
eliminates the analgesic effects of the compound diclofenac in
bone cancer animals (Duan et al., 2012). In axotomy and chronic
axon constriction injury models, Kv1.4 channel immunostaining
and mRNA levels are decreased substantially in the DRG both
ipsilateral and contralateral to injury (Kim et al., 2002; Park
et al., 2003; Yang et al., 2004; Li et al., 2014). Kv1.4 channel
expression is similarly reduced in ipsilateral DRGs following
spinal nerve ligation (Rasband et al., 2001). Following spinal
transection, nociceptive bladder sensory neurons show a decrease
in A-type Kv current density and a leftward shift in the steady
state inactivation curve concurrent with a decrease in mRNA
and protein expression of Kv1.4 channels (Takahashi et al., 2013).
Other pain models including pancreatitis, inflammatory bowel
disease and temporomandibular joint pain have also shown
decreases in Kv1.4 expression (Takeda et al., 2008; Zhu et al.,
2012; Chen et al., 2013). Interestingly, one study indicated that
Kv1.4 may act in a compensatory manner by being upregulated
in the juxtaparanodal regions of axons following a sciatic nerve
transection (Calvo et al., 2016). After the injury, both Kv1.1
and Kv1.2 become mislocalized and exhibit reduced expression
in the juxtaparanodal regions of DRG axons (Calvo et al.,
2016). Despite the downregulation of these channels, there is
an upregulation of Kv1.4 and Kv1.6 (Calvo et al., 2016). This is
interesting considering that Kv1.4 channel upregulation replaces
a delayed rectifier with an A-type Kv current. These changes
are positively correlated with the proximity to the axonal injury
(Calvo et al., 2016). By contrast, two studies on persistent pain
states independently showed no change in Kv1.4 channel mRNA,
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TABLE 2 | Pain model-induced changes in A-type Kv channel expression,

function and modulation in DRG neurons.

Kv1.4 Kv3.4 Kv4.x

Sciatic Nerve

Ligation

↓IR ↓IR ↓mRNA, ↓IR

Axotomy ↓↔mRNA

↓IR

Diabetes ↓mRNA, ↓I1A
↑BDNF

↑mRNA ↓mRNA, ↓IA
↑PO4, ↑BDNF

↑MAPK

Spinal Cord Injury ↓IA, ↓IR
2

↓inactivation rate

↔total protein

↔mRNA3

↔CaN, ↑RCAN1

Bone Cancer ↑IR4 ↓IR ↑protein

Oxaliplatin induced ↓IA,↓protein

Inflammatory Bowel

Disease

↓↔mRNA ↓IA, ↓protein

leftward shifted SSI

↑PO4, ↑MAPK

Spinal Cord

Transection

↓mRNA, ↓IA
↓protein

leftward shifted

SSI

Temporomandibular

Joint

↓IR

Electrical Burn ↓mRNA, ↓IA

Chronic

Constriction

↓mRNA, ↓IR ↓mRNA

Sciatic Nerve

transection

↑IR5

Pancreatitis ↓mRNA

↑TGFβ1

Vibration induced ↓mRNA

↑ with green text indicates an increase, ↓ with red text indicates decrease, ↔ with black

text indicates no change, and combined arrows (↑ ↓ ↔) indicates conflicting evidence.

Abbreviations corresponding to particular molecular and functional changes are indicated

as follows: IR, immunoreactivity, IA, current, PO4, phosphorylation, SSI, steady state

inactivation. Evaluation of protein expression is generally based on western blot analysis.

All studies are cited in the text. Some experiments were done in specific settings as noted:
1 in medium- to large-diameter DRG neurons, 2cell surface IR, 3single cell mRNA, 4 in

uninjured IB4+ neurons, 5 in juxtaparanodal regions.

including axotomy (Ishikawa et al., 1999) and irritable bowel
syndrome (Qian et al., 2009). Based on electrophysiological
studies conducted in heterologous expression systems as well as
in DRG neurons, the biophysical properties of the DRG Kv1.4
current appear to most closely resemble the properties of the
Kv1.4/Kvβ1.1 complex, suggesting that perhaps the channel exists
as a supramolecular complex in DRG neurons (Table 1).

