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Patch-seq, combining patch-clamp electrophysiology with single-cell RNA-

sequencing (scRNAseq), enables unprecedented access to a neuron’s transcriptomic,

electrophysiological, and morphological features. Here, we present a re-analysis of five

patch-seq datasets, representing cells from ex vivo mouse brain slices and in vitro

human stem-cell derived neurons. Our objective was to develop simple criteria to assess

the quality of patch-seq derived single-cell transcriptomes. We evaluated patch-seq

transcriptomes for the expression of marker genes of multiple cell types, benchmarking

these against analogous profiles from cellular-dissociation based scRNAseq. We

found an increased likelihood of off-target cell-type mRNA contamination in patch-seq

cells from acute brain slices, likely due to the passage of the patch-pipette through

the processes of adjacent cells. We also observed that patch-seq samples varied

considerably in the amount of mRNA that could be extracted from each cell, strongly

biasing the numbers of detectable genes. We developed a marker gene-based approach

for scoring single-cell transcriptome quality post-hoc. Incorporating our quality metrics

into downstream analyses improved the correspondence between gene expression and

electrophysiological features. Our analysis suggests that technical confounds likely limit

the interpretability of patch-seq based single-cell transcriptomes. However, we provide

concrete recommendations for quality control steps that can be performed prior to

costly RNA-sequencing to optimize the yield of high-quality samples.

Keywords: gene expression profiling, patch-clamp techniques, sequencing data analysis, neurophysiology,

meta-analysis, ion channels, cell types

INTRODUCTION

Linking gene expression to a neuron’s electrical and morphological features has long been a goal
of cellular neuroscience. To this end, one strategy is to use the same patch-clamp electrode for
electrophysiological characterization for mRNA sampling, for example, by aspirating the cell’s
cytosol into the patch-pipette (Eberwine et al., 1992; Sucher and Deitcher, 1995; Toledo-Rodriguez
et al., 2004; Kodama et al., 2012; Rossier et al., 2014; Toledo-Rodriguez and Markram, 2014). The
aspirated mRNA transcripts can then be detected and quantified using RT-PCR (Eberwine et al.,
1992; Sucher and Deitcher, 1995; Cauli et al., 1997, 2000; Toledo-Rodriguez et al., 2004; Kodama
et al., 2012; Pfeffer et al., 2013; Rossier et al., 2014) or other methods (Subkhankulova et al., 2010),
allowing the quantification of multiple genes or transcripts.

Recently, a number of groups have published protocols for patch-seq that extend previous
RT-PCR-based methods by quantifying patch-pipette sampled cellular mRNA transcripts using
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next-generation RNA-sequencing (Cadwell et al., 2015, 2017a,b;
Bardy et al., 2016; Chen et al., 2016; Földy et al., 2016; Fuzik
et al., 2016; Pfeffer and Beltramo, 2017; Muñoz-Manchado et al.,
2018; van den Hurk et al., 2018). These protocols make use of
recent technical improvements in single-cell RNA-sequencing
(scRNAseq) that enable gene expression quantification from very
low starting amounts of mRNA (Poulin et al., 2016; Tasic et al.,
2017), such as those present in a single-cell or single-nucleus.
Importantly, patch-seq is transcriptome-wide (in principle), in
contrast to RT-PCR where PCR primers for each sampled
transcript need to be explicitly specified (Toledo-Rodriguez and
Markram, 2014).

Patch-seq mRNA sample collection differs from standard
single-cell or single-nucleus RNAseq, in twomajor ways (Cadwell
et al., 2017a,b). First, as opposed to relying on dissociating cells
into suspension, the micropipette used for electrical recording
is used for mRNA extraction via aspiration. While guiding
the patch pipette to (or from) the soma of a cell of interest,
the pipette often must travel through the processes of other
cells, presenting an opportunity for contamination. Second, the
effectiveness of cell content aspiration is difficult to control, so
the amount of mRNA extracted may tend to vary from cell to
cell.

Here, our goal was to investigate the quality of scRNAseq data
profiled using patch-seq. Our strategy was to compare patch-
seq derived scRNAseq data with analogous data sampled using
cellular-dissociation based methods, from which multiple large
and high-quality single-cell transcriptomic datasets are available
(Zeisel et al., 2015; Tasic et al., 2016). Our findings suggest that
sampling cellular mRNA using a patch-pipette induces technical
artifacts that tend not to be present to the same degree in
cellular-dissociation based scRNAseq data. Based on our findings,
we provide approaches for detecting these technical issues and
discuss strategies for generating high-quality patch-seq datasets
in the future.

METHODS

Dataset Overview
We made use of five previously published patch-seq datasets
(“Cadwell,” “Földy,” “Fuzik,” “Bardy,” “Chen”; Cadwell et al.,
2015; Bardy et al., 2016; Chen et al., 2016; Földy et al., 2016;
Fuzik et al., 2016). These datasets were identified using a
PubMed keyword search for the term “patch-seq” or “patch
seq,” reflecting, to our knowledge, all of the published patch-
seq datasets as of October 2017. The Cadwell, Földy, and
Fuzik datasets were collected from acute brain slices from
adult and juvenile mice whereas the Bardy and Chen datasets
were collected from human stem-cell derived neurons and
astrocytes in culture. We did not analyze one patch-seq dataset
(Pfeffer and Beltramo, 2017); GSE90822, because intrinsic
electrophysiological characterization was not performed on
the cells prior to mRNA harvest. We did not find patch-
seq datasets collected from cultured or acutely dissociated
mouse neurons. We chose not to re-analyze single-cell RT-
PCR datasets, such as (Cauli et al., 2000; Toledo-Rodriguez
et al., 2004; Rossier et al., 2014), as these typically do

not quantify marker gene expression for non-neuronal cell
types.

We compared the five patch-seq datasets to two cellular
dissociation-based single-cell RNAseq datasets (Tasic, Zeisel;
Zeisel et al., 2015; Tasic et al., 2016). We downloaded single-cell
transcriptomic data from each study from accessions provided in
Table 1 and Supplementary Table 1 or by contacting the authors
directly. We obtained patch-seq-based electrophysiological data
for the Cadwell and Fuzik datasets from the authors. For all
patch-seq datasets, electrophysiological data were provided as a
spreadsheet containing a set of summarized electrophysiological
features per cell (e.g., input resistance, resting membrane
potential, etc.). Electrophysiological data from the Allen
Institute Cell Types database (celltypes.brain-map.org) were
obtained and processed as described previously (Tripathy et al.,
2017).

