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Aging is a major risk factor for many diseases including metabolic syndrome, cancer,
inflammation, and neurodegeneration. Identifying mechanistic common denominators
underlying the impact of aging is essential for our fundamental understanding of age-
related diseases and the possibility to propose new ways to fight them. One can define
aging biochemically as prolonged metabolic stress, the innate cellular and molecular
programs responding to it, and the new stable or unstable state of equilibrium between
the two. A candidate to play a role in the process is protein kinase R (PKR), first identified
as a cellular protector against viral infection and today known as a major regulator of
central cellular processes including mRNA translation, transcriptional control, regulation
of apoptosis, and cell proliferation. Prolonged imbalance in PKR activation is both
affected by biochemical and metabolic parameters and affects them in turn to create
a feedforward loop. Here, we portray the central role of PKR in transferring metabolic
information and regulating cellular function with a focus on cancer, inflammation, and
brain function. Later, we integrate information from open data sources and discuss
current knowledge and gaps in the literature about the signaling cascades upstream and
downstream of PKR in different cell types and function. Finally, we summarize current
major points and biological means to manipulate PKR expression and/or activation and
propose PKR as a therapeutic target to shift age/metabolic-dependent undesired steady
states.

Keywords: PKR, protein synthesis, learning and memory, signal transduction, metabolic stress, aging, cancer,
Alzheimer’s disease

INTRODUCTION

Protein kinase R (PKR) is a serine-threonine kinase (551 amino acid long) encoded in humans by
the EIF2AK2 gene [located on chromosome 2 (Feng et al., 1992)], which plays a major role in central
cellular processes such as mRNA translation, transcriptional control, regulation of apoptosis, and
proliferation (García et al., 2007). In accordance with such preponderant role, PKR dysregulation
(see Figure 1) has been implicated in cancer, neurodegeneration (Segev et al., 2013, 2015; Stern
et al., 2013), inflammation, and metabolic disorders (Segev et al., 2016; Garcia-Ortega et al., 2017).
This kinase, which is constitutively and ubiquitously expressed in vertebrate cells, is not found in
plants, fungi, protists, or invertebrates (Taniuchi et al., 2016). PKR was first cloned in 1990 at the
Pasteur Institute (Meurs et al., 1990; Watanabe et al., 2018), and is also known as Protein kinase
RNA-activated; and interferon-induced, double-stranded RNA-domain kinase (Hugon et al., 2009).
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The structural composition of PKR consists of an N-terminal
double stranded RNA binding domain composed of two tandem
repeats of a conserved double stranded RNA binding motif
(dsRBM1 and dsRBM2) interspaced by a 23 amino acid linker,
and followed by a flexible linker connecting to a C-terminal
kinase domain (Meurs et al., 1990). Both dsRBMs are required for
the high-affinity interaction with double stranded RNA (dsRNA)
(McKenna et al., 2006). The catalytic domain of PKR, where
its dimerization takes place, has a typical protein kinase fold
formed between its β-sheet N-terminal lobe and its α-helical
C-terminal lobe (Dzananovic et al., 2018). However, while the
catalytic domain structure is similar to other protein kinases,
the interaction of PKR with its best-characterized substrate, the
eukaryotic initiation factor 2α (eIF2α), requires a specific α-helix
unique to PKR (αG), which is located on the surface of the
C-terminal lobe of the kinase domain (Dar et al., 2005).

While the best-described transcriptional motif in the PKR
promoter is an IFN-stimulated response element (ISRE), allowing
it to be transcribed in response to type I IFN (Kuhen and Samuel,
1997), numerous transcription factors have been identified as
binders of the promoter region of the EIF2AK2 gene [e.g.,
92 different factors identified by CHIP-Seq assays in the
context of the ENCODE project (Rouillard et al., 2016)]. This
scenario supports the notion of PKR as an interferon stimulated
gene (ISG), while also allowing for the modulation of PKR
expression in cellular programs involving the activation of
different repertoires of transcription. Activation of PKR results
in a number of conformational changes, the most important of
which is its homodimerization, based on biochemical and genetic
analyses (Dey et al., 2005). As a result of its homodimerization,
PKR is autophosphorylated at multiple serine and threonine sites,
including Ser242, Thr255, Thr258, Ser83, Thr88, Thr89, Thr90,
Thr446, and Thr451 (Taylor et al., 2001). The latter two, namely,
the Thr 446 and Thr 451 sites, are consistently phosphorylated
during PKR activation, resulting in further stabilization of its
homodimerization and increased catalytic activity (Hugon et al.,
2009; Watanabe et al., 2018).