Kv3.4
Kv3.4 immunoreactivity in the superficial rat spinal dorsal horn
provided strong evidence for the expression of Kv3.4 channels in
DRG nociceptors (Brooke et al., 2004; Chien et al., 2007;Muqeem
et al., 2018). Specifically, the axon, soma and presynaptic
terminals of rat DRG neurons demonstrated significant Kv3.4
immunoreactivity (Figure 3; Chien et al., 2007; Ritter et al.,
2015a; Zemel et al., 2017; Muqeem et al., 2018). In the somata of

DRG neurons, Kv3.4 channels are found in all neurons, although
it appears to be especially enriched in small-diameter neurons
(Chien et al., 2007; Ritter et al., 2012, 2015a; Zemel et al., 2017).
The immunoreactivities of Kv3.4, Nav1.8, and TRPV1 colocalize,
which is consistent with expression in nociceptors (Chien et al.,
2007; Ritter et al., 2015a). Kv3.4 currents were first identified from
7 day old rat pups using the cell-attached patch-clamp method
and a depolarized conditioning pulse (−30mV) to inactivate
low voltage-activating A-type Kv channels (Ritter et al., 2012).
These currents closely resemble those induced by heterologously
expressed Kv3.4 channels (Covarrubias et al., 1994; Beck et al.,
1998), are hypersensitive to TEA, and are knocked-down with
Kv3.4 siRNA (Ritter et al., 2012; Table 1). Retrospective analysis
of whole-cell currents recorded by Gold et al. in the DRG
demonstrated that the Iaht current (named for A-type, high-
threshold) also had Kv3.4-like properties (Gold et al., 1996).
The majority of neurons that exhibited Iaht were also capsaicin
responsive. This suggests that Kv3.4 currents are expressed in
putative nociceptors. Kv3.4 currents with similar properties have
since been additionally isolated in DRG neurons from adult male
and female rats, suggesting that Kv3.4 expression is stable during
postnatal development (Ritter et al., 2015a,b). Kv3.3 mRNA and
immunoreactivity are also found in larger neurons of the DRG
but are not highly expressed or as of yet implicated in persistent
pain syndromes (Bocksteins and Snyders, 2012; Ritter et al.,
2012).

Kv3.4 channel function is modulated by oxidation,
phosphorylation and ancillary proteins (Figure 3; Ruppersberg
et al., 1991; Covarrubias et al., 1994; Baranauskas et al., 2003;
Kanda et al., 2011a). Inactivation of Kv3.4 channels is slowed
by oxidation and phosphorylation of the NTID in heterologous
systems (Ruppersberg et al., 1991; Covarrubias et al., 1994).
Cysteine oxidation at position 6 removes inactivation by forming
a disulfide bond between the NTID and another part of the
channel (Ruppersberg et al., 1991). Phosphorylation of the
Kv3.4 channel NTID at S8, S9, S15, and S21 by PKC alters the
structure of the NTID thereby slowing inactivation (Covarrubias
et al., 1994; Beck et al., 1998; Antz et al., 1999; Ritter et al.,
2012). This PKC mediated action may occur through several
receptors, including metabotropic glutamate receptors and
serotonin receptors (Velasco et al., 1997; Kruse et al., 2012). In
DRG neurons, the modulation by G-protein coupled receptors
occurs by a membrane-delimited mechanism suggesting the
presence of a Kv3.4 channel-receptor-PKC complex (Ritter et al.,
2012). The phosphatase calcineurin (CaN) seemingly opposes
the activity of PKC as inhibiting CaN with small molecules
or overexpressing the regulator of calcineurin 1 (RCAN1)
reduces Kv3.4 inactivation (Zemel et al., 2017). High levels of
phosphatidylinositol 4,5-bisphosphate (PIP2) may also alter
Kv3.4 channel inactivation but this has not been confirmed in
a physiological setting (Oliver et al., 2004; Kruse et al., 2012).
Kv3.4 channels are also modified by KCNE (formerly MiRP)
proteins in heterologous expression systems and natively in
skeletal myocytes (Abbott et al., 2001; Abbott and Goldstein,
2002; Kanda et al., 2011a; Kanda and Abbott, 2012). In these
cells, KCNE proteins modulate time and voltage-dependent
properties and trafficking of the Kv3.4 channel. The inhibition
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of trafficking by KCNE proteins may be overcome by formation
of heteromultimers with Kv3.1 channels (Kanda et al., 2011b).
The modulation of Kv3.4 channels by KCNE has yet to be
demonstrated in neurons. Kv3.4 mRNA decreases in response
to extracellular UTP, a response that is downstream to the
G-protein coupled P2Y2 receptors (Li et al., 2014). There are
also three known Kv3.4 mRNA splice variants with unknown
specific roles (Rudy et al., 1999; Rudy and McBain, 2001). Female
rat nociceptors express all three variants, although the Kv3.4b
transcript is expressed at very low levels (Ritter et al., 2015a).

