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Impairments of the dialog between excitation and inhibition (E/I) is commonly associated
to neuropsychiatric disorders like autism, bipolar disorders and epilepsy. Moderate levels
of hyperexcitability can lead to mild alterations of the EEG and are often associated
with cognitive deficits even in the absence of overt seizures. Indeed, various testing
paradigms have shown degraded performances in presence of acute or chronic
non-ictal epileptiform activity. Evidences from both animal models and the clinics
suggest that anomalous activity can cause cognitive deficits by transiently disrupting
cortical processing, independently from the underlying etiology of the disease. Here,
we will review our understanding of the influence of an abnormal EEG activity on brain
computation in the context of the available clinical data and in genetic or pharmacological
animal models.

Keywords: epileptic encephalopathy, cognitive impairment in mental disorder, interictal epileptiform discharges,
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INTRODUCTION

Epilepsy is a heterogeneous disorder that includes a great variety of phenotypes and pathological
manifestations, all characterized by enhanced neuronal excitability due to an impaired balance
between excitation and inhibition (E/I). In this review article, we will deal mostly with subclinical
interictal activity, that can impact on everyday life by causing transient alterations of cortical
computation. First, we will attempt to delineate the difference between chronic cognitive decline
and transient cognitive deficits due to brief episodes of altered network excitability in humans.
These studies require to correlate the EEG recording with the outcome of the cognitive task, to
verify whether the presence of interictal epileptic discharges (IEDs) causes a temporary deficit.
Second, we will review the available animal models that can be used to analyze brain computation
during chronic and transient hypersynchronous activity. Addressing these topics can foster a
better understanding of the still ambiguous role of interictal epileptiform activity in modulating
development and cognition. This knowledge is necessary to assess the utility of treating interictal
EEG abnormalities to reduce cognitive impairment.

EPILEPSY AND CO-MORBIDITY WITH NEUROPSYCHIATRIC
DISORDERS

Epileptic seizures are transient episodes of excessive synchronous activity in the brain (Noachtar
et al., 1999; Chang and Lowenstein, 2003; Shorvon, 2011; Fisher et al., 2014; Trevelyan, 2016;
Wang et al., 2017). They encompass a diverse group of events ranging from minimal clinical
manifestations, e.g., brief and nearly undetectable losses of consciousness, to vigorous episodes
of muscular shaking that can result in physical injuries. Epileptic events can also be transiently
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induced by brain trauma, injuries, drugs, temperature, hypoxia
and other deviations from normal brain homeostasis (Goldberg
and Coulter, 2013). Even if epilepsy is a worldwide pathology
affecting more than 65 million people (Ngugi et al., 2010), we are
still far from a clear understanding of the common mechanisms
underlying its very diverse spectrum of presentations (Dichter,
2009; Pitkänen and Lukasiuk, 2009; Vezzani, 2014). The analysis
of the EEG of patients with recurrent seizures demonstrates the
existence of abnormal electrophysiological events in between
seizures, defined as ‘‘subclinical’’ for the apparent absence of
clinical correlates. These events have been named interictal
epileptiform discharges (IEDs; see Figure 1; Noachtar et al.,
1999; de Curtis and Avanzini, 2001; Pillai and Sperling,
2006; Fisher et al., 2014). Interictal discharges are commonly
divided on the base of the electroencephalographic signature
of the event into four major categories: sharp waves, spikes,
sharp waves/spikes-and-slow-waves and multiple spikes-and-
slow-waves (Kooi, 1966; Gotman, 1980; Kane et al., 2017). As
the name indicates, IEDs are abnormal events temporally distinct
from ictal events, and are not directly implicated in the genesis of
ictal events (Noachtar et al., 1999; Avoli et al., 2006; Fisher et al.,
2014).

IEDs are caused by the simultaneous firing of a large number
of cortical neurons that produces a paroxysmal depolarization
shift in neuronal cohorts (Matsumoto and Marsan, 1964; Prince,
1968; Schwartzkroin and Wyler, 1980). Since seizures are
infrequent in the majority of patients, their detection by EEG is
painstaking and may require prolonged recording sessions; for
this reason, the detection of IEDs is often the first-line diagnostic
tool. The detailed description of interictal activity provides the
clinicians with insights into the nature of the associated epileptic
pathology. Moreover, the different patterns and localization of
interictal events are often predictive for the localization of the
epileptogenic focus (Berg and Shinnar, 1991; Pillai and Sperling,
2006).

A groundbreaking study (Bridgers, 1987) determined that
in a large cohort of psychiatric patients affected by depression,
mania, personality disorders, suicidality without depression,
nonpsychotic explosive behavior, the probability of epileptiform
activity was higher than in the general population and many
studies then revealed EEG anomalies in these type of patients
(Cook et al., 1986; Weilburg et al., 1995; Hughes, 1996;
Hayashi et al., 2010; Badrakalimuthu et al., 2011; Beletsky
and Mirsattari, 2012; Gao and Penzes, 2015; Lee et al., 2017).
Moreover, it was found that IEDs were present in up to 60%
of school-aged children affected with hyperactivity disorders
(Richer et al., 2002; Holtmann et al., 2003; Silvestri et al.,
2007), while EEG alterations occurred in only 2%–3% to
6.5% of healthy children (Barkmeier and Loeb, 2009; Borusiak
et al., 2010). Similarly, some studies report a high rate of
EEG abnormalities, ranging from 7% to 70%, in individuals
with autism spectrum disorders (ASDs), even without ictal
manifestations (Spence and Schneider, 2009; Valvo et al., 2016).
A natural conclusion that can be attained by these observations
is that anomalies of the neural circuitry driving diverse brain
dysfunctions may share some of the pathogenic mechanisms of
epilepsy.