Protein kinase R serves as a central hub for the detection of
cellular stress signals and response to them, and is thus expected
to be regulated by different stress-response pathways. In accord
with this notion, the canonical activator of PKR is double-
stranded RNA (an obligatory feature of the replication process of
RNA viruses), rendering PKR as a pattern recognition receptor
endowed with cell function modulatory abilities. The central
role of PKR in mediating anti-viral responses is also evidenced
by the high degree of positive selection exhibited by coding
sequence, indicative of the arms race against the pathogens
it encounters and combats (Elde et al., 2009; Rothenburg
et al., 2009; Carpentier et al., 2016). However, PKR can
also be activated by other factors, for example, heat shock
proteins, growth factors (e.g., PDGF), and heparin (Li et al.,
2006). PKR is also activated in response to numerous insults,
including non-viral pathogens (bacterial lipopolysaccharide,
which activates the toll-like receptor 4 pathway), nutrition or
energy excess, cytokines (e.g., TNF-α, IL-1, IFN-γ), calcium,
reactive oxygen species, irradiation (presumably by inducing
DNA damage), mechanical stress, and endoplasmic reticulum

stress resulting from the presence of a large quantity of unfolded
proteins [caused, e.g., by tunicamycin, arsenite, thapsigargin,
or H2O2, which in turn activate the PKR activator protein
(PACT; RAX in mice)] (Gil and Esteban, 2000; García et al.,
2007; Hugon et al., 2017; Watanabe et al., 2018). Figure 2
summarizes molecular pathways upstream and downstream of
PKR, and Figure 3 presents interaction partners and substrates
of PKR.

PKR is one of four kinases that regulate protein synthesis
via the eIF2α pathway. These kinases include, apart from PKR,
the (PKR)-like endoplasmic reticulum kinase (PERK); general
control non-derepressible 2 kinase (GCN2), and heme-regulated
eIF2α kinase (HRI). All four kinases regulate the phosphorylation
of eukaryotic initiation factor 2 on its α subunit (eIF2α), a major
regulator of the initiation phase of mRNA translation, the rate
limiting step of protein synthesis. Phosphorylation of eIF2α on
Ser 51 by any of the four kinases leads to its inhibition and a
consequent transient suppression of general protein synthesis,
up to its complete blockade, concomitant with translation of
mRNAs that encode for antiviral factors and/or mediate the
integrated stress response (Hoang et al., 2018). Such blockade
of protein synthesis results in the decrease or prevention of
viral replication, and may result in apoptosis (García et al.,
2007). PKR can also induce apoptosis independently of eIF2α

phosphorylation, by activation of the FADD/caspase-8/caspase-
3 and caspase-9 APAF pathways (Gil et al., 2002; von Roretz and
Gallouzi, 2010).

Both PKR-dependent apoptosis strategies, either with
or without blockade of protein synthesis, serve as anti-
viral responses. Consequently, many viruses have developed
mechanisms which prevent the establishment of an anti-viral
state, by inhibiting components of the PKR pathway. These
mechanisms include viral proteins that serve as inhibitors
of PKR, which inhibit it by direct binding of PKR (thereby
preventing autophosphorylation; e.g., Hepatitis C virus, Herpes
simplex 1, and Kaposi’s sarcoma vIRF-2), changing its subcellular
localization (e.g., Human and Murine Cytomegalovirus),
directing it for degradation (e.g., Rift valley fever virus), or
regulating its activity. Regulation of PKR activity is done by
expression of proteins that disrupt PKR RNA binding sites
by dsRNA sequestration, direct obstruction of these sites
(e.g., Vaccinia virus, Influenza virus), or interference with the
phosphorylation of eIF2α (e.g., Human Immunodeficiency
Virus 1) (Dzananovic et al., 2018). Specifically, adenovirus and
Epstein-Barr virus transcribe dsRNAs with structural elements
required for binding the dsRBMs and a stem-loop structure that
inhibits PKR autophosphorylation (McKenna et al., 2006; Wahid
et al., 2009; Dzananovic et al., 2014).

In addition to its ability to sense dsRNA, primarily of
viral origin, PKR is also activated in response to endogenous
RNA. Many of these are non-coding RNAs and/or regulatory
RNAs such as microRNAs (miRNAs). For example, the non-
coding nc886 miRNA functions as a suppressor of PKR by
interacting with it directly (Lee et al., 2011), and its expression
is increased in some malignancies but reduced others (Lee et al.,
2016). In accordance, its suppression or epigenetic silencing
result in induction of apoptosis and increased expression of
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FIGURE 1 | A different balance in defense mechanisms exists in different cells. The development of novel PKR inhibitors differing in properties (e.g., affinity,
reversibility) may be advantageous for the treatment of different types of cancer, brain diseases, inflammatory, and metabolic diseases.