Our work and that of others have shown that Kv3.4 channels
are optimized to regulate repolarization of the nociceptor AP
and thus its duration (Ritter et al., 2012, 2015b; Liu et al.,
2017). Consistent with this role, knock-down or inhibition
of Kv3.4 in the DRG broadens the AP and phosphorylation
of the channel shortens the AP (Ritter et al., 2012, 2015a;
Muqeem et al., 2018). AP clamp techniques reveal that Kv3
currents provide a large proportion of the repolarizing charge
during the nociceptor AP (Ritter et al., 2015b; Liu et al., 2017).
Additionally, pharmacological inhibition of Kv3.4 channels in
the DRG was found to potentiate excitatory post-synaptic
currents in superficial layers of the dorsal horn (Muqeem
et al., 2018). This finding suggests that modulation of Kv3.4
currents or channels presynaptically in the DRG may impact
synaptic transmission in the nociceptive pathway. Kv3.4 channels
might also influence spiking in nociceptors. In dynamic-clamp
experiments, the addition of computer-generated Kv3.4 currents
decreases repetitive firing (Ritter et al., 2015a). This could be due
to a significant open probability of the Kv3.4 channel near the
threshold of the AP (Ritter et al., 2012, 2015a) or due to reopening
of Kv3.4 channels during recovery from inactivation induced by
hyperpolarization (Ruppersberg et al., 1991).

Several chronic pain models exhibit dysfunction in Kv3.4
channels (Table 2). In a sciatic nerve ligation model, Kv3.4
immunoreactivity is reduced in DRG nociceptors (Chien
et al., 2007). Following implantation of a bone tumor near
the sciatic nerve, immunoreactivity of DRG Kv3.4 channels
was reduced as determined by western blot (Duan et al.,
2012). Finally, in a model of unilateral spinal cord contusion,
Kv3.4 current amplitude, inactivation, and channel membrane
expression are reduced in the DRG (Ritter et al., 2015a;
Zemel et al., 2017). Western blot and single-cell quantitative
PCR results indicate that total protein and mRNA in the
DRG had not changed, suggesting a possible post-translational
effect (Ritter et al., 2015a). We proposed that spinal cord
injury might induce DRG Kv3.4 channel dysfunction through
alteration of its phosphorylation state. Although PKC was
known to phosphorylate Kv3.4 channels causing an acute loss
of inactivation, nothing was known about the phosphatases
that countered PKC activity. We found that pharmacological
inhibition of CaN was sufficient to not only slow inactivation,
but also attenuate Kv3.4 currents (Zemel et al., 2017). These
modulations are dependent on the presence of the NTID
PKC sites at S8, S9, S15, and S21 (Zemel et al., 2017).
Subsequently, we found that the regulator of CaN, RCAN1,
is upregulated in DRG neurons following spinal cord injury
leading to inhibition of CaN, causing slowing of Kv3.4 channel