MOLECULAR AND PHYSIOLOGICAL
MECHANISMS OF PATHOLOGICAL
HYPEREXCITABILITY IN EPILEPSY AND
AUTISM

The correct regulation of inhibition is a necessary condition
for normal brain processing (Van Vreeswijk and Sompolinsky,
1996; Hensch and Fagiolini, 2005; Mariño et al., 2005; Trevelyan
and Watkinson, 2005; Buzsáki et al., 2007; Atallah and
Scanziani, 2009; Baroncelli et al., 2011; Vogels et al., 2011;
Yizhar et al., 2011; Haider et al., 2013; Nelson and Valakh,
2015; Dehghani et al., 2016; Denève et al., 2017). In the
healthy brain, the recruitment of inhibitory interneurons by
feedforward and feedback excitatory connections ensures that
local inhibition closely follows excitation in a given cortical
area (Okun and Lampl, 2008; Isaacson and Scanziani, 2011).
Neuronal networks are constantly challenged by alterations of
E/I and the brain employs several homeostatic mechanisms to
adjust net excitability in order to maintain network activity
within the physiological range and to prevent saturation (see
Turrigiano, 2011). The slightest deviation from this condition
can lead to dramatic outcomes: a reduction of excitation may
drive the induction of a comatose state, while reduction of
the inhibitory feedback can result in network hyperexcitability
and epileptiform activity (Dudek and Sutula, 2007; Trevelyan
et al., 2013). Even if inhibitory cells are only 25% of all
neurons, their role is essential in modulating network activity
(for review Schmidt-Wilcke et al., 2017). When inhibition is
reduced, and the cortex becomes hyperexcitable (Dichter and
Ayala, 1987), neurons may display a wide range of abnormal
behaviors. These anomalies can go from a mildly diminished
selectivity in the response to different stimulus features (Sillito,
1975), to massive, hypersynchronous events that entrain the
population and functionally disconnect it from its afferent
inputs. The interplay between E/I is essential to ensure proper
gain control and normalization of neuronal activity and to
refine the timing of principal cell firing (Chance et al., 2002;
Isaacson and Scanziani, 2011). Obviously, in the absence of
counteracting inhibition, threshold depolarization would be
reached with a much weaker excitatory input, increasing the
error and variability of the response. It is important to note
that the maintenance of the E/I balance is not a static,
hardwired mechanism but a deeply dynamic process maintained
by constant plastic adjustments (Froemke et al., 2007; Dorrn
et al., 2010).

Given this background, it is not surprising that a defective
feedback between E/I has been recognized as one of the key
factors in the insurgence of many central nervous system (CNS)
pathological conditions (Fernandez and Garner, 2007; Gao
and Penzes, 2015; Lee et al., 2017). Indeed, it is known that
inhibitory GABAergic signaling is hampered in models of ASD
(Gibson et al., 2008; Gogolla et al., 2009; Chao et al., 2010;
LeBlanc and Fagiolini, 2011; Yizhar et al., 2011; Bateup et al.,
2013; Selimbeyoglu et al., 2017), which justify the co-morbidity
between ASD and various forms of hyperexcitability. Since
the disruption of GABA signaling increases network gain, this
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FIGURE 1 | Single-unit activity during interictal epileptic discharges (IEDs) in humans and mice. (A) Top: example of local field potential (LFP) recordings from two
microelectrodes (red) and simultaneous corticography (ECoG; black) in patients with medically intractable focal epilepsy during epilepsy monitoring. Vertical marks
indicate single units recorded by the two electrodes. Action potentials from the two single units cluster around the IEDs (arrows). (B) Examples of LFP recordings
(red) from layers 2/3 of the mouse visual cortex after unilateral superfusion of bicuculline methiodide. Vertical marks (black) indicate the spikes recorded in the loose
patch configuration from the contralateral, untreated hemisphere (above) and from the cortical patch treated with bicuculline (below). In the IED focus, spikes are

(Continued)
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FIGURE 1 | Continued
present only at the time of the IEDs (arrows) whereas in the opposite
hemisphere other spikes appear around the events. (C) Top: IED-locked raster
plots and peri-event time histograms for three example units from the
recordings in a human patient. The average LFP is shown in red. The cells
display distinct firing modulations around the hypersynchronous event. Below,
the same representation is used to show average LFP and firing activity from
three units recorded in the mouse during bicuculline induced IEDs. Examples
1 and 3 come from contralateral units, Example 2 from an ipsilateral unit. The
firing frequency is similarly modulated by the IEDs in both in the human and
mouse recordings. Human data are reproduced with permission from Keller
et al. (2010). Mouse data are reproduced with permission from Petrucco et al.
(2017).