Transcriptome Data Pre-processing
We reprocessed transcriptomic data for the Cadwell, Földy, and
Tasic datasets directly from Gene Expression Omnibus (GEO)
or Array Express. Data from GEO was downloaded using fastq-
dump version 2.8.2 from the Sequence Read Archive Toolkit.
Technical reads, such as barcodes and primers were filtered out
during extraction. Adapter sequences were clipped from the raw
reads. The list of option used is as follows: “–gzip –skip-technical
–readids –dumpbase –split-files –clip.” Data from ArrayExpress
was downloaded and used directly as prepared by the European
Bioinformatics Institute.

The reference mouse transcriptome was produced using
the “rsem-prepare-reference” script provided by the RNA-
seq by expectation-maximization (RSEM) RNA-Seq transcript
quantifier (Li and Dewey, 2011). The assembly version used
was Ensembl GRCm38, packaged by Illumina for the iGenomes
collection. Alignment was performed using STAR (Dobin et al.,
2013) version 2.4.0h, provided as the aligner to RSEM v1.2.31.
Default parameters were used (with the exception of parallel
processing and logging related options). Transcript definitions
used to detect external RNA controls consortium (ERCC) spike-
ins were obtained from the ERCC92 version fasta and GTF
files. Spike-ins were concatenated to the GRCm38 assembly
before applying rsem-prepare-reference, and independently to
create a standalone ERCC assembly. Both the concatenated
and standalone spike-ins assemblies showed highly comparable
proportions of spike-in expression. Reprocessed counts from the
Cadwell, Földy, and Tasic were summarized as transcripts per
million (TPM).

For the Fuzik and Zeisel datasets, we made use of the
quantified summarized unique molecule counts (UMIs) made
available at GEO. One advantage of UMIs is that they tag unique
mRNAmolecules prior to PCR and help control for biases in PCR
amplification (Tasic et al., 2017). To account for differences in
detected UMI counts per cell, we normalized the Fuzik and Zeisel
datasets as UMI counts per million. For the Bardy and Chen
human datasets, we used the summarized count matrices directly
provided by the authors, provided as transcripts per million
(TPM; Bardy) or fragments per kilobase per million (FPKM;
Chen).
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TABLE 1 | Description of patch-seq datasets re-analyzed in this study.

Dataset Description Preparation RNA amplification Number

of cells

Accession

Cadwell et al., 2015 Cortical layer 1 interneurons Acute mouse slices Smart-seq2 57 E-MTAB-4092

Fuzik et al., 2016 Cortical layer 1/2 interneurons and pyramidal

cells

Acute mouse slices STRT-C1 (with unique

molecule identifiers)

80 GSE70844

Földy et al., 2016 Hippocampal CA1 and Subiculum pyramidal

cells and regular- and fast-spiking interneurons

Acute mouse slices SMARTer 93 GSE75386

Bardy et al., 2016 Stem-cell derived neurons and astrocytes Differentiated human

cells in culture

SMARTer 56 NA*

Chen et al., 2016 Stem-cell derived neurons Differentiated human

cells in culture

NEBNext Ultra DNA

Library Prep Kit

20 GSE77564

*Expression data obtained by contacting the authors directly.

Mapping of Mouse Patch-Seq Cell Types
Onto Taxonomies Derived From
Dissociated Cells
Using descriptions for cellular identities provided in the original
patch-seq publications, we manually mapped each of the cell
types represented across the three mouse patch-seq datasets onto
transcriptomically-defined cellular clusters reported in the two
dissociated cell datasets (shown in Supplementary Table 2). For
example, given that the elongated neurogliaform cells and single
bouquet cells characterized by Cadwell et al. (2015) are both
cortical layer 1 cells, we manually mapped these to the layer
1 cells defined in Tasic as Ndnf cells. Similarly, we mapped
the hippocampal regular-spiking interneurons characterized in
Foldy to the Sncg cluster from Tasic (personal communication
with Csaba Földy). To align cell subtype clusters between Tasic
and Zeisel, we used mappings provided by MetaNeighbor (Crow
et al., 2018; shown in Supplementary Table 2). The mappings
between broad cell types in Tasic with Zeisel are provided in
Supplementary Table 3. We note that there is some ambiguity
in our mapping of analogous cell types across datasets; ideally,
such cross-dataset cell type mappings would be guided by the
use of transgenic mouse lines with specific cell types labeled by
florescent proteins (Madisen et al., 2010; Pfeffer and Beltramo,
2017).

Identification of Cell Type-Specific Marker
Genes
For this study, we defined two classes of marker genes, termed
“on” and “off” markers. The first class, “on” markers, are genes
that are highly and ubiquitously expressed in the cell type of
interest with enriched expression relative to other cell types. The
second class, “off” markers, are expected to be expressed at low
levels in a given patch-seq cell type. These are genes that are
specifically expressed in a single cell type (e.g., microglia) and,
if expressed in combination with markers specific to other cell
types, are an indicator of possible cellular contamination. To
identify marker genes, we employed two recent surveys of mouse
cortical diversity from Tasic et al. and Zeisel et al. (Zeisel et al.,
2015; Tasic et al., 2016).

To identify “on” marker genes, we initially used the Tasic
dataset, and selected genes whose average expression in the

chosen cell type was >10 times relative all other cell types in
the dataset, with an average expression in the cell type of >100
transcripts per million (TPM). From this initial gene list, we next
filtered genes expressed at >10 TPM/cell in >75% of all cells of
that type in Tasic, and >1 UMI/cell in >50% of all cells of that
type in Zeisel. Using the Tasic nomenclature, we defined “on”
markers for Ndnf, Sncg, Pvalb, and Pyramidal cell types.