inactivation, attenuation of Kv3.4 currents, and slowing of the
nociceptor action potential repolarization (Zemel et al., 2017).
These studies strongly suggest that a decrease in Kv3.4 activity
has a substantial effect on nociceptor excitability after injury.
Intrathecal injection of antisense Kv3.4 oligonucleotides induces
mechanical hypersensitivity in rats, which is consistent with the
role for Kv3.4 channels in nociception and the development
of chronic pain (Chien et al., 2007). Converse to all other
Kv3.4 channel studies in pain models, in a diabetic neuropathy
model, Kv3.4 mRNA increased in the entire ganglia (Cao et al.,
2010). The biophysical properties of Kv3.4 channels expressed
in heterologous expression systems almost exactly mirror those
of the Kv3.4 current isolated from DRG neurons, indicating a
homomultimeric neuronal configuration (Table 1).

Kv4.1, Kv4.2, and Kv4.3
While Kv4.x channel mRNA was first reported in whole-
ganglia isolates (Kim et al., 2002; Park et al., 2003; Winkelman
et al., 2005), later work would verify expression of Kv4
channels in predominately the somata of small and large
diameter nociceptors and the dorsal horn of the spinal cord
via immunohistochemistry (Huang et al., 2005; Hu et al.,
2006; Chien et al., 2007). These findings were consistent with
previously identified low voltage-activating A-type Kv currents
in DRG neurons (Gold et al., 1996). Through the use of a
specific dominant negative construct and selective neurotoxins
(heteropodatoxin and phirxotoxin), along with single cell RT-
PCR, Kv4 channels have been established as the molecular
correlates of subthreshold A-type currents in DRG neurons
(Sculptoreanu and de Groat, 2007; Phuket and Covarrubias,
2009; Sculptoreanu et al., 2009; Yunoki et al., 2014). Although
all three Kv4 mRNA isoforms (Kv4.1-4.3) are expressed in
whole DRG preparations (Kim et al., 2002; Winkelman et al.,
2005), there is evidence for differential expression. Kv4.1 mRNA
is expressed in DRG neurons of all sizes, Kv4.2 mRNA is
absent from small-diameter DRG neurons and Kv4.3 mRNA
is mainly found in small-diameter DRG neurons (Phuket and
Covarrubias, 2009; Matsuyoshi et al., 2012; Yunoki et al., 2014).
Immunohistochemistry supports the predominant expression of
Kv4.3 over Kv4.2 channels in the DRG (Huang et al., 2005; Hu
et al., 2006; Phuket and Covarrubias, 2009). Kv4.3 channels are
found predominantly in IB4+ neurons and are co-expressed
with the nociceptor markers Nav1.8 and TRPV1, but not CGRP
(Huang et al., 2005; Chien et al., 2007; Phuket and Covarrubias,
2009; Duan et al., 2012; Yunoki et al., 2014).

Kv4 channel expression and function in the DRG is modulated
by several signaling pathways and accessory subunits. Gene
expression is regulated by the neuron restrictor silencer factor
(REST), which binds to the promoter of Kv4.3 and recruits
histone deacetylase 4 (HDAC4) to repress transcription of the
Kv4.3 gene (Ballas and Mandel, 2005; Uchida et al., 2010).
Interestingly, REST expression has been shown to be increased
in a partial sciatic nerve ligation model of nerve injury (Rose
et al., 2011). Expression of Kv4.2 and Kv4.3 in whole DRG tissue is
reduced by the application of brain-derived neurotrophic factor
(BDNF) and neurotrophin 3 (NT-3), two factors upregulated
in chronic pain states (Park et al., 2003). Blocking BDNF
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function, or the function of tyrosine kinases downstream of
BDNF, increases Kv4.2 and Kv4.3 mRNA and the A-type current
in DRG neurons (Cao et al., 2010). Extracellular UTP decreases
A-type Kv currents along with Kv4.2 expression in the trigeminal
ganglion via the P2Y2 receptor (Li et al., 2014). Kv4 channels are
also regulated by phosphorylation (Jerng et al., 2004; Kim and
Hoffman, 2008). Phosphorylation of threonine 602 in Kv4.2 by
mitogen-activated protein kinases (MAPK) causes attenuation of
the low voltage-activating A-type Kv current in DRG neurons
(Grabauskas et al., 2011). In addition to signaling pathways, Kv4.x
channels are modulated by auxiliary subunits. DPP10, KChIP1,
KChIP2, and KChIP3 are expressed in the DRG (Phuket and
Covarrubias, 2009; Cheng et al., 2016; Kuo et al., 2017). Recently
the discovery of a Kv4.3/KChIP1/KChIP2/DPP10 complex was
found in DRG neurons via co-immunoprecipitation studies (Kuo
et al., 2017). Knockdown of any component of the Kv4 channel
complex reduces the expression of the other components and
increases excitability of IB4+ nociceptors (Kuo et al., 2017).
Components of this complex were found to be downregulated
in a spinal nerve ligation (SNL) model of chronic pain (Kuo
et al., 2017). Overexpressing various components of this complex
rescued downregulated Kv4.3 currents as well as attenuated DRG
excitability and pain phenotypes of injured animals.