contributes to amplify background noise thus interfering with
neuronal coding. Not surprisingly, the potentiation of GABA
signaling is a prime pharmacological target that can result
in a rescue of the phenotype (Lewine et al., 1999; Tuchman
and Rapin, 2002; Levisohn, 2007; Gatto and Broadie, 2010;
Bolton et al., 2011; Pizzarelli and Cherubini, 2011; Gilby and
O’Brien, 2013; Tuchman, 2013; Cellot and Cherubini, 2014; Jeste
and Tuchman, 2015; Buckley and Holmes, 2016). In contrast,
other studies suggest that blocking the response to GABA can
ameliorate cognitive impairment such as in Down syndrome
(Kleschevnikov et al., 2004; Fernandez et al., 2007; Belichenko
et al., 2009), in Rett syndrome (Dani et al., 2005; Dani and
Nelson, 2009), in Angelman syndrome (Mabb et al., 2011) and in
phenylketonuria (De Jaco et al., 2017). These opposing scenarios
could be partly explained by the fact that GABA response
polarity is not univocal, but it is determined by intracellular Cl−

concentration, which in turn is finely regulated by the interplay
of leak channels and specific co-transporters (NKCC1 andKCC2;
Kaila et al., 2014; Miles et al., 2012; Viitanen et al., 2010;
Löscher et al., 2013). It is important to remember that at late
embryonic/early postnatal stages intracellular Cl− is higher than
20 mM (Sulis Sato et al., 2017) and GABA causes exit of
chloride from target cells leading to membrane depolarization
(Ben-Ari et al., 2012). If in these pathologies the pathways
underlying chloride homeostasis do not mature properly, GABA
could contribute to hyperexcitablity and GABAergic agonists
would exhert a paradoxycal effect. Indeed, in Down syndrome
it has been demonstrated that the maturation of Cl− regulation
is disrupted, thus leading to depolarizing GABA in an adult
mouse model for this disorder, and the pharmacological rescue
of Cl− homeostasis brought about a recovery of synaptic
plasticity and memory (Deidda et al., 2015). It is tempting to
speculate that this mechanisms could be shared with other forms
of neurodevelopmental disorders, including ASD (Cellot and
Cherubini, 2014).

Crucially, pathways involved in regulating synaptic
homeostasis can also be affected by the pathology itself;
for example, synaptic scaling can depress N-methyl-D-
aspartate (NMDA) or AMPA receptors as a consequence of
the enhancement of synaptic strength (Doyle et al., 2010; Goold
and Nicoll, 2010), but the homeostatic pathways converging
on these receptors can be altered by pathology. For example, at
least some of the complex single gene disorders associated to
ASD (Rett Syndrome, Fragile X Syndrome, Tuberous Sclerosis,

Aristaless Related Homeobox associated Syndromes) results
in blockade of synaptic scaling, because of the disruption
of transcription and/or protein synthesis (Fernandes and
Carvalho, 2016). Indeed, in Fragile X the mutation of FMRP, an
RNA-binding protein that regulates dendritic protein synthesis,
causes the loss of a regulator of the synthesis of AMPARs in
dendrites and of their insertion at the postsynaptic site, essential
for the increase in synaptic strength induced by retinoic acid or
by blockade of neural activity (Soden and Chen, 2010).

RELATIONSHIP BETWEEN EPILEPTIFORM
ACTIVITY AND COGNITIVE IMPAIRMENT:
A GENERAL PERSPECTIVE

Epileptiform activity is often associated to memory impairments,
mental slowing, communicative and behavioral disturbances
and attentional deficits both in children and adults with
epilepsy (Aldenkamp et al., 1990, 2004; Dodson and Bourgeois,
1994). An important issue for the diagnosis and treatment
of epilepsy is the existence of many forms of epileptiform
activity that can be difficult to classify by their EEG signature.
It is also challenging to correlate subtle EEG abnormalities
with the behavioral readouts of specific tasks (Blume, 2001).
Indeed, patients with short non-convulsive seizures are often
characterized by evanescent symptoms or by frequent transitions
from IEDs to seizures. In these scenarios, the understanding of
the contributions of diverse phases of epileptiform activity to
cognitive impairment is especially arduous. On the other hand,
a spectrum of epileptic syndromes including continuous spike
wave in slow-wave sleep (CSWS) or Landau-Kleffner syndrome
(LKS) clearly shows how the strong activation of IEDs during
sleep may hamper cognitive functions or language, respectively
(Tassinari and Rubboli, 2006). It is a clinical priority to apply
proper diagnostic techniques to classify the different epileptic
events, and to follow the evolution of the pathology by means
of longitudinal and prospective studies (Scheltens-De Boer,
2009).

In general, it is recognized that epileptiform activities
can contribute to transient or permanent deficits according
to many factors, e.g., their recurrence and severity, the age
of the subject and the type of therapy used to prevent
seizures and its efficacy. Of course, seizures and epileptiform
activity have an higher impact in subjects during development
rather than in a mature brain, but is hard to establish
on the basis of the available evidence whether repeated
interictal spikes are more detrimental than isolated or sporadic
seizures in promoting aberrant connectivity (Holmes, 2014).
Long-term consequences of interictal discharges accumulating
over time may produce deep effects at cognitive level impacting
especially on education and learning (IQ scores over time;
(Siebelink et al., 1988; Brinciotti et al., 1989; Tuchman and
Rapin, 1997) possibly causing life-long effects on developing
children. Several mutations can lead to hyperexcitability by
enrolling different mechanistic pathways (alterations of synaptic
function, alterations in connectivity, impaired metabolism
and homeostasis, etc. . .). Then, regardless of the original
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FIGURE 2 | IEDs cause transient cognitive impairment: relationship between upstream mutations and hyperexcitability.

causal mechanisms, hyperexcitability leads to defective neuronal
computation and impaired cognition (Figure 2; for review
McTague et al., 2016; Staley, 2015).