oncogenes in certain models of cancer (Lee et al., 2014; Hu
et al., 2017), and a protective effect in other models of cancer
in vitro (Lee et al., 2016). Additionally, overexpression of
miR-29b in developing cerebellar granular neurons confers
protection against ethanol neurotoxicity leading to apoptosis
through the SP1/RAX/PKR cascade (Qi et al., 2014). Another
example is the long non-coding RNA HOX antisense intergenic
RNA (HOTAIR), whose overexpression in keratinocytes resulted
in increased expression of PKR and, as a result, decreased
cell viability, increased levels of apoptosis, and increased
expression of inflammatory factors in ultraviolet B (UVB)-
treated cells (Liu and Zhang, 2018). Furthermore, a recent
study has shown that PKR binds other non-coding RNAs such
as retrotransposons, satellite RNAs, and mitochondrial RNAs
(which can form intermolecular dsRNAs through bidirectional
transcription of the mitochondrial genome). In fact, in a screen
for molecules which bind PKR, done using the formaldehyde-
mediated crosslinking and immunoprecipitation sequencing,
mitochondrial RNA constituted the majority of endogenous
molecules that bind PKR (Kim et al., 2018). In addition, PKR has
been proposed to bind dsRNAs formed by inverted Alu repeats
(IRAlus), upon disruption of the nuclear membrane in mitosis,

leading to the phosphorylation of eIF2α in this phase of the cell
cycle (Kim et al., 2014).

PKR IN THE BRAIN

Neurodegeneration
In the past two decades, increased levels of PKR phosphorylation
have been detected in the brains of patients with HIV and
neurodegenerative diseases such as Alzheimer’s disease (AD)
(Chang et al., 2002), Parkinson’s disease, Huntington’s disease
(Peel et al., 2001), dementia, and prion disease (Hugon et al.,
2009). Furthermore, elevated levels of p-PKR and p-eIF2α have
been observed in several mouse and monkey models of AD,
including wild-type mice and cynomolgus monkeys injected with
Aβ1−42 oligomers (i.c.v.), APPSwe/PS1DE9 mice, and ApoE4
mice (Lourenco et al., 2013; Segev et al., 2016). In both AD
and Huntington’s disease, PKR has been implicated as mediating
an ER stress-induced cell death (Peel and Bredesen, 2003;
Bando et al., 2005), and it is possible that this is also the case
regarding other neurological disorders where PKR levels are
elevated. In the case of AD, increased staining of phosphorylated

Frontiers in Molecular Neuroscience | www.frontiersin.org 3 January 2019 | Volume 11 | Article 480

https://www.frontiersin.org/journals/molecular-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-neuroscience#articles


fnmol-11-00480 January 5, 2019 Time: 10:57 # 4

Gal-Ben-Ari et al. PKR: A Kinase to Remember

FIGURE 2 | Upstream regulators and downstream targets of PKR.

PKR (p-PKR) and phosphorylated eIF2α (p-eIF2α) have been
observed mainly in degenerating hippocampal neurons, partially
colocalized with hyperphosphorylated tau, a major hallmark of
AD, and p-PKR levels are increased in cerebrospinal fluid from
patients with AD and mild cognitive impairment (Mouton-Liger
et al., 2012; Hugon et al., 2017), in positive correlation with
cognitive decline in AD (Dumurgier et al., 2013). According to
another study, increased levels of p-PKR, p-eIF2α, and p-mTOR
were found in peripheral blood lymphocytes derived from
AD patients compared to healthy subjects, in correlation with
cognitive decline, further supporting the use of these molecules
as biomarkers for the diagnosis of AD progression (Paccalin et al.,
2006). Moreover, sporadic cases of AD constitute approximately
95% of AD cases, while the rest are familial ones. The sporadic
cases are hypothesized to result from interaction between genetic
and environmental factors, such as virus infections. Indeed, a
study that analyzed human genes involved in the cell response to
the herpes simplex virus type 1 (HSV-1) in AD samples compared

to healthy subjects identified a SNP (rs2254958) located on the
5′UTR region of EIF2AK2, the gene encoding to PKR. This
SNP, found within an exonic splicing enhancer, was found to be
associated with AD, and homozygous carriers showed slightly
earlier onset of AD (3.3 years), especially in the absence of the
APOE4 allele (Bullido et al., 2008).

It has also been shown that in neuroblastoma cells
overexpressing PKR, incubation with Aβ peptide resulted in
increased phosphorylation levels of eIF2α, concomitant with an
increase in the number of apoptotic cells (Chang et al., 2002). In
a reciprocal experiment, incubation of PKR−/− neuroblastoma
cells with Aβ peptide resulted in reduced levels of p-eIF2α and
apoptosis, and in accordance, primary culture cells derived from
PKR KO mice were less sensitive to Aβ-induced toxicity (Chang
et al., 2002). Finally, treatment with C16, the most widely used
PKR inhibitor, in 12-month-old 5XFAD AD model mice rescued
fear memory deficits almost fully, and restored LTP impairment
in these mice. This was shown to occur without affecting Aβ1−42
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FIGURE 3 | PKR direct interactions. I and II are the dsRNA binding domains. Red circles represent phosphorylation residues.

levels in these mice. Similar cognitive rescue effects were induced
by C16 in Aβ1−42–injected mice in the novel object recognition
task and LTP impairment (Hwang et al., 2017).