To date, several studies have implicated Kv4 channel
dysfunction in chronic pain (Table 2). In both chronic
constriction of the sciatic nerve and axotomy, expression
of Kv4.2, and Kv4.3 mRNA is reduced in DRG neurons (Kim
et al., 2002; Park et al., 2003; Furuta et al., 2012). Subsequent
studies showed that Kv4.3 DRG immunoreactivity is reduced
by 40% following nerve ligation (Chien et al., 2007). Vibration
induced injury decreases Kv4.3 mRNA in the nerves innervating
the affected side (Conner et al., 2016). In streptozotocin (STZ)-
induced diabetic neuropathy, there are robust decreases in A-type
Kv currents and Kv4 expression in putative nociceptors after
disease onset (Cao et al., 2010; Grabauskas et al., 2011; Sun et al.,
2011). STZ-induced diabetes causes a ∼50% BDNF-dependent
reduction in the expression of Kv4.2 and Kv4.3 mRNAs in DRG
neurons (Cao et al., 2010). Following STZ treatment, Kv4.2
channels are phosphorylated by MAPK with a corresponding
decrease in the A-type Kv currents (Grabauskas et al., 2011). The
use of MAPK inhibitors restores both the A-type Kv current in
nociceptors as well as reduces the anorectal sensitivity induced
by STZ (Grabauskas et al., 2011). Increased MAPK-dependent
phosphorylation of Kv4.2 followed by attenuation of the A-type
current is also seen in a model of irritable bowel syndrome
induced by butyrate (Xu et al., 2012). In a second model of
colonic hypersensitivity, there is downregulation of Kv4.3
protein as well as a leftward shift in the voltage-dependence
of inactivation in IB4+ DRG neurons (Qian et al., 2009). In
both colonic hypersensitivity studies, the decrease in A-type Kv
current coincided with a depolarized membrane potential and
increased excitability, both of which are predicted by a loss of
Kv4 channels (Qian et al., 2009; Xu et al., 2012). Kv4.3 protein
and currents are also downregulated in a model of chemotherapy
induced neuropathy resulting from oxiliplatin administration
(Viatchenko-Karpinski et al., 2018). Currently only one model
has shown an increase in Kv4 channels following injury. In bone

cancer pain, Kv4.3 immunoreactivity is increased in the weeks
following cancer development which the authors hypothesize
is a protective mechanism to dampen excitability (Duan et al.,
2012).

More directly implicating Kv4 channels in the development
of chronic pain, knockdown of Kv4.3 channels induces
hypersensitivity. Three days of intrathecal administration of
Kv4.3 antisense oligonucleotides induces mechanical allodynia
but not thermal hyperalgesia (Chien et al., 2007). A separate
group also injected Kv4.3 channel antisense oligonucleotides and
have shown increased sensitization to vibration (Conner et al.,
2016). In a bone cancer model of chronic pain, injection of
Kv4.3 siRNA in the lumbar spinal cord prohibits the ability of
diclofenac to reverse the mechanical allodynia phenotype with
no effect on thermal hyperalgesia (Duan et al., 2012). These
three studies present a strong case for the involvement of Kv4.3
channels in mechanical allodynia phenotypes. Previous studies
have extensively characterized the biophysical properties of Kv4
channels with various β subunits in heterologous expression
systems as well as the native configuration present in DRG
neurons; these studies suggest that the DRG Kv4 channels likely
exist as heteromultimers and in ternary complexes (Table 1).