MOLECULAR AND PHYSIOLOGICAL
MECHANISMS ASSOCIATED TO
EPILEPTIC ENCEPHALOPATHIES AS
MODELS OF CHRONIC IMPAIRMENT

Epileptic encephalopathies (EE) are the most representative
example of how long-lasting epileptiform activities may influence
the neurodevelopmental outcome. If not properly treated, EE
can cause permanent deficits due to the deleterious impact of
epileptiform interictal activity and seizures on the development
and organization of the immature brain (Nabbout and Dulac,
2003; Hirsch et al., 2006; Holmes and Lenck-Santini, 2006).
The relationship between clinical and EEG features and the
degree of cognitive deterioration remains elusive and may vary
greatly between different syndromes. Thus, it is often arduous
to translate into therapeutic decisions the insights arising from
clinical and EEG evaluations and from our understanding of the
underlying pathomechanisms.

CSWS is a paradigmatic model to understand how continuous
and diffuse paroxysms, lasting months or years, may impair the
neuropsychological outcome. CSWS is a disorder that appears
during childhood, characterized by the presence of continuous
generalized spike-wave complexes during at least 85% of
slow-wave sleep. Cognitive deficits associated with impairment
of neuropsychological functions, reduced IQ, reduction of

language, memory and motor impairment occurring in the
course of this syndrome are generally assumed to be caused
by repetitive interictal discharges (Praline et al., 2003). The
disruption of physiologic sleep and the interference with the
slow-wave activity homeostasis, with consequent impairment
of neural processes and synaptic plasticity at the site of the
epileptic focus, are possible pathomechanisms underlying the
neuropsychological impairment characterizing the syndrome
(Tassinari and Rubboli, 2006; Tononi and Cirelli, 2006). During
puberty, the electrical status epilepticus in sleep (ESES) pattern
progressively vanishes and the neuropsychological assessments
generally improve, although many of the acquired deficits
often remain. The localization of the interictal focus seems to
have a role in influencing the pattern of neuropsychological
derangement. For example, linguistic impairment can be
observed when abnormalities are mostly located on the temporal
regions, like in the acquired auditory agnosia seen in the
LKS (Galanopoulou et al., 2000), or an autistic behavior can
appear in relation to frontal epileptogenic foci (Deonna and
Roulet-Perez, 2010). Several studies on patients treated for
CSWS (De Negri et al., 1995; Yan Liu and Wong, 2000)
have shown an improvement in cognitive functions in those
successfully responding to treatments and showing a significant
reduction of the IEDs. This suggests that the pathological
activity underlying the EEG alterations, curtailed by the
pharmacological treatment, is the primary cause for the onset
of the cognitive symptoms. Evidences deriving from in vitro,
in vivo and computational models suggest that the change from
physiological to pathological oscillation seen in ESES is related
to the blocking of GABAA-mediated inhibition between reticular
thalamic neurons and thalamic neurons, which is associated
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with a differential activation of GABAB-mediated inhibition and
in consequent epileptiform activity (Smith and Fisher, 1996;
Beenhakker and Huguenard, 2009). Interestingly, in rat models
of atypical absence epilepsy, GABAB-receptor antagonists have
been shown to rescue the associated learning impairment (Chan
et al., 2006).

Another example of EE characterized by strict correlation
between the severity of EEG alterations and cognitive
impairment is West Syndrome. Affected children typically have
clusters of epileptic spasms within the first year of life, and show a
specific interictal EEG pattern (called hypsarrhythmia) of highly
disorganized background activity and multifocal slow-waves
and paroxysms. Both epileptic spasms and hypsarrhythmia
are typically associated with developmental regression, usually
beginning with impairment of visual functions and possibly
linked to hemodynamic and metabolic interferences of the
IEDs on cerebral homeostasis (Siniatchkin et al., 2007). An
early and appropriate treatment may, in some cases, ameliorate
seizures and EEG and have a profound impact on developmental
progresses (McTague and Cross, 2013).

Other forms of EE, on the contrary, show poor or no
correlation between clinical or EEG severity and neurobehavioral
outcome. Dravet syndrome (DS) is one of the main examples
of severe EE, where the cognitive outcome does not clearly
reflect seizure or IED severity. DS is primarily caused (80%
of cases) by heterozygous loss-of-function mutations in the
SCN1A gene that encodes the brain voltage-gated sodium
channel type-1 (NaV1.1; Dravet et al., 2011; Marini et al.,
2011). As the exons of SCN1A only comprise 6 kb of the
gene, which is over 100 kb in size, it is conceivable that
the remaining patients that have normal transcript, may be
affected by mutations of the non-coding portion of the gene
leading to correct expression and trafficking of NaV1.1 (Catterall,
2018). Besides febrile and afebrile pharmacoresistant seizures
beginning in the first year of life, and frequent episodes of
status epilepticus, affected children may develop a progressive
slowing of basal EEG activities and interictal asymmetrical spikes
or polyspikes and waves (Dravet et al., 2011). In addition,
children with DS display a progressively worsening psychomotor
delay that is only partly related to severity of epilepsy or
EEG features. This suggests that the cognitive defect in DS
is not only a consequence of epilepsy or EEG abnormalities
themselves but may in part be due to the underlying genetic
pathology, i.e., a direct role of the sodium channel dysfunction
(Nabbout et al., 2013). Two additional examples of epilepsy
where cognitive impairment and developmental consequences
are not clearly correlated with the severity and characteristics of
seizures are provided by the diseases associated to the mutations
of PCDH19 and STXBP1. Mutations of the PCDH19 gene in
female patients causes early onset epilepsy, in part resembling
DS (Dibbens et al., 2008; Specchio et al., 2011), and often
lead to cognitive phenotypes ranging from borderline to severe
intellectual disability (Depienne et al., 2009; Hynes et al., 2010;
Marini et al., 2010). A similar scenario is found in patients
affected by STXBP1mutations that result in early-onset epilepsy,
cognitive and motor disability and ASD (Saitsu et al., 2008;
Stamberger et al., 2016).