The link between neurodegenerative diseases and oxidative
stress has been a prevailing dogma in neurodegeneration research
in the past three decades. Recent studies suggest a link between
oxidative stress and PKR. Specifically, the anti-oxidant drug
gastrodin (a phenolic glucoside), which suppresses BACE1
expression has been shown to enhance long term memory in the
Tg2576 mouse model of AD in the Morris water maze paradigm
of spatial learning. While induction of oxidative stress using
H2O2 in neuroblastoma cells led to increased levels of pPKR,
p-eIF2α, and BACE1, in accordance with the literature, treatment
with either gastrodin or a peptide PKR inhibitor prevented
the increased elevation in all three parameters, indicating that
gastrodin exerts its neuroprotective effect by inhibition of the
PKR/eIF2α pathway (Zhang et al., 2016). Another study has
identified PKR as an inducer of apoptosis in response to oxidative
stress. The authors showed that oxidative stress induced by
nicotinamide adenine dinucleotide phosphate reduced oxidase
(NADPH oxidase; NOX), an enzyme activated downstream of
ER-stress, leads to the activation of PKR and amplification
of its downstream target CCAAT/enhancer binding protein
homologous protein (CHOP), resulting in apoptosis (Li et al.,
2010).

Learning and Memory
Protein kinase R has also been directly implicated in learning
and memory. Cumulative evidence suggests that de novo global
protein synthesis is a prerequisite for the consolidation of

labile, short-term memory into more stable, long-term memory
(Rosenblum et al., 1993; Klann and Richter, 2007; Gkogkas
et al., 2010; Alberini and Chen, 2012; Gal-Ben-Ari et al.,
2012). Since the rate-limiting step of most protein synthesis
through mRNA translation is the initiation phase, it is plausible
that global protein synthesis during memory consolidation
involves the eIF2α pathway. Global protein synthesis is increased
when phosphorylation levels of eIF2α are decreased. Indeed,
enhancement of long term memory has been shown in both
mice and rats, in cortical- and hippocampal-dependent learning
paradigms, using genetic and pharmacological methods for
decreasing eIF2α phosphorylation directly or indirectly, by
reducing expression levels or activity levels of any of its four
regulatory kinases, including PKR. For example, eIF2α+/S51A

mice (where Ser51 is replaced with alanine, preventing the
phosphorylation of eIF2α) show enhanced performance in
hippocampal-dependent spatial memory and contextual and
auditory fear conditioning, and cortical-dependent conditioned
taste aversion (CTA). The reciprocal experiment of stereotaxic
administration of Sal003 (a derivative of salubrinal, which
inhibits eIF2α dephosphorylation) into the rat hippocampus
resulted in impaired contextual fear learning (Costa-Mattioli
et al., 2007). However, these findings may be ascribed to PERK,
rather than PKR, since similar memory enhancement has been
observed by PERK genetic reduction (viral vectors and PERK
KO mice) or pharmacological inhibition (using PERK inhibitor
GSK2606414) (Trinh et al., 2012; Ounallah-Saad et al., 2014;
Trinh et al., 2014; Sharma et al., 2018; Zimmermann et al.,
2018), and also in a mouse model of AD (Ma et al., 2013; Yang
et al., 2016). It is important to note that the main kinase to

Frontiers in Molecular Neuroscience | www.frontiersin.org 5 January 2019 | Volume 11 | Article 480

https://www.frontiersin.org/journals/molecular-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-neuroscience#articles


fnmol-11-00480 January 5, 2019 Time: 10:57 # 6

Gal-Ben-Ari et al. PKR: A Kinase to Remember

determine the basal phosphorylation state of eIF2α in the brain
and primary culture is PERK (80%), while the other three eIF2α

kinases including PKR determine the remaining 20% (Ounallah-
Saad et al., 2014). Below we list findings supporting the beneficial
effects of inhibiting or suppressing PKR specifically.

Similarly, in rats, pharmacological inhibition of PKR using
C16 (aka PKRi) resulted in enhanced cortical-dependent novel
taste learning (insular cortex-dependent positive, incidental
learning) and CTA (negative, insular cortex dependent taste-
malaise associative learning) when administered either i.p. or
stereotaxically into the insular cortex prior to the taste stimulus.
Similar results were obtained in mice using these paradigms.
This effect of C16 on memory enhancement was shown to
be PKR-specific, since it did not occur when PKR−/− mice
were administered C16 either in the novel taste learning or the
CTA paradigm. However, administration of C16 did not affect
phosphorylation levels of eIF2α either in the hippocampus or
the cortex, in WT or PKR KO mice (Jiang et al., 2010; Stern
et al., 2013). This point has been neglected in the literature
thus far, and is in line with the fact that PERK is the major
kinase to determine levels of eIF2α phosphorylation in the brain
(Ounallah-Saad et al., 2014). We deem it important to explicitly
state that, contrary to our simplistic view, C16 administration
usually does not decrease p-eIF2α levels either in vivo or in
cell culture [e.g., Hwang et al., 2017; 5XFAD mice treated with
Aβ1−42 and PKRi (0.335 mg/kg, i.p.)]. In fact, to the best of
our knowledge, in certain cases, p-eIF2α levels can be decreased
by C16 only by pushing cells to extreme conditions involving
massive cell death, such as prolonged incubation with toxic
agents and/or high concentrations of C16 in vivo [e.g., striatal
quinolinic acid administration combined with C16 (600 mg/Kg,
i.p.) (Tronel et al., 2014)], ex vivo [e.g., bath treatment of brain
slices; C16 (50 µM) for 2 h (Stern et al., 2013)], or in culture
[e.g., PKRi 500 nM (C16) in cerebellar granular neurons from
rats treated with amprolium (1.5 mM) for 24 h; amprolium is a
thiamine competitor and depletes its intracellular levels (Wang
et al., 2007); hippocampal neurons treated with Aβ oligomers for
3 h and PKRi (C16) 1 µM (Lourenco et al., 2013)]. C16 has an
IC50 of 210 nM (Jammi et al., 2003).