A-TYPE Kv CHANNELS AS THERAPEUTIC
TARGETS IN CHRONIC PAIN

If the decrease in A-type currents contributes to chronic
pain, restoring the currents should significantly attenuate the
chronic pain phenotype. The nonsteroidal anti-inflammatory
drug, diclofenac, increases A-type Kv currents, and reverses the
pain phenotype in a bone cancer model of chronic pain (Duan
et al., 2012). It should be noted, however, that diclofenac interacts
with multiple Kv channels and will likely impact other currents
within the pain pathway (Huang et al., 2013). Regardless, other
experiments have shown that using drugs to increase A-type
Kv currents or synthetically increasing A-type currents reverses
excitability changes in the DRG (Sculptoreanu et al., 2004; Ritter
et al., 2015a). To target A-type Kv channels, three possible
approaches might be considered. First, specific pharmaceuticals
thatmight act as A-type channel “openers” by altering biophysical
properties. These compounds might induce (1) a hyperpolarizing
shift in the voltage dependence of activation, (2) a depolarizing
shift in the voltage dependence of inactivation; and/or (3) an
increase in the maximum open probability. For instance, novel
positive modulators acting selectively on certain Kv3 channels by
stabilizing their open state (Brown et al., 2016). By shifting the
voltage dependence of activation, it should function to dampen
excitability as shown in dynamic clamp experiments (Ritter
et al., 2015a). Second, there are pharmacological and biological
manipulations that upregulate the expression of Kv channels
and/or β subunits that promote Kv channel trafficking, surface
expression and/or conductance, such as Kvβ1-3, KCNE, DPP,
and KChIP (Amarillo et al., 2008; Kaulin et al., 2009; Pongs
and Schwarz, 2010; Kanda et al., 2011a,b; Sun et al., 2011;
Kuo et al., 2017). These manipulations might utilize virus-based
transduction to directly upregulate K+ channel components
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in the DRG (Xu et al., 2003; Zheng et al., 2009; Ma et al.,
2010; Yu et al., 2011; Kuo et al., 2017), or pharmacologic and
genetic tools that modulate transcription factor activity (REST,
BDNF, and estrogen) to promote A-type Kv channel expression
(Vullhorst et al., 2001; Cao et al., 2010; Uchida et al., 2010; Wang
et al., 2010). Finally, targeting signaling pathways that converge
on A-type channels may revert or prevent the development
of chronic pain. A recent study found that upregulation of a
micro-RNA cluster (mir-17-92) after L5 spinal nerve ligation
or its experimental overexpression reduced the expression of
all three A-type Kv channels expressed in DRG (Sakai et al.,
2017). This finding provides a possible explanation for the loss
of multiple A-type channels that result from the same insult to
peripheral and central tissues. Targeting this micro-RNA cluster
after injury with antisense oligomers could prove therapeutic,
although more studies are necessary to pursue testing of this
approach. Regarding specific channels, two significant cases
come to mind. PKC-dependent phosphorylation and CaN-
dependent dephosphorylation of Kv3.4 channels underlie a tight
regulation of the channel that may be manipulated to alter the
firing of nociceptors (Ritter et al., 2012, 2015a; Zemel et al., 2017).
For instance, activation of PKC would result in phosphorylation
of well-defined serine residues on the N-terminus of Kv3.4,
which would then result in loss of N-type inactivation and an
overall strengthening of the current response; this would lead
to a shortening of the DRG action potential (Ritter et al., 2012)
and likely overall dampened pain transduction. Kv1.4 channel
phosphorylation via PKA and Ca++/calmodulin dependent
kinase will increase expression and slow inactivation (Roeper
et al., 1997; Tao et al., 2005) which might inhibit firing by
increasing the threshold for firing.