Dysfunctions of GABAA receptors have been also postulated
to play important roles in EE etiology. In fact, mutations
or genetic variations of the genes encoding the α1, α6, β1,
β2, β3, γ2, or δ subunits (GABRA1, GABRA6, GABRB1,
GABRB2, GABRB3, GABRG2 and GABRD, respectively)
have been associated with early-onset epilepsies with or
without febrile seizures. Evidences show that the compromised
hyperpolarization mediated by altered GABAA receptors is
not simply caused by receptor gating abnormalities, but
by complex mechanisms, including endoplasmic reticulum
(ER)-associated degradation, nonsense-mediated mRNA decay,
intracellular trafficking defects and ER stress (Hirose, 2014;
Hernandez et al., 2016; Neske, 2016; Møller et al., 2017; Shen
et al., 2017). In addition, a number of antiepileptic drugs
have agonistic effects on GABAA receptors (Hirose, 2014),
confirming their likely contribution in the pathomechanisms of
epilepsy, and their potential role as candidate targets for new
therapies.

TRANSIENT COGNITIVE IMPAIRMENT

Early studies based on EEG recordings suggested that interictal
events can also lead to transitory cognitive effects in humans
(Hutt et al., 1977; Aarts et al., 1984; Shewmon and Erwin,
1988a,b). These observations have been confirmed in subsequent
studies employing improved video EEG recordings synchronized
with behavioral assessment (Binnie et al., 1991; Krauss et al.,
1997; Liu et al., 2016; Ung et al., 2017). The general idea is
that IEDs transiently disrupt the functioning of the area directly
involved in the generation of the epileptiform activity, as well as
connected regions (Hutt et al., 1977; Aarts et al., 1984; Shewmon
and Erwin, 1988a,b; Ung et al., 2017). In general, transient
cognitive impairment resulting from single discharge patterns
is obviously related to the location and propagation pattern
of the epileptiform event. Therefore, the identification of the
cognitive phenotype requires proper behavioral assessment in
terms of the specific task, its duration, and the modalities of
administration.

An early study that addressed the relationship between
IEDs and transient cognitive deficits was performed by
analyzing short-term verbal and non-verbal memory in a
cohort of subjects displaying focal/asymmetrical or symmetrical
generalized epileptiform activity. Half of the patients showed
transient cognitive impairment associated to the presence of
IEDs. IEDs cause region-specific impairments; indeed, IEDs
starting in the left hemisphere caused errors in verbal tasks,
while those generated in the right one produced impairments in
non-verbal tests (Aarts et al., 1984; Aldenkamp et al., 2004).

Following studies demonstrated that bursts of spike-wave
patterns are usually followed by a slowing of reaction times
lasting several seconds, and by total amnesia for events occurred
during the EEG alteration (Porter et al., 1973; Holmes et al., 1987;
Krauss et al., 1997). Importantly, this transient but conspicuous
deficits can be caused even by a single focal interictal event (Aarts
et al., 1984; Binnie et al., 1987; Shewmon and Erwin, 1988b;
Siebelink et al., 1988; Binnie, 2003; Kasteleijn-Nolst Trenité
and Vermeiren, 2005; see Petrucco et al., 2017) for an animal
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FIGURE 3 | Transient cognitive impairment in humans and in mice. (A) IEDs interfere with a visual reaction test. Data have been acquired from a 10-year old boy
suffering from partial complex seizures, tested during the occurrence of focal interictal discharges. The upper panel shows the rate of missed responses as a function
of the distance between the stimulus and the nearest IED. The lower panel shows the latency of the response. Both the rate of missed stimuli and the reaction times
increase in a small window around the IED event. Redrawn with data from Shewmon and Erwin (1988a). (B) Amplitude of visual evoked potentials (VEP) recorded in
the anesthetized mouse as a function of the distance between the stimulus and the closest IED occurring in the contralateral hemisphere. A bi-directional alteration
of the VEP amplitude (highlighted in the yellow area) appears when the stimulus occurs nearby an IED: if the spike precedes the stimulus the response is enhanced,
while the contrary happens if the spike follows the stimulus. Reproduced with permission from Petrucco et al. (2017).

model correlate. The dependency of cognitive impairment on the
IEDs location has been shown recently in patients with seizure
onset zones lateralized on the left hemisphere, since spikes
that were generated outside the seizure onset area disrupted
memory encoding, while those recorded inside the critical
activity focus were not detrimental for cognition (Ung et al.,
2017).