A major current advancement in neuroscience is the ability
to zoom in molecularly on specific cell/neuronal types. Zhu
et al. (2011) have shown that PKR−/− mice or WT mice treated
with PKR inhibitor C16 have enhanced long-term memory
and synaptic plasticity in inhibitory neurons, while synaptic
plasticity in excitatory neurons is unaltered. Furthermore, the
authors demonstrated that IFN-γ was increased in PKR−/−mice.
In addition, hippocampal-dependent memory enhancement, as
measured in the contextual fear conditioning paradigm, was
observed following administration of PKR inhibitor C16 and was
abolished in IFN-γ−/− mice. In accordance, treatment of mouse
hippocampal slices with C16 led to sustained L-LTP in slices
derived from WT mice, but not IFN-γ−/− mice. The authors
concluded that IFN-γ mediates disinhibition, which underlies
the enhanced cognitive performance and synaptic plasticity when
PKR is suppressed genetically or pharmacologically (Zhu et al.,
2011). Importantly, the effect downstream of PKR is unclear,
since levels of eIF2α phosphorylation in general or in the relevant

GABAergic neurons were not measured. Further research using
neuronal-specific manipulation is needed to better understand
the possible differential role of PKR and/or the eIF2α pathway
in different neuronal subtypes.

Other studies have also shown the direct involvement of
IFN-γ in learning and memory and in synaptic plasticity. For
example, the production of IFN-γ is altered in many conditions
accompanied by cognitive deficits. A recent study has shown
that hippocampal-dependent tasks such as spatial memory and
recognition memory are enhanced in IFN-γ KO mice (while
other functions, such as motor function or anxiety, for example,
are unaltered). These IFN-γ KO mice were also shown to have
increased DG neurogenesis, along with enlarged dendritic trees,
characterized by longer dendrites in this brain subregion, as well
as changes in cell volume and number, restricted to the dorsal part
of the hippocampus (Monteiro et al., 2016).

PKR IN NEUROINFLAMMATORY
PROCESSES

As mentioned above, PKR is activated by pro-inflammatory
cytokines (e.g., TNF-α, IL-1, and IFN-γ) (Khandelwal et al.,
2011), and in turn, activates inflammation-related pathways,
including the pro-apoptotic c-Jun N-terminal kinases (JNK)
pathway (Bonnet et al., 2000; De Felice and Ferreira, 2014) and
the pro-inflammatory NF-κB pathway (by direct interaction with
IκB, an inhibitor of the NF-κB β subunit) (Bonnet et al., 2000).
Activated PKR enhances IFN-α/β expression by IRF3 activation
(Zhang and Samuel, 2008) and contributes to IFN-α/β mRNA
integrity (Schulz et al., 2010). Activation of both IFN-α/β and NF-
κB occurs downstream of toll-like receptor 3 (TLR3) activation in
response to dsRNA. The signaling cascade, as demonstrated using
poly I:C, involves (TLR3)-mediated activation of NF-κB and
MAP kinase through the signaling components TLR3-TRAF6-
TAK1-TAB2-PKR (Jiang et al., 2003). Depending on the cell
type and insult activating PKR, it also induces the release of
pro-inflammatory IL-1β, IL-18, and high mobility group box 1
(HMGB1) protein (Lu et al., 2012). However, in addition to its
pro-inflammatory activity, PKR also activates anti-inflammatory
IL-10 (Cheung et al., 2005; Chakrabarti et al., 2008) and reduces
CD8 T cell proliferation in several models (Grolleau et al., 2000;
Kadereit et al., 2000). In addition, PKR promotes apoptosis
by interacting with the Fas-associated death domain protein
(Couturier et al., 2010; von Roretz and Gallouzi, 2010) and
upregulation of the proapoptotic factor Bax (Balachandran et al.,
1998).