To identify “off” marker genes for broad cell types (shown in
Supplementary Table 3), as an initial listing we used the set of
cell type-specific marker genes for broad cell classes in the mouse
cortex, defined in our previous work using the NeuroExpresso
database (Mancarci et al., 2017). Specifically, we used the set of
cortical markers derived from single-cell RNA-seq for astrocytes,
endothelial cells, microglia, oligodendrocytes, oligodendrocyte
precursor cells, and pyramidal cells. From this list, we first filtered
out lowly expressed genes that were expressed <10 TPM/cell in
>50% of all cells of that type in Tasic, and <1 UMI/cell in >50%
of all cells of that type in Zeisel. Next, we filtered genes that were
moderately expressed in our patch-seq cell types of interest by
assessing the expression of these genes in the Ndnf, Sncg, Pvalb,
and Pyramidal cell types, removing genes that were expressed at a
level >10 TPM/cell in >33% of all cells of that type in Tasic, and
>2 UMI/cell in >33% of all cells of that type in Zeisel.

When defining “on” and “off” marker genes for inhibitory
cell subtypes (e.g., the Ndnf cell type), we did not compare these
cells to other GABAergic cells. For example, when defining “on”
markers for Ndnf cells, we did not compare these cells’ expression
to Pvalb or Sst cells. We note that this choice limits our ability to
identify inhibitory-to-inhibitory cell contamination, for example,
an Ndnf cell contaminated by Sst-cell specific markers. To define
an initial set of “off” markers for GABAergic inhibitory cells, we
first obtained a list of genes based on Tasic where in GABAergic
cells had average expression >10 times all other non-GABAergic
cells in the dataset and with an average expression of at least
100 TPM.

The final list of filtered mouse cell type specific marker genes
used in this study are provided in Supplementary Table 4.

To obtain a list of human cell type specific marker genes for
use for the Bardy and Chen datasets, we made use of classic
cell-type specific markers for astrocytes and microglia, based on
human purified cell types shown in Figure 4A of Zhang et al.
(2016).
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Summarizing Cell Type-Specific Marker
Expression in Patch-Seq and Dissociated
Cell Data
When directly comparing expression values from patch-seq
data to dissociated cell data, we compared the Cadwell and
Földy datasets to Tasic. These datasets each used Smart-seq-
based methods for library preparation and mRNA counts were
quantified using our in-house RNA-seq processing pipeline, with
counts represented as transcripts per million (TPM + 1; plus 1
used to allow subsequent calculation of logarithms). Similarly,
we compared the Fuzik dataset to Zeisel, as these both used
single-cell tagged reverse transcription (C1-STRT) and quantified
transcripts using unique molecule identifier counts (UMIs),
which we normalized as UMI counts per million (UMI counts
per million+ 1).

We summarized the expression of multiple cell type specific
markers specific to cell type B (MarkersB), in a cell c of type A as:

Mc_A, B =
∑

m∈MarkersB

log2(cm)

Where cm denotes the normalized expression of marker gene m
in cell c.

We further used the dissociated-cell reference data to quantify
how much marker expression of cell type B’s markers one would
typically expect in cells of type A as:

dA_B = mediantypeA(Mc_A, B)

Reflecting the median marker expression of cell type B’s markers
in dissociated cells of type A.

We defined the contamination score of markers of cell type B
in a cell of type A. Specifically, given a patch-seq cell c of cell type
A and markers of cell type B, we defined contamination score,
CSA_B as:

CSA_B =
Mc_A, B − dA_B

dB_B − dA_B

To elaborate on the contamination score, we first ask
approximately how much marker expression of B’s markers
one would expect in cells of type A using dissociated-cell data,
and subtract this amount from Mc_A, B. Since this value can be
negative (for example, if cell c expresses none of B’s markers but
dA_B is positive), we set it to 0 in these cases (indicating that
there is no detected contamination of cell type B in cell c). The
denominator scales this value by the expected expression of B’s
markers in cells of type B. Thus, CSA_B reflects the expression of
B’s markers in a cell of type A, relative to the expected expression
of B’s markers in a cell of type B, based on dissociated-cell data.
The contamination score can thus be intuitively interpreted as a
ratio of the excess off-target marker expression, scaled between
0 and 1 (where 1 indicates the cell expresses the off-target cell
type’s markers at a level similar to the off-target cell type itself).

We defined the contamination index for cell c (of type A),
reflecting off-target contamination across multiple broad cell

types as:

CI =
∑

t∈cell types,t 6=A

CSt

As before when defining marker genes, when the patch-seq
sample was a GABAergic cell type (e.g., Ndnf), we did not
assess its contamination using markers of GABAergic types (e.g.,
Pvalb).

Lastly, to obtain a scalar quality score for a patch-seq cell
c, we correlated each patch-seq sample’s expression of “on”
and “off” marker genes with the average expression profile of
dissociated cells of the same type (Spearman correlation, shown
in Supplementary Figure 2). For example, for a Ndnf patch-
seq cell from Cadwell, we first calculated the average expression
profile of Ndnf cells from Tasic across the set of all “on” and
“off” marker genes (i.e., Ndnf markers, pyramidal cell markers,
astrocyte markers, etc.), and then calculated the correlation
between the patch-seq cell’s marker expression to the mean
dissociated cell expression profile. Since these correlations could
potentially be negative, we set quality scores to a minimum
of 0.1. A convenient feature of this quality score is that it
yields low correlations for samples with relatively high off-target
contamination as well as those where contamination is largely
undetected but expression of endogenous “on” markers is also
low (Supplementary Figure 2).

Analysis of Factors Influencing the
Numbers of Genes Detected Per Cell
We analyzed how the following factors influenced the numbers
of genes detected per cell:

• Library size, defined as the total count of sequenced reads per
single-cell sample.

• Spike-in ratio, defined as the total number of reads mapping to
the synthetic ERCC spike-in reference, divided by the library
size.

• Unmapped ratio, defined as the total count of reads not
mapping to either the transcriptomic or ERCC reference,
divided by the library size minus ERCC count.

• Contamination index, reflecting off-target cell type
contamination, as defined in the previous section.

For the Cadwell, Tasic, and ERCC-containing subsets of the
Földy, and Bardy datasets, we fit a linear model (implemented
using the “lm” function in R) for numbers of detected genes per
each cell as follows:

Detected gene count ∼ library size+ spike in ratio

+unmapped ratio+ contam index

where each term above was first scaled to z-scores, yielding
standardized beta coefficients.