Many studies have observed that transient cognitive deficits
critically depend on the timing between stimulus test and the
appearance of the IEDs (Figure 3). Indeed, a single interictal
discharge can affect the perception of a visual stimulus, e.g., the
presentation of a stimulus at the time of an interictal event
in visual cortex resulted in missed or delayed perception
(Shewmon and Erwin, 1988b). A detailed characterization
of the timing of the sensory deficit (Shewmon and Erwin,
1989) showed that the effect of the spikes started immediately
before the deflection in the EEG trace and terminated at
the end of the slow-wave. This finding led the authors
to the conclusion that the long lasting slow-wave, and not
only the paroxysmal spike, can affect the perception of the
stimulus (see Figure 3A). The critical correlation of the IEDs
timing and the transient cognitive deficit is also present
for memory tasks. An important study was performed on
patients undergoing the procedure for preoperative seizure
localization that were implanted with deep electrodes and
were tested for memory maintenance and retrieval during the
electrophysiological recording (Kleen et al., 2013). These data
showed a decrease of the likelihood of correct responses when
the IEDs occurred during the memory retrieval period, thus
suggesting a direct link between the pathological activity and
cognitive impairment.

The dialogs between IEDs and cognitive functions are
somehow bidirectional, since it has long been recognized
that performing a cognitive task can affect the frequency

of interictal paroxysms. For example, an old study (Schwab
et al., 1941) determined that generalized spike and wave
discharges could be reduced by light or sound stimuli delivered
during a reaction time task. Recently, it has been shown
that during a test in which images already archived in
memory are recognized, there is a significant reduction in
the IEDs rate in the amygdala, hippocampus and temporal
cortex. Interestingly, during the visual task all these structures
were interested by a loss of power in the theta, alpha
and beta bands, as well as by an enhanced power in
the gamma band. This suggests that the reorganization of
network synchronization during the task may correlate with a
negative modulation of local IEDs frequency (Matsumoto et al.,
2013).

Finally, the detection of temporary cognitive impairment
depends on the type and duration of the test (Mirsky and Van
Buren, 1965; Aarts et al., 1984; Aldenkamp et al., 2004). Indeed,
the beginning of a cognitive task is usually associated to an
activating ‘‘arousal’’ effect which can suppress IEDs discharges,
causing a global improvement of the test performance (Aarts
et al., 1984; Binnie et al., 1987; Stores, 1990). Thus, simple
motor tasks and other tests that do not require the processing
of complex sets of information are less affected in their execution
than more cognitively demanding tests.

ANIMAL MODELS OF CHRONIC AND
TRANSIENT COGNITIVE IMPAIRMENT

Animal models are essential to understand the molecular
and physiological mechanism linking the transient
electrophysiological disturbance to the alteration of cortical
processing. However, the literature on animal models is
relatively poor in comparison with the wealth of data provided
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TABLE 1 | Cognitive deficits in models of interictal epileptic discharges (IEDs).

Models Type of treatment Cognitive effect Putative molecular mechanisms References

Chronic models
Awake macaque Local intracortical administration

of bicuculline in the primary visual
cortex

Larger amplitude of visual evoked
potentials and enhancement of
single-cell activity

Competitive antagonist of GABAA

receptors
Schroeder et al. (1990)

Rat prefrontal
cortex (PFC) in
adult animals

Five days-injections starting from
P21 with bicuculline

Increment in short-term plasticity in
the PFC. No working memory
deficits, but marked inattentiveness.

Competitive antagonist of GABAA

receptors
Hernan et al. (2014a,b)

Freely moving rats Lithium i.p. followed by
subcutaneous pilocarpine
injection

Reduced stability of place cells.
Impaired spatial memory

Non-selective agonist of muscarinic
receptor

Liu et al. (2003)

Sprague-Dawley
rats

Pilocarpine injection Impaired performances in memory
retrieval using a
hippocampal-dependent operant
behavior task

Non-selective agonist of muscarinic
receptor

Kleen et al. (2011)

Rat pups Inhalation of fluorothyl (4 h every
day for 10 days)

Deficits in spatial memory (Morris
water maze; four-trial radial arm
water maze) and in LTP

Blockade of GABAA receptors, with
the addition of opening of sodium
channels and activation of the
cholinergic system

Khan et al. (2010)

Rat model of
temporal lobe
epilepsy

Kindling or repeated single
electrical pulses to the
hippocampal commissure

Impaired memory consolidation at
the hippocampus

N-methyl-D-aspartate
receptor-activated changes in gene
expression

Gelinas et al. (2016)

Mouse visual cortex Tetanus neurotoxin
(TeNT)-induced focal epilepsy

Reduction of reliability of visual
responses; impairment of visual
acuity

Blockade in the release of GABA
and glycine

Vannini et al. (2016)

Transient models
Cat auditory cortex Focal application of penicillin Altered processing of sensory

evoked potentials
Inhibition of GABA release/action Schraeder and Celesia

(1977)
Ferret visual cortex Iontophoretic injection of

bicuculline
IEDs triggered by specific visual
stimulation pattern according the
epileptic focus location

Competitive antagonist of GABAA

receptors
Schwartz and Bonhoeffer
(2001) and Schwartz
(2003)

Mouse visual cortex Local cortical superfusion of
bicuculline

Silencing of the contralateral cortex
during IEDs. Disturbances of
sleep-slow wave activity and
impaired vision.

Competitive antagonist of GABAA

receptors
Petrucco et al. (2017)

by the clinics, possibly because of the difficulty of generating
standardized models of interictal epileptiform activity (Grone
and Baraban, 2015; see Table 1).