Indeed, neuroinflammation and activation of microglia are
molecular hallmarks of AD, alongside neuronal loss, Aβ senile
plaques (which are surrounded by reactive microglia and
astrocytes), and neurofibrillary tangles of hyperphosphorylated
tau protein (Duyckaerts et al., 2009). In addition, it has been
shown in mice that inflammation, even if external to the brain,
may lead to neuroinflammation and increased brain levels of Aβ

(Kahn et al., 2012; Krstic et al., 2012), whereas treatment of brain-
external inflammation may halt or even reverse the progression
of this neuropathology. Increased brain levels of Aβ, in turn,
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may lead to exacerbation of inflammation, since Aβ peptide can
activate microglia and lead to further release of pro-inflammatory
cytokines, e.g., TNF-α or IL-1β (Kahn et al., 2012; Krstic et al.,
2012; Carret-Rebillat et al., 2015). PKR contributes directly to
neurotoxicity by activating pro-apoptotic caspase 3 and caspase 8,
as shown in Aβ-treated cells and the APPSLPS1 knock-in mouse
model of AD (Couturier et al., 2010).

A recent study has uncovered at least some of the molecular
mechanisms underlying PKR-mediated neuroinflammation. In
this study, the authors injected lipopolysaccharide (LPS; present
in bacteria and used to induce inflammation) intraperitoneally
to WT or PKR-KO mice, and measured inflammation-related
parameters in the cortex and the hippocampus. These authors
showed that many of the inflammation-related parameters were
PKR-dependent, since these phenomena were not observed in
PKR knockout mice, as opposed to WT mice, including LPS-
induced increase in hippocampal neuroinflammation (measured
by IBA1, a marker of microglia activation), cytokine release
(TNF-α and IL-6), as well as BACE1, Aβ42, and phosphorylated
STAT3 (BACE1 transcription regulator) protein expression levels
(Carret-Rebillat et al., 2015).

In another study using PKR KO mice, 7-week-old mice
were challenged with intracranial administration (into the
left hemisphere) of the neurovirulent JHM strain of mouse
hepatitis virus, JHMV, which induces encephalitis. In this model,
too, the increase in brain levels of pro-inflammatory genes
observed in WT mice was prevented in PKR KO mice (e.g.,
Il-6, Ccl5, and Cxcl10) (Kapil et al., 2014). However, no such
PKR KO vs. WT mouse differences were observed in the
respective proteins encoded by these genes, or IL-1β levels (Taga
et al., 2017). By contrast, other inflammation-related genes and
their respective proteins were matched in the impaired pro-
inflammatory response in PKR KO mice compared to WT mice,
for example, IL-10 and TIMP1. Notably, IFN-γ levels (gene
and protein) were higher in PKR KO mice compared with WT
ones (Kapil et al., 2014). It should be noted that both IL-1β

and IL-6 are upregulated following neuroinflammation, and both
cytokines promote disruption of the blood–brain barrier (BBB)
and recruitment of lymphocytes (Hopkins and Rothwell, 1995;
Erta et al., 2012).

These data suggest that pharmacological inhibition of PKR
or its downregulation, e.g., by a virus, may also protect against
neuroinflammation and its exacerbation. Indeed, injection of
C16 (600 µg/kg, i.p.), the currently most potent PKR inhibitor
(IC50 = 210 nM; Jammi et al., 2003), to a rat model
(10 weeks old) of acute inflammation, induced by unilateral
stereotaxic administration of quinolinic acid (QA), decreased
neuronal loss. Furthermore, it ameliorated neuroinflammation,
as demonstrated by reduced levels of pro-inflammatory IL-1β

and cleaved caspase 3, a marker of apoptosis and increased levels
of anti-inflammatory IL-10 (Lu et al., 2012; Tronel et al., 2014).
However, no significant differences were detected in TNF-α or
IL-4 in the QA-treated animals following C16 treatment. In
another study, treatment with C16 (100 µg/kg) was shown to
prevent neonatal hypoxia-ischemia brain damages by inhibiting
neuroinflammation, reducing pro-inflammatory TNF-α, IL-6,
and IL-1β mRNA expression levels in neonate (7 days old) rats

(Xiao et al., 2016). In both studies, less tissue damage was evident
in C16-treated animals (Tronel et al., 2014; Xiao et al., 2016).