Combined Analysis of Transcriptomic and
Electrophysiological Features
We analyzed correlations between transcriptomic and
electrophysiological features using an approach similar to
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our previous work (Tripathy et al., 2017). For each patch-seq
dataset, we first filtered for genes whose average expression
was >30th percentile relative to all genes in the dataset. We
analyzed electrophysiological features overlapping with our
previous analysis, specifically, input resistance (Rin), resting
membrane potential (Vrest), action potential threshold (APthr),
action potential amplitude (APamp), action potential half-width
(APhw), membrane time constant (Tau), after-hyperpolarization
amplitude (AHPamp), rheobase (Rheo), maximum firing
rate (FRmax), and capacitance (Cm). We calculated Pearson
correlations between the set of electrophysiology features and
gene expression values, both without weighting cells by their
overall quality scores (based on correlation of markers to
dissociated cell samples), and after weighting cells using their
quality scores.

We performed an analogous analysis for comparison of
pooled-cell correlations based on the Allen Institute for Brain
Sciences (AIBS) dataset, where we computationally merged
different groups of cells characterized using dissociated cell
scRNAseq [based on the Tasic dataset (Tasic et al., 2016)]
with cells characterized using patch-clamp electrophysiology
(Gouwens et al., 2018). We merged groups of cells based on
the overlap of the same mouse transgenic lines and coarse
cortical layers (i.e., upper vs. lower mouse visual cortex). For
example, we merged 14 scRNAseq single-cells from the Sst-
IRES-cre mouse line from visual cortex dissections specific to
lower cortical layers with 89 patch-clamp cells from the same
mouse line from cortical layers 4 through 6b. We averaged
expression and electrophysiological values for cells from the
same cell types (defined by cre-lines and cortical layers). Also,
since cell types tended to be represented by differing numbers
of cells (based on how these were sampled for scRNAseq or
in vitro electrophysiology), in downstream analyses we weighted
cell types based on the numbers of cells available characterized by
electrophysiology, nE, and gene expression, nG, as:

w =
√

harmonic mean(nE, nG)

where w denotes the weight for an individual cell type.

Statistical Information
We used the R weights toolbox (v0.85) to calculate weighted
Pearson correlations and raw p-values. We used the Benjamini-
Hochberg False Discovery Rate (FDR) to account for analysis of
multiple correlations.

Computer Code and Data Availability
All computational code and associated data has been made
accessible at https://github.com/PavlidisLab/patchSeqQC and
code for the RNAseq pipeline is accessible at https://github.com/
PavlidisLab/rnaseq-pipeline.

RESULTS

To quantitatively assess the influence of patch-seq specific
technical confounds, we performed a re-analysis of five recently
published patch-seq datasets. We focused our analyses on three
datasets obtained from juvenile and adult mouse acute brain

slices (Cadwell et al., 2015; Földy et al., 2016; Fuzik et al., 2016)
and contrast these against two datasets obtained from human
stem-cell derived neurons and astrocytes in culture (Bardy et al.,
2016; Chen et al., 2016; Table 1). These datasets reflect, to our
knowledge, all of the published patch-seq datasets as of October
2017. A major technical difference between the mouse and
human patch-seq datasets re-analyzed here was that the former
were collected from acute brain slices (with intact neuropil)
whereas the latter were collected from cells that were sparsely
cultured in vitro.

Expression of Off-Target Cell Type Marker
Genes in Patch-Seq Samples From Acute
Brain Slices
We first assessed if patch-seq based single-cell transcriptomes
might have been contaminated by mRNA from other cells
adjacent to the patched cell (Figures 1A,B), termed off-target
cell-type contamination (Okaty et al., 2011). For example, is
there paradoxical expression of genes specific to pyramidal cells
in the scRNAseq profile of a recorded GABAergic interneuron?
To address this question, we made use of the fact that the
broad identities of the recorded cells can be ascertained from
morphological and electrophysiological features without relying
on the transcriptomic data (see Methods). Furthermore, we
used multiple mouse forebrain scRNAseq datasets collected from
dissociated cells to define lists of marker genes specific to various
cortical and hippocampal cell types (Supplementary Table 4;
Zeisel et al., 2015; Tasic et al., 2016; Mancarci et al.,
2017).

We detected that some of the single cell samples from
the three mouse datasets collected from acute brain slices
expressed markers for multiple distinct cell types (Figure 1;
Supplementary Figure 1). For example, some of the cortical
layer 1 elongated neurogliaform cells (eNGCs) characterized in
the Cadwell dataset appeared to also express multiple marker
genes specific to pyramidal cells (Figure 1C), such as Slc17a7, the
vesicular glutamatergic transporter VGLUT1. Similarly, many of
the cells identified as hippocampal regular spiking GABAergic
interneurons in the Földy dataset also expressed microglial and
pyramidal cell markers (Figure 1H).

We sought to quantify the extent of off-target cell type
contamination in the mouse patch-seq samples. We directly
compared the patch-seq-based expression profiles to cellular
dissociation-based transcriptomes from two recent surveys of
mouse cortical diversity from Tasic et al. and Zeisel et al. (Zeisel
et al., 2015; Tasic et al., 2016). We first quantified the levels of
cell type-specific marker expression in the dissociated cells (see
Methods, Figures 1D,F,I,K). After matching cell type identities
across studies (shown in Supplementary Table 2), we found that
compared to dissociated cells, patch-seq-based samples expressed
markers for multiple cell types at considerably higher levels
(Figures 1E,G,J,L).

To further quantify the extent of potential contamination,
we defined a contamination score that evaluates single cell
transcriptomes for off-target marker expression in comparison
to dissociated cells (see Methods). In the top panel of Figure 2A
we show the pyramidal marker contamination scores for eNGC
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FIGURE 1 | Expression of cell type-specific marker genes in mouse single-cell samples collected using patch-seq. (A,B) Schematic illustrating manipulation of

patch-pipette toward cell of interest (A) and aspiration of cellular mRNA into the patch-pipette (B). (C) Gene expression profiles for GABAergic elongated

neurogliaform cells (eNGCs, similar to layer 1 Ndnf cellular subtype) for various cell type-specific markers characterized in Cadwell dataset. Each column reflects a

single-cell sample. (D) Summed expression of cell type-specific marker genes for Pyramidal cell (y-axis) and Layer 1 Ndnf cell (x-axis) markers. Dots reflect Pyramidal

(turquoise) and Ndnf (red) single cells collected in Tasic dataset, based on dissociated scRNAseq. Dashed lines reflect 95% intervals of marker expression for each cell

type. (E) Same as (D), but showing summed marker expression for eNGC cells shown in A based on patch-seq data. Arrow shows single-cell marked in (C).