A large body of studies on slices have employed different
pharmacological strategies to induce interictal activity (Fisher,
1989; Pitkänen and McIntosh, 2006; Barkmeier and Loeb,
2009; Avoli and Jefferys, 2016): GABAA receptor blockade
(Meldrum and Horton, 1971; Collins and Caston, 1979; de Curtis
et al., 1998; Uva et al., 2005), low extracellular magnesium
concentration (Tancredi et al., 1990), low extracellular calcium
(Lian et al., 2001), kainic acid (Medvedev et al., 2000) and
4-aminopyridine (Lévesque et al., 2013). In slice studies have
provided valuable information on the cellular mechanisms at
the basis of IED generation and propagation, but they cannot
fully recapitulate what happens in the animal brain in vivo and
cannot provide a causal link between the ectopic activity and the
disruption of cortical computation.

In intact animals, focal IEDs have been generated by electrical
stimulation (Collins and Caston, 1979; Gelinas et al., 2016) or
after systemic or focal administration of inhibitors of GABA
activity (Meldrum and Horton, 1971; Schroeder et al., 1990;
Schwartz and Bonhoeffer, 2001; Hirase et al., 2004; Ma et al.,
2004; Hernan et al., 2014a,b), kainic acid (Berdyyeva et al.,

2016) and pilocarpine (Kleen et al., 2011). Finally, a focal
model of epileptic activity has been obtained by the localized
microinjection of tetanus toxin (TeNT; Brener et al., 1991; Nilsen
et al., 2005; Vannini et al., 2016) that causes an increase of the
E/I ratio because of a strong blockade of inhibitory synapses
(Ferecskó et al., 2014).

When discussing animal studies, one should make an
important distinction between chronic and transient models
of IED activity. The chronic models are defined by prolonged
treatments that may lead to permanent EEG irregularities. In
these models, the assessment of cognitive functions generally
occurs days or weeks after treatment and probes the effects
of the IED activity, if still present, and of the homeostatic
response of the brain to the treatment. However, in chronic
models, it is difficult to understand whether the observed
cognitive deficits are directly due to anomalous activity or
to cortical rearrangements that have occurred during the
response to the induction that cause steady state alterations
of cortical computation. In contrast, transient models take
advantage of an acute manipulation that leads immediately to
IEDs, and allow assessing their short-term effects on cognitive
functions before the onset of any long-term homeostatic
change.
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Chronic Models
A useful example of chronic model is provided by rat
pups exposed for 10 days to a low dose of flurothyl (an
inhalant chemoconvulsant) for 4 h (Khan et al., 2010).
Pups developed IED activity without seizures during the
treatment and activity returned to normality after inhalation
ending. When the rats reached adulthood, behavioral and
electrophysiological testing revealed impairments of spatial
memory and long-term potentiation. Anatomical assessment
of the hippocampus showed a reduction of newly born cells
without an increase in apoptosis at a single time point;
however, it was not clear in this study if neurogenesis or
apoptosis affected excitatory or inhibitory neurons, rather
than glia. In a previous study on the same model by
the same group, it was reported the loss of inhibitory
GABAergic interneurons, while epileptiform activity did not
influence glutamatergic synapse maturation, thus supporting
the hypothesis of activity independence of the development of
AMPA/NMDA signaling (Isaeva et al., 2006). These studies
suggest that the transient IEDs evoked by the treatment have
led to long term changes in the hippocampal structure and to
cognitive impairment.

Although flurothyl inhalation can be precisely regulated to
provide varied degrees of ictal or interictal activity (Modica et al.,
1990), its long-term effects are very complex involving a number
of factors, including changes in the brain content of DNA
(Wasterlain, 1976), increased expression of cyclooxygenase-2
(Kim and Jang, 2006), changes in the intrinsic excitability and
postsynaptic composition (Villeneuve et al., 2000; Swann et al.,
2006) and impairment of dendrite development (Nishimura
et al., 2011). Thus, the interpretation of the flurothyl model is
not straightforward, thus preventing a clear causal relationship
between IEDs in early development and cognitive impairment in
adulthood.

Other pharmacological models that affect directly the E/I
balance may provide a more direct causal link between
abnormal activity and cognitive deficit. The obvious target
for this manipulation is the GABAA receptor, which can
be modulated by a rich pharmacological toolbox. Bicuculline
methiodide is a competitive agonist that, upon local delivery,
causes the onset of IEDs resembling the activity appearing
in lesional human epilepsy (Noachtar et al., 1999) and in
idiopathic benign partial epilepsies of childhood (de Curtis
et al., 1998). A recent study generated a rat model of focal
IEDs caused by repeated injections of bicuculline into the
prefrontal cortex (PFC) starting from P21 (Hernan et al.,
2014a). Upon reaching adulthood, the treated rats showed
an increment of short-term plasticity in the PFC, deficits
in social behavior and marked absence of attention without
significant increment of anxiety or of hyperactivity. This study
concluded that the focal IED activity, caused by GABAergic
blockade during early-life, disrupted the circuitry of the PFC
thus leading to long-term effects on behavior after the ending
of IEDs. However, the co-administration of adrenocorticotropic
hormone, a drug widely used to treat seizures starting early
in life (Rosati et al., 2017), produced a modest amelioration
of the attention deficit in adulthood even if it did not reduce

IEDs. This result suggested a partial uncoupling between the
acute electrophysiological response and the long-term cognitive
deficits.