THE ROLE OF PKR IN METABOLISM

PKR in Whole-Body Metabolism
Evidence suggests that PKR constitutes the link binding
metabolic stress, obesity, diabetes, and inflammation, although
this is controversial across the literature. PKR is apparently
involved in metabolism throughout the body, and increased
phosphorylation of eIF2α is a hallmark of obesity and diabetes-
related insulin resistance (Nakamura et al., 2010, 2014; Carvalho-
Filho et al., 2012). Furthermore, in culture, PKR inhibits
pancreatic β-cell proliferation (Song et al., 2015), whereas insulin
treatment elevates PKR phosphorylation on tyrosine residues,
while inhibiting poly I:C-induced PKR phosphorylation on
threonine residues (Swetha and Ramaiah, 2015). Additionally,
high glucose impairs insulin signaling by activation of the PKR
pathway (Udumula et al., 2017), whereas PKR activation induces
insulin resistance in peripheral tissues (Nakamura et al., 2010,
2014; Carvalho-Filho et al., 2012; Carvalho et al., 2013). In
a recent study, PKR was shown to interact with TAR RNA-
binding protein (TRBP) under conditions of metabolic stress,
and that phosphorylation of TRBP results in the activation of
PKR, which in turn leads to JNK activation. While overexpression
of TRBP in obese mice resulted in exacerbation of glucose
metabolism, inhibition of TRBP phosphorylation in the liver
had beneficial effects, including improved insulin resistance and
glucose metabolism as well as reduced inflammation (Nakamura
et al., 2015).

In another study, where PKR KO mice were fed on a high
fat diet (HFD), insulin levels were markedly higher compared
to PKR KO mice fed on control diet or WT mice fed on either
diet. However, no significant differences between WT and PKR
KO mice fed on HFD were noted in other parameters measured,
such as body weight or glucose levels (Taga et al., 2018). Similar
findings were reported by Lancaster et al. (2016) regarding these
parameters in HFD-fed PKR KO mice. However, Lancaster and
colleagues reported that PKR does have a role in T-lymphocyte
recruitment, and PKR KO mice had less T cells in adipose tissue,
which was thought to protect them from inflammation. However,
this was not the case, and the authors showed that genetic
deletion of PKR did not protect these mice against saturated
fatty acid-induced inflammation or inflammasome activation.
Furthermore, contrary to the studies presented above, injection
of poly I:C in order to increase PKR did not result in impaired
glucose tolerance (Lancaster et al., 2016).

These contradictory findings may be explained by different
transgenic mouse models used. The widely used PKR KO mouse
models have a deletion either in the N terminal or C terminal
of PKR, and cells derived from these models were shown to
express truncated forms of PKR (Baltzis et al., 2002), which
retain partial functionality, and studies have shown that different
domains of PKR are required for its different functions. Indeed,
the catalytic domain is necessary for suppression of mRNA
translation regulation and induction of inflammation in response
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to excessive consumption of nutrients and energy (Garcia-Ortega
et al., 2017); the dsRNA binding domain is required for the
activation of PKR by snoRNA under conditions of metabolic
stress (Youssef et al., 2015); and the protein binding domain of
PKR (but not its dsRNA binding domain) is required for other
functions, e.g., as an adaptor protein. For example, a catalytically
inactive PKR with intact protein binding was shown to promote
β-cell proliferation via the TRAF2/RIP1/NF-κB/c-Myc pathways
(Gao et al., 2015). However, this finding is inconsistent with
those reported by Song et al. (2015), where PKR was reported
to inhibit β-cell proliferation through sumoylation-dependent
stabilization of P53. Of note, most kinase inhibitor compounds,
including inhibitors of PKR, target only the catalytic domain
(Garcia-Ortega et al., 2017).

PKR Metabolism in the Brain
Insulin plays a major role in orchestrating energy availability
in the body, as well as in the brain, a high-energy demanding
organ (Fernandez and Torres-Alemán, 2012). In recent years,
it has become increasingly clear that metabolic dysregulation
in the brain underlies cognitive disorders, including AD, now
considered type III diabetes (de la Monte and Wands, 2008).
Such metabolic dysregulation or metabolic stress may result from
aging, particularly when combined with high caloric intake and
lack of physical exercise, which may lead to health problems
spanning obesity, cardiovascular diseases, and diabetes (see
Figure 1).

Metabolic stress also plays a role in AD, inter alia, through
the Apolipoprotein E (ApoE) protein, which plays a role in lipid
metabolism and transport in the liver and the brain, including
clearance of Aβ peptide from the synapse (Li et al., 1988). The
ApoE4 ε4 allele (ApoE4) is currently the best studied risk factor
for late-onset, sporadic AD, with a prevalence of 20% in the
general population, compared to 50% in AD patients, although
estimates vary between different sources (Ward et al., 2012).

A recent study examined the interplay of PKR, metabolic
stress, and ApoE4. Following prolonged metabolic stress, induced
via HFD (60% fat for 3 months), higher levels of anxiety behavior
were observed in ApoE4 mice compared to control ApoE3 mice
fed on the same HFD. Furthermore, maintenance on HFD led
to poorer levels of metabolic parameters in ApoE4 compared
to ApoE3 mice, resembling diabetes mellitus-like characteristics,
manifested as more rapid weight gain, lower serum and plasma
insulin levels, and higher serum glucose levels in ApoE4
compared to ApoE3 mice. Furthermore, this HFD protocol led
to higher hippocampal levels of β-site amyloid precursor protein-
cleaving enzyme1(BACE1) and p-eIF2α protein expression levels,
as well as higher hippocampal levels of ATF4 mRNA in ApoE4
compared to ApoE3 mice (Segev et al., 2016). However, the
increase observed in p-eIF2α protein expression levels may be
ascribed to eIF2α regulatory kinases other than PKR, especially
PERK, the predominant kinase to affect p-eIF2α, and the main
kinase to respond to ER stress (Ounallah-Saad et al., 2014).