(F,G) Same as (D,E), but for microglial cell markers. (H–L) Same as (C–G), but for hippocampal GABAergic regular spiking interneurons (RS INT cells, similar to Sncg

cells from in Tasic) characterized in Földy dataset.
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FIGURE 2 | Cell type-specific contamination scores for patch-seq and dissociated cells. (A) Histogram of contamination scores of GABAergic elongated

neurogliaform cells (eNGCs cells) from the Cadwell dataset (top) and analogous Ndnf cells from Tasic (middle) and Zeisel (bottom) dissociated-cell datasets.

Contamination scores are specific to the expression of pyramidal cell type-specific marker genes. Dashed line at 0.5 indicates threshold used for calling single-cell

contamination. (B) Same as (A), but for hippocampal GABAergic regular spiking interneurons (RS INT cells) characterized in Földy dataset (top) and Sncg cells from

Tasic and Zeisel datasets. (C,D) Contamination scores, indicated by heatmap color bar on right, across multiple classes of broad cell types for Cadwell eNGC cells

(C) and Földy regular spiking interneurons (D). Arrows denote same data shown in histograms in top panels of (A,B).

interneurons from Cadwell. The contamination scores are scaled
between 0 and 1, where 0 indicates no detected pyramidal
contamination and 1 indicates the eNGC cell expresses pyramidal
cell markers at levels similar to the median pyramidal cell in the
Tasic dataset. We noticed that pyramidal marker contamination
scores among the patch-seq cells from Cadwell were typically
higher than those from the dissociated cell datasets (Figure 2A
middle, bottom). We found that 5 out of 23 eNGC cells from
Cadwell had pyramidal contamination scores greater than a
threshold of 0.5 (see Discussion for further explanation for how
such thresholds should be determined). Similarly, 7 out of 19
of the hippocampal regular spiking interneurons had microglial
marker contamination scores >0.5 (Figure 2B). We calculated
cell type-specific contamination scores for each broad cell type
for every cell in the mouse patch-seq datasets (Figures 2C,D).
In total, we found that 15 out of 57 cells in Cadwell (26%)

and 16 out of 93 cells in Földy (17%) had single cells with
contamination scores >0.5 among any of the broad cell types we
tested.

Lastly, we defined a metric called the contamination
index, that sums the contamination scores across multiple
classes of broad cell types (see Methods). Importantly, patch-
seq-based samples with greater contamination indices also
expressed markers of their own cell type at lower levels
(Supplementary Figure 2). We note that we saw less off-target
cell type marker expression in the Fuzik dataset relative to the
Cadwell and Földy datasets (Supplementary Figure 1), where
only 1 out of 80 cells in Fuzik had a contamination score >0.5.
This suggests either less contamination in the Fuzik dataset or
that the lower gene detection rate in this dataset (Figure 4B) may
obscure our ability to use expression profiles to identify cellular
contamination.
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Limited Expression of Off-Target Cell Type
Marker Genes Among in vitro Patch-Seq
Samples From Cultured Cells
We next assessed the degree of off-target cell type contamination
in the Bardy patch-seq dataset of human stem-cell derived
neurons and astrocytes obtained from cultured cells (Bardy
et al., 2016). Since the cells in this dataset were cultured
relatively sparsely, allowing the processes of each cultured cell
to be easily visualized and avoided during mRNA harvesting
(personal communication with Cedric Bardy), we wondered if
this dataset would show less off-target cell typemarker expression
compared to the three mouse acute brain slice datasets. Indeed,
when assessing astrocyte marker expression in the population
of electrophysiologically-mature neurons [with markers based
on purified human cells (Zhang et al., 2016)], we found that
every neuron showed much less expression of astrocyte markers
relative to the mature astrocytes also profiled in this dataset
(Figures 3A,B). In addition, both neurons and astrocytes showed
almost no expression of microglia markers (Figure 3A), perhaps
unsurprisingly, since microglial cells are not present in these
cultures (Bardy et al., 2016). We also saw very little expression
of astrocyte and microglial markers in electrophysiologically
mature neurons from the Chen patch-seq dataset (Chen et al.,
2016), another dataset of sparsely cultured neurons derived
from human embryonic stem cells (Supplementary Figure 3).
These examples provide suggestive evidence that the density of
processes of adjacent cells might contribute to off-target mRNA
contamination.

Technical Factors Strongly Influence the
Numbers of Genes Detected per Cell
Next, we wondered if there are identifiable technical factors that
can help explain the large ranges in the numbers of genes detected
per cell in each dataset, from 6,000–13,000 genes/cell in Cadwell
to 800–7,000 genes/cell in Fuzik (Figure 4B). Because patch-seq
mRNA collection requires the experimenter to manually aspirate
cellular mRNA into the patch-pipette, we reasoned that mRNA
harvesting would be difficult to consistently control from cell to
cell, leading there to be different amounts of extracted mRNA
per cell. To estimate how much cellular mRNA was extracted
per cell, we made use of ERCC spike-ins (Tasic et al., 2017),
which are synthetic control mRNAs that are added to single-cell
samples prior to library preparation and sequencing (Figure 4A).
Specifically, since the same amount of ERCC spike-in mRNAs
are added to each sample, we can use the ratio of spike-in reads
to the total count of sequenced reads to estimate the relative
amount of extracted mRNA per cell (Lun et al., 2017; Vallejos
et al., 2017). Here, every cell in the Cadwell and Tasic datasets
and a subset of cells in the Földy and Bardy datasets contained
ERCC spike-ins.