The long-term effects of epileptiform activity have been
recently studied in the visual cortex after focal treatment
with TeNT. In this case, frequent spike bursts were followed
by an upregulation of GABA markers, possibly suggesting a
compensatory response. Sensory processing is a paradigmatic
example of cortical computation that relies on a finely tuned
negative feedback operated by inhibitory interneurons to
normalize the wide range of external stimuli to the limited
dynamic range of cortical coding. Interestingly, this treatment
caused a dendritic rearrangement different from that one
observed after flurothyl inhalation, since length complexity
of dendrites increased. Visual responses were less reliable in
comparison to controls, possibly because of the degradation
of the signal to noise ratio of the network, as also suggested
by increased firing rate in resting state (Vannini et al.,
2016).

Finally, in a kindling model of temporal lobe epilepsy, the
communication between hippocampus and medial PFC (mPFC)
was altered by IEDs, determining the disruption of the spatial
navigation memory in freely behaving rats; moreover, there was
a correlation between the degree of memory impairment and the
frequency of hippocampal IEDs capable to elicit spindles in the
mPFC (Gelinas et al., 2016).

Transient Models
Transient models of activity provide the opportunity to study in
a normal brain the direct effect of IEDs on cognitive functions. In
these models, there are no long-term effects caused by previous
treatments, and the anomalies can be ascribed only to neurons
being hijacked by the hypersynchronous firing occurring at each
IED. In the past, a large number of investigators has been
using acute superfusion with convulsants, such as penicillin or
bicuculline, to address in vivo the physiological mechanisms
of IEDs (Goldenshohn and Purpura, 1963; Matsumoto and
Marsan, 1964; Prince, 1968; Collins and Caston, 1979). These
early studies provided us with the first detailed description
of the anatomy of an IED (reviewed in Dichter and Ayala,
1987).

Acute pharmacological models are ideal to study the
interaction between focal IEDs and its effects on cortical
computation, since the timing and intensity of the IED activity
can be carefully regulated while probing cortical computation.
Indeed, similar manipulations have been used to address how the
abnormal recruitment affected physiological sensory processing
of both auditory (Schraeder and Celesia, 1977) or visual stimuli
(Ebersole and Levine, 1975; Schwartz and Bonhoeffer, 2001;
Schwartz, 2003).

A recent study from our laboratory (Petrucco et al., 2017)
addressed how cortical processing can be transiently disrupted
even in areas far from the interictal focus. IEDs were triggered in
the visual cortex of the anesthetized mouse by strictly localized
superfusion of bicuculline (Figure 1). As expected, in the treated
territory computation was abolished, since all pyramidal neurons
were recruited by IEDs. This effect extended to the contralateral
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cortex, because the IED initially facilitated firing in this area
but, after about 100 ms, completely silenced the contralateral
cortex for almost 300 ms. Moreover, visual evoked responses
were affected depending on the relative timing between stimulus
presentation and contralateral spike burst (Figure 3). Therefore,
the timing of the hypersynchronous spike defines a temporal
window of impaired cognition in the cortical territory recruited
by the event. This was accompanied by a secondary deficit
caused by the propagation of the hypersynchronous activity to
connected brain areas. These rodent data correlates with findings
from coupled EEG and fMRI recordings in human subjects
showing changes of the BOLD signal in remote structures far
from the epileptic generator (Kobayashi et al., 2005, 2006).
Indeed, several of the clinical evidences discussed above indicate
that, while the location of focal IEDs determines the nature of the
deficit, the connected areas are also affected by the propagated
spikes and contribute to the overall cognitive deficit (Ung et al.,
2017).

Together, these studies prove that IEDs disrupt endogenous
rhythms and affect brain information processing even in absence
of the circuitry rearrangements proper of chronic epilepsy and
independently from epileptic foci.

CONCLUSIONS

It is fair to conclude that several clinical evidence and the acute
animal models suggest that IED activity interfere with brain
computation in the focus and in connected areas, contributing
to the overall cognitive impairment. Therefore, it is important
to understand whether IEDs should receive pharmacological
treatment even in absence of seizures. The answer is not obvious,
since antiepileptic drugs can be associated with cognitive side
effects (Ben-Menachem et al., 1989; Aldenkamp et al., 2004;

Eddy et al., 2012; Perucca and Gilliam, 2012; Glauser et al., 2013)
and a careful cost/benefit analysis is required for each specific
case. However, curing IEDs is possible and sometimes it results
in cognitive improvement, especially ameliorating educational
development in children (Besag, 1995; Noachtar et al., 1999;
Pressler et al., 2005; Beghi et al., 2013; Kleen et al., 2013). This is
true not only for EE like CSWS, where IEDs persist over months
or years thus chronically impairing the physiological patterns
of EEG sleep activities, but also for epilepsies where the IEDs
are less evident, especially some focal epilepsies (Aldenkamp
et al., 2004; Sánchez Fernández et al., 2015). The demonstration
that the effects of IEDs on neuronal processing are restricted
to a brief temporal window around each event, underlines the
importance of matching the behavioral readout of transient
cognitive impairments to the ongoing EEG identification of
IEDs. A better understanding and evaluation of the impact of
IEDs on cognition will allow defining the most appropriate
pharmacological strategies to treat not only seizures, but also
those interictal events that may affect intellectual development
and functions.
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