CONCLUSIONS AND PERSPECTIVE

DRG neurons express a variety of A-type Kv channels that
regulate membrane excitability. The currents mediated by these
ion channels are reduced in multiple persistent pain models
(Table 2), which might contribute to neuronal hyperexcitabilty
and the resulting persistent pain state. In support of this
idea, selective knockdown of A-type Kv channels induces pain
phenotypes and procedures that re-express A-type currents show
beneficial effects (Chien et al., 2007; Duan et al., 2012; Ritter
et al., 2015a; Conner et al., 2016). Future DRG work on the
molecular and physiological properties of A-type Kv channel
subtypes and the signaling pathways that regulate them would
help gain a better understanding of how chronic pain develops
and potentially how it can be rectified.

Despite having knowledge on the identity of specific Kv
channels underlying the A-type current in DRG neurons,
numerous studies still only report changes in the “A-type
current.” Currently Kv3.4 and Kv4 currents can be isolated
via electrophysiological methods, molecular probes and toxins
(Sculptoreanu and de Groat, 2007; Phuket and Covarrubias,
2009; Ritter et al., 2012; Yunoki et al., 2014). By contrast,
Kv1.4 currents have yet to be exclusively identified in the DRG.
However, the protocol used by Gold et al. may provide such an

isolation method (Gold et al., 1996). Use of siRNA (Duan et al.,
2012), knockout animals, or a Kv1.4 channel specific toxin would
help elucidate the role of Kv1.4 in DRG neuron physiology.

Molecular biology and biochemistry also play an important
role in elucidating components of an A-type current in specific
DRG neuron populations. Due to the heterogeneity of cell
types within the DRG, analysis of whole DRG tissue lysates
is not sufficient to identify changes in channel expression in
distinct cell populations. A multipronged approach that includes
patch-clamping electrophysiology, single-cell RT-PCR, and
immunohistochemistry coupled with high resolution imaging
would be necessary to examine ion channel expression in specific
DRG neuron subtypes (Phuket and Covarrubias, 2009; Ho and
O’leary, 2011; Ritter et al., 2012, 2015a).

In addition to understanding cell-type specific expression, it
is important to note that each compartment of the DRG neuron
(soma, t-stem, axon, peripheral terminal, and spinal dorsal horn
terminal) has different properties and functions. For example,
low voltage-activating A-type Kv channels at the T-junction
might act as “gate keepers” regulating AP propagation into the
soma (Lüscher et al., 1994), and high voltage-activating A-type
Kv channels in the spinal dorsal horn nerve terminal might affect
neurotransmitter release via regulation of AP repolarization.
Kv1.4 channels are found in the soma and axon (Rasband et al.,
2001), Kv3.4 channels are expressed throughout all parts of the
neuron (Brooke et al., 2004; Chien et al., 2007; Ritter et al., 2015a;
Muqeem et al., 2018), and Kv4 channels appear to be restricted
to the soma (Chien et al., 2007; Phuket and Covarrubias, 2009).
However, most studies only examine changes in the soma. With
the advent of new electrophysiological, genetic, and optical
techniques and preparations, examining properties of locations
outside the soma is becoming possible (Pinto et al., 2008; Szűcs
et al., 2009; Johannssen and Helmchen, 2010; Vrontou et al.,
2013; Chen et al., 2014; Cui et al., 2016; Hachisuka et al., 2016;
Kim et al., 2016; Chisolm et al., 2018).