We used a multivariate regression approach to ask how
various technical factors (library size, spike-in ratio, unmapped
ratio, and contamination index, defined in Methods) contribute
to the numbers of genes detected per cell (Figure 4C). We
performed this analysis on the subset of cells containing ERCC
spike-ins (we thus excluded the Fuzik and Chen datasets as
these did not include spike-ins). As a comparison, we used the

Ndnf cell subset of the Tasic dissociated-cell dataset, directly
corresponding to the cell types sampled in the Cadwell dataset.

We found that library size (the number of sequenced reads per
cell) was positively correlated with detected gene counts in the
Tasic and Cadwell datasets (Figures 4C,D). Similarly, cells with a
larger ratio of spike-in reads to total sequenced reads (i.e., with
lower initial amounts of cellular mRNA; Figure 4A), had lower
numbers of detected genes across all of the datasets (Figure 4E),
pointing to the importance of mRNA extraction efficiency. In
addition, we saw considerably greater ranges in the spike-in ratio
in the patch-seq datasets relative to the Tasic dataset (Cadwell:
3–17%, Bardy: 3–37%, Tasic: 0.4–4%).

Next, we reasoned that though many mRNA transcripts
might be extracted from a cell, not all of these would be
sufficiently high quality to map to the genome or transcriptome
reference [e.g., they might reflect degraded mRNAs (Cadwell
et al., 2017a,b), other contaminants, etc.]. To account for this
possibility, we calculated the ratio of unmapped to mapped reads,
after excluding reads mapping to spike-ins. Cells with very large
ratios of unmapped to mapped reads had fewer genes detected
(Figure 4C). This technical factor was especially important in
the Földy and Bardy datasets, with some cells in the Földy
dataset having as many as 90% of reads being too low quality
to map to the transcriptome (Figure 4F). Lastly, we further
wondered if cells showing greater amounts of off-target cell type
contamination would also have a greater number of detected
genes. We found that cells with greater contamination indices
from the Cadwell and Földy datasets (i.e., the acute slice-based
patch-seq datasets) had more genes detected, consistent with
previous reports (Figure 4G) (Ilicic et al., 2016; Vallejos et al.,
2017). In total, these simple technical factors explain between 50
and 85% of the cell-to-cell variance in the detected gene counts
per patch-seq dataset (Figure 4H).

Accounting for Technical Factors Improves
the Correspondence With
Electrophysiological Features
Lastly, we performed an integrated analysis of gene expression
and electrophysiological features for the three mouse-based
patch-seq datasets, reasoning that lower quality patch-seq
samples would be less informative of relationships between
cellular electrophysiology and gene expression (Tripathy et al.,
2017). We first calculated a quality score for each patch-seq
sampled cell, defined by the similarity of its marker expression
profile to dissociated cells of its same type (see Methods;
Supplementary Figure 2). We used this quality score as a weight
in downstream correlation analyses, asking which genes had
quantitative expression profiles that correlated with cell-to-cell
variability in electrophysiological features. For example, the gene
Nek7 (NIMA-related expressed kinase 7), was more strongly
correlated with the electrophysiological feature action potential
half-width (APhw) in the Földy dataset after incorporating the
quality score as a weight in the correlation analysis (Figure 5A
left, middle; Pearson’s r: −0.39, unweighted; −0.61, weighted).
Performing an analogous correlation between Nek7 expression
and APhw using the Allen Institute for Brain Sciences (AIBS)
Cell Types database / Tasic dataset at level of pooled cell types
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FIGURE 3 | Expression of cell type-specific marker genes in patch-seq samples obtained from human astrocytes and neurons differentiated in culture from the Bardy

dataset. (A) Gene expression profiles for differentiated astrocytes (green) and electrophysiologically-mature neurons (red) for astrocyte and microglial-specific (gray)

marker genes. Each column reflects a single-cell sample. Two astrocyte cells were removed because they expressed fewer than three astrocyte markers. (B) Summed

astrocyte marker expression for astrocyte and mature neuron single-cells, for the same cells shown in part (A).

FIGURE 4 | Patch-seq experimental confounds affect the numbers of genes detected per cell. (A) Schematic illustrating how spike-in mRNAs can be used to

estimate how much mRNA was extracted per cell. (B) Violin plots showing numbers of protein-coding genes detected per cell across patch-seq datasets or the Ndnf

subset of the Tasic dissociated-cell dataset. (C) Technical factors associated with numbers of genes detected per cell across datasets. Bars show standardized beta

model coefficients with y-axis in units of standard deviations, allowing direct comparison of effects across factors and across datasets. Error bars indicate coefficient

standard deviations. Positive (negative) model coefficients indicate technical factor is correlated with increased (decreased) detected gene counts per cell. Regression

models calculated using only cells containing mRNA spike-ins. (D–H) Examples of univariate relationships between technical factors and detected gene count per cell

(dots) across patch-seq datasets. Gray line shows best fit line. (D) Library size (count of sequenced reads per cell). (E) Spike-ins as a fraction of all sequenced reads

per cell. Samples with lower cellular mRNA content (indicated by higher spike-in ratios) have lower gene counts. (F) Unmapped ratio, calculated as the ratio of

exon-mapping reads to all sequenced reads (excluding spike-ins). (G) Cellular contamination index, quantified by summing normalized contamination scores across

tested cell types (arbitrary units). (H) Overall percent variance explained by each dataset-specific statistical model shown in (C).

[see Methods (Tasic et al., 2016; Gouwens et al., 2018)], we also
found a high degree of correlation between Nek7 expression
and APhw variability (Figure 5A right, r = −0.91). Intriguingly,
the gene Nek7 has recently been shown to be involved in the

development of parvalbumin-positive interneurons (Hinojosa
et al., 2018).