In different DRG compartments, depending on their voltage-
and time-dependent properties and their modulation by second
messengers and accessory proteins, A-type Kv channels could
regulate membrane potential, spike latency, spike train properties
and the AP waveform. Although major advances have been made
to understand these roles in central neurons, much less can be
said about DRG neurons, which are very heterogeneous and
have highly specialized morphology and physiological properties
(Granados-Fuentes et al., 2012; Kim and Hoffman, 2012; Rowan
et al., 2016; Rowan and Christie, 2017). More progress in
this area would hasten elucidation of the relationship between
disease-induced alterations in A-type Kv channel expression and
function to specific physiological properties of the DRG neuron.
Furthermore, this knowledge would enable more concrete
understanding of how dysfunction of specific A-type Kv channels
leads to pain disorders.

Based on our recent work, we have generated a working
model that helps explain the function, modulation, and
dysfunction of the Kv3.4 channel in DRG nociceptors (Ritter
et al., 2012, 2015a,b; Zemel et al., 2017; Muqeem et al.,
2018). We propose that a major role of the presynaptic
Kv3.4 channel in these neurons is to regulate Ca2+-dependent
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FIGURE 5 | Working model of the role of DRG Kv3.4 channels in nociception and neuropathic pain at the level of the first synapse in the dorsal horn. Under

homeostatic conditions, Kv3.4 channels (green blocks) in DRG neurons might play an antinociceptive role by limiting excitatory neurotransmission in the superficial

dorsal horn. Kv3.4 channels keep presynaptic excitability in check by regulating AP duration and thereby limiting vesicular Ca++-dependent glutamate release.

Phosphorylated Kv3.4 channels have an enhanced ability to play this role because they exhibit reduced N-type inactivation. However, following an injury (e.g., SCI and

SNL), various factors (inflammation, maladaptive cellular changes, serotonin spillover, etc.) might lead to hyperactivation/upregulation of PKC and inhibition of CaN.

Thus, Kv3.4 channels may become hyperphosphorylated, which reduces its presence on the cell membrane of DRG neurons. Consequently, the presynaptic AP is

broader, vesicular glutamate release is increased, and a potentiated EPSP crosses threshold to evoke a nociceptive postsynaptic AP that relays a painful signal to the

brain. Under chronic conditions, this scenario could underlie a state of persistent neuropathic pain.

glutamatergic neurotransmission through its ability to regulate
the repolarization of the AP that invades the C-fiber nerve
terminals (Figure 5). This property depends on the modulation
of the Kv3.4 channel’s NTID by PKC and CaN. The Kv3.4 NTID
hosts four PKC sites per subunit in the Kv3.4 tetramer (S8,
S9, S15, and S21). Thus, under normal conditions, nociception
is kept in check by maintaining the Kv3.4 NTID modestly
phosphorylated mainly at two positions (e.g., S8 and/or S9),
which greatly potentiates Kv3.4 activity by reducing its N-type
inactivation and, thereby, ensuring rapid AP repolarization.
Therefore, Ca2+-dependent vesicular release of glutamate
and the transmission of the nociceptive signal are limited.

However, following neural injury and the resulting inflammatory
responses affecting the DRG and the spinal dorsal horn,
RCAN1 is upregulated, CaN is, consequently, inhibited and the
remaining Kv3.4 NTID sites (S15 and S21) become additionally
phosphorylated. Prolonged hyperphosphorylation of the Kv3.4
NTIDmight then attenuate the Kv3.4 current and eventually lead
to reduced surface expression in DRG neurons. The persistent
negative modulation of Kv3.4 prolongs the presynaptic AP,
leading to increased glutamatergic neurotransmission in the
spinal dorsal horn and persistently enhanced nociception. This is
a peripheral mechanism thatmight underlie chronic SCI-induced
pain sensitization and other neuropathic pain disorders.
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Advancing understanding of the diversity, function and
dysfunction of A-type Kv channels in DRG neurons would
pave the way to discover more effective methods to treat
intractable pain disorders. Currently, a couple of drugs have been
shown to upregulate A-type Kv currents but the mechanisms
of action are unknown (Li et al., 2010; Duan et al., 2012).
The use of gene therapy may also become an important tool
in the future (Tsantoulas and McMahon, 2014). Moreover,
genetic mouse models and small molecules that specifically target
different A-type Kv channel subtypes would help investigate
their specific roles in pain under physiological and pathological
conditions.
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