We repeated this correlation analysis across all pairs of genes
and electrophysiological features, after accounting for multiple
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FIGURE 5 | Adjusting for patch-seq experimental confounds improves the correspondence with electrophysiological measures. (A) Comparison of gene expression

(Nek7; x-axis) with electrophysiological features (action potential half-width; APhw; y-axis). Left panel shows single-cell samples (circles) from the Földy dataset. Middle

panel shows same data as left, but size of circles proportional to each sample’s quality score, defined as the similarity of marker expression to dissociated cell-based

reference data. Right panel shows cell type-level analysis based on pooled cell type data from Allen Institute cell types database (AIBS/Tasic), where scRNAseq and

electrophysiology were performed on different cells from same type (Tripathy et al., 2017). Each open circle reflects one cell type and circle size is proportional to the

number of cells representing each cell type. Inset illustrates calculation of action potential half-width (schematic). (B) Count of genes significantly correlated

(FDR < 0.1) with various electrophysiological properties before (gray) and after (black) correcting for contamination by weighting cells by quality scores. See Methods

for descriptions of electrophysiological features and acronyms. (C) Comparison of genes significantly correlated (FDR < 0.1) with electrophysiological features based

on patch-seq data with analogous correlations based on AIBS/Tasic dataset, pooled to the level of cell types based on cre-lines. Bars indicate count of overlapping

genes between patch-seq and AIBS/Tasic pooled-cell data without correcting for contamination and with correction. No maximum firing rate (FRmax)

electrophysiological features were originally calculated for cells in the Cadwell dataset.

comparisons (using the Benjamini-Hochberg False Discovery
Rate, FDR). We observed a modest improvement in the
correspondence between gene expression and electrophysiology
after incorporating the quality scores as a weight in the
correlation analyses, as evidenced by an increase in the number of

genes significantly correlated with electrophysiological features
(FDR < 0.1, Figure 5B). In addition, we found more genes
overlapping with those identified in our previous gene-
electrophysiology correlation analysis based on pooled cell
types using the AIBS/Tasic dataset (Tripathy et al., 2017;
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Figure 5C). While the biological implications of these gene-
electrophysiological correlations require further investigation,
this analysis suggests that controlling for these technical factors
can help improve the interpretability of patch-seq data.

DISCUSSION

The patch-seq technique reflects a considerable leap in our ability
to interrogate a neuron across multiple features of its function.
However, our analyses of multiple patch-seq datasets identifies
several technical issues that appeared to be shared across
experiments. First, in the three mouse datasets collected from
acute brain slices (Cadwell et al., 2015; Földy et al., 2016; Fuzik
et al., 2016), we observed that many single cell samples appeared
to strongly express marker genes from off-target cell types. We
interpret this as mRNA contamination from cells adjacent to
the recorded cell, though there are alternative explanations (see
paragraph below). Second, we observed that mRNA extraction
efficiency differs between sampled cells, leading to varying
numbers of genes detected even among cells of the same broad
type. These technical artifacts can be mitigated in part through
post-hoc analyses, such as our attempt to define a quality score
for weighting single-cells by the similarity of their marker gene
expression to analogous dissociated cells of the same broad cell
type.

To detect off-target cell type contamination, our main
approach was to compare patch-seq based single-cell
transcriptomes to dissociated-cell based reference scRNAseq
data from similar cell types. We used these reference data to
identify cell type-specific marker genes as well as to determine
approximately how much off-target marker expression would
be expected in each cell type. We note that there are obvious
methodological differences between dissociated-cell scRNAseq
and patch-seq (Cadwell et al., 2017a,b), such as the stress
induced by dissociating cells (Wu et al., 2017) or that patch-seq
might be more likely to sample transcripts from distal cellular
processes. Thus, we cannot conclusively rule out that some of
the off-target cell type marker expression might reflect a true
biological signal, as opposed to mRNA contamination from
adjacent cells. However, we note that the use of marker genes to
identify suspected off-target contamination is a routine quality
control step in cell type-specific gene expression analyses (Okaty
et al., 2011; Mancarci et al., 2017; Pfeffer and Beltramo, 2017),
including recent methods for identifying suspected “doublets”
or multi-cell contamination in droplet-based scRNAseq (Zeisel
et al., 2018).

We speculate that the sources of off-target contamination
are the processes of cells adjacent to the patch-pipette. For
example, while there are relatively few cell bodies in layer 1 of the
neocortex, there are processes of other cell types like pyramidal
cells, and it is well established that these processes contain mRNA
transcripts (Glock et al., 2017). In addition, we noticed that we
routinely observed expression of microglial markers in the acute
slice-based mouse patch-seq samples. This is interesting because
the presence of even 1mM ATP in the patch-pipette is sufficient
to induce rapid chemotaxis of microglial processes toward the
pipette (Madry et al., 2018). Patch-clamp intracellular solutions
usually use 2 or 4mM ATP (Tebaykin et al., 2017), including

those of the patch-seq datasets here (Cadwell et al., 2015; Bardy
et al., 2016; Földy et al., 2016; Fuzik et al., 2016). At present,
it is unclear whether this suspected off-target contamination
might occur while the pipette is actively manipulated under
positive pressure toward the recorded cell. Alternatively, such
contamination might take place following mRNA extraction
during the retraction of the pipette from the neuropil and
recording chamber. Contamination might also occur during
library preparation (Pfeffer and Beltramo, 2017). Assuming that
the neuropil is the major source of off-target contamination, this
suggests that there may be advantages to removing the neuropil
prior to performing patch-seq. For example, patch-seq can be
performed on sparsely cultured cells (Bardy et al., 2016; Chen
et al., 2016; van den Hurk et al., 2018). Similarly, given that there
are well established protocols for performing electrophysiological
characterization on acutely dissociated cells (Swensen and Bean,
2005) that allow for subsequent cytoplasmic mRNA harvesting
(Kodama et al., 2012), patch-seq could in principle be performed
following acute cellular dissociation.

Our analyses identified several technical factors that influence
the numbers of genes detected per cell. First, to obtain a
sufficient number of detected genes, it is essential to extract a
large amount of mRNA from the targeted cell. For example,
extracting the nucleus can help increase the detected gene count
(Cadwell et al., 2017b). However, this itself is not sufficient, as
other factors, such as mRNA degradation can lead the extracted
transcripts being too low quality to map to the genomic reference
(Cadwell et al., 2017a,b; van den Hurk et al., 2018). Second, given
sufficient extraction of non-degraded transcripts, because of the
extremely high sensitivity of modern ultra-low mRNA capture
kits (Poulin et al., 2016; Tasic et al., 2017), any off-target cell-type
contamination will tend to inflate the numbers of genes detected
per cell. This suggests that the detected gene count, often used
as a proxy for the quality of scRNAseq data, should not be the
only quality control metric for single-cell transcriptomes sampled
using patch-seq.

The effect of these technical confounds on downstream
analyses of patch-seq data is likely context specific. For example,
the presence of a small degree of off-target contamination
is likely to be of little consequence if the patch-seq data is
used for catalog-matching (Tasic et al., 2017), to help connect
cellular classifications based on different methodologies, such as
transcriptomically-defined cell clusters with electrophysiological
clusters (Fuzik et al., 2016; Muñoz-Manchado et al., 2018).
However, accurately quantifying single-cell transcriptomes is
likely to be much more important when using these data to
investigate how transcriptomic heterogeneity gives rise to subtle
cell to cell variability in physiological features (Schulz et al., 2006;
Cadwell et al., 2015; Tripathy et al., 2017).

Our analyses point to quality control steps that can improve
the yield of high-quality patch-seq samples. An advantage of
patch-seq over traditional dissociated-cell based scRNA-seq is
that a cell’s electrophysiological and morphological features
are often sufficient to determine its broad cell type (Cadwell
et al., 2015; Földy et al., 2016; Fuzik et al., 2016). Furthermore,
knowing a cell’s broad type can help quality control its sampled
transcriptome. Namely, the cell should express marker genes of
its own type, including highly expressed and lowly expressed
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markers (such as some transcription factors and long non-coding
RNAs) but should not express marker genes specific to other
cell types. We argue that post-hoc assessment of cell type-specific
marker expression should be routinely reported in future patch-
seq studies as a quality control metric. In addition, marker
expression could also be assessed as an intermediate quality
control step. For example, in a recent patch-seq protocol (van
den Hurk et al., 2018), the authors suggest using qRT-PCR (in
step 89) to ensure that collected cells have high expression of
house-keeping genes (e.g., ACTB, GAPDH) prior to subsequent
library preparation. We hypothesize that qRT-PCR could also
be employed at this step to profile the expression of a small
number of cell type-specific markers, allowing cells that have
been potentially contaminated by off-target mRNA to be detected
and removed prior to subsequent steps, including costly deep
RNA-sequencing.

To summarize, though patch-seq provides a powerful method
for multi-modal neuronal characterization (Cadwell et al., 2015;
Bardy et al., 2016; Chen et al., 2016; Földy et al., 2016; Fuzik
et al., 2016), it is susceptible to a number of methodology-specific
technical artifacts, such as an increased likelihood of mRNA
contamination from adjacent cells. These artifacts strongly bias
traditional scRNAseq quality metrics, such as the numbers of
genes detected per cell. By leveraging high-quality reference
atlases of single-cell transcriptomic diversity (Zeisel et al., 2015;
Tasic et al., 2016), we argue that inspection of cell type-specific
marker expression should be an essential patch-seq quality
control step prior to downstream analyses.
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Supplementary Figure 1 | Expression of cell type-specific marker genes in

patch-seq samples from Fuzik. (A) Gene expression profiles for sampled

pyramidal cells for various cell type-specific markers. (B) Summed expression

of cell type-specific marker genes for Pyramidal cell (x-axis) and Astrocyte

(y-axis) markers. Dots reflect cortical Pyramidal cell (turquoise) and Astrocyte

(green) single cells collected in the Zeisel dataset, based on dissociated

scRNAseq. Dashed lines reflect 95% intervals of marker expression for each

cell type. (C) Same as (B), but showing summed marker expression for

Pyramidal cells shown in (A) based on patch-seq data. Arrow denotes the

same single-cell highlighted in (A). (D,E) Same as (B,C), but showing

comparison of microglial marker expression. (F) Contamination scores across

multiple classes of broad cell types for same cells shown in (A).

Oligodendrocyte precursor cells are not available in (F) because this cell type

was not explicitly annotated in the Zeisel dataset.

Supplementary Figure 2 | Relationship between inferred contamination and

endogenous marker expression. (A) Summed expression of endogenous “on”-cell

type cellular markers (x-axis) vs. normalized contamination indices (y-axis,

summing across normalized contamination values across broad cell types) for

individual Ndnf cells from the Cadwell dataset (dots). (B,C) Examples of “on”- and

“off”-cell type marker expression for two single-cell patch-seq samples indicated

in (A). X-axis shows expression of marker genes (dots) in an individual patch-seq

sampled cell and y-axis shows the average expression of the same markers in

Ndnf-type dissociated cells from Tasic. Solid line is unity line, dashed line shows

best linear fit, and rs denotes Spearman correlation between patch-seq and mean

dissociated cell marker expression. Cell Ndnf.1 [shown in (B)] illustrates a

patch-seq sample with high expression of “on”-type endogenous markers and

relatively little “off”-cell type marker expression whereas cell Ndnf.2 [shown in (C)]

expresses endogenous markers less strongly (relative to dissociated cells of same

type) and higher levels “off”-cell type marker expression. (D–F) Same as

(A–C), but for hippocampal GABAergic regular spiking interneurons (i.e., Sncg

cells) characterized in Földy dataset.

Supplementary Figure 3 | Expression of cell type-specific marker genes in

patch-seq samples obtained from human neurons differentiated in culture from the

Chen dataset. Gene expression profiles for electrophysiologically-mature neurons

(red) for astrocyte (green) and microglial-specific (gray) marker genes. Each

column reflects a single-cell sample. Gene expression values are quantified as

fragments per kilobase per million (FPKM).

Supplementary Table 1 | Description of dissociated-cell scRNAseq datasets and

patch-clamp electrophysiological datasets used. For RNA amplification, the Tasic

scRNAseq dataset employed SMARTer (i.e., Smart-seq based, consistent with

the Cadwell, Foldy, and Bardy datasets) whereas the Zeisel dataset employed

C1-STRT (consistent with the Fuzik dataset).

Supplementary Table 2 | Matching of patch-seq cell types to dissociated cell

reference atlases.

Supplementary Table 3 | Mapping of broad cell types between Tasic and Zeisel

dissociated cell reference datasets. ∗Denotes oligodendrocyte precursor cell type

not being explicitly labelled in Zeisel.

Supplementary Table 4 | List of cell type-specific markers based on re-analysis

of published dissociated cell-based scRNAseq experiments from mouse brain.
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