In another study, ApoE4 mice were shown to have poorer
long-term memory compared to ApoE3 mice, as measured by
freezing in the fear conditioning paradigm. However, a single-
dose treatment with the PKR inhibitor C16 (0.335 µg/g body

weight, 1 h before conditioning) resulted in restoration of long
term memory in ApoE4 mice, with freezing levels similar to
ApoE3 mice in the fear conditioning paradigm. In addition,
hippocampal ATF4 mRNA levels were found to be higher in
ApoE4 mice compared to ApoE3 mice, whose ATF4 levels were
similar to those of C57BL/6 mice. Hippocampal ATF4 mRNA
levels were further elevated in aged ApoE3 and ApoE4 mice
(12 months old) compared to their younger (4 months old)
counterparts. Similar findings were observed in humans, where
ATF4 mRNA levels were higher in ApoE4 carriers (67–98 years
old) compared to non-carrier age-matched controls (Segev et al.,
2015).

While immune system aspects are discussed in the section
above, the interplay of PKR, the immune system, and metabolism
has been shown in several studies. For example, Aβ oligomers
have been shown to remove insulin receptors from the neuronal
surface, which in turn leads to activation of c-Jun N-terminal
kinase (JNK). This is followed by inhibition of the insulin
receptor substrate (IRS-1) and, in cultured hippocampal neurons,
this inhibition was shown to be mediated both by JNK/TNFα

and PKR (Bomfim et al., 2012). This is supported by the
finding that elevated levels of serine phosphorylation of IRS-1
and activated JNK were found in brains of both AD and
diabetes patients (Bomfim et al., 2012). In addition, JNK/TNFα

signaling leads to peripheral insulin resistance (Gregor and
Hotamisligil, 2011), and this may also be the case in AD. Recent
studies have shown that while i.c.v. administration of Aβ1−42
oligomers to mice resulted in long term memory impairment,
this impairment was prevented both in PKR−/− mice and in
TNFR−/− mice, and mice treated with either PKR inhibitor
C16 or TNF-α neutralizing antibody, infliximab (Lourenco
et al., 2013; Hwang et al., 2017). Furthermore, treatment of
hippocampal cultures with insulin prevented Aβ1−42 oligomer-
induced phosphorylation of PKR (Lourenco et al., 2013).

PKR IN ENDOTHELIAL CELLS

Protein kinase R has multiple effects in the vascular system in
general and in endothelium cells in particular. One mechanism
through which PKR exerts its effect in the vascular system is by
modulating the expression of adhesion molecules in endothelial
cells in the vascular system, thereby leading to the onset and
development of inflammation (Osborn, 1990; Carlos and Harlan,
1994). For example, the adhesion molecule E-selectin is expressed
on endothelial cells during inflammation, and its transcription
can be induced by TNF-α or IL-1 (Ghersa et al., 1992). The
activation of E-selectin by these cytokines is mediated by NF-κB
in conjunction with endothelial leukocyte adhesion molecule 1
(ELAM-1) (Schindler and Baichwal, 1994). In aortic endothelial
cells derived from PKR−/− mice, the induction of E-selectin by
either TNF-α or PKR-specific inducer was attenuated, supporting
the idea described above, that PKR functions downstream of
TNF-α, and additionally, demonstrating that PKR mediates
the role of the adhesion molecule E-selectin in inflammation.
Furthermore, the authors showed that the attenuation of
E-selectin activation in the PKR deficient mice was caused by a
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reduction in the formation of the NF-ELAM-1 complex, as well
as reduced activation of NF-κB (Bandyopadhyay et al., 2000).

As mentioned above, PKR is activated in response to
mechanical stress, and plays a central role in determining cell
fate, whether toward apoptosis or survival (Gil and Esteban,
2000; García et al., 2007; Hugon et al., 2017; Watanabe et al.,
2018). Furthermore, many of the factors known to promote or
exacerbate congestive heart failure, which constitutes mechanical
stress due to hemodynamic overload, are also known to activate
PKR, including oxidative stress, Toll receptor activation, and low-
grade chronic inflammation (Kadokami et al., 2001; Lu et al.,
2010). In a recent study, it was shown that PKR activation
is increased both in a model of chronic transverse aortic
constriction in mice, a mechanically induced simulation of
congestive heart failure, and in human samples of congestive
heart failure. Moreover, PKR−/− mice were protected from
transverse aortic constriction-induced pulmonary congestion,
cardiac dysfunction, elevation in inflammatory cytokines (TNF-α
and IL-1β), and apoptosis (as measured by the TUNEL assay and
mRNA and protein expression levels of pro-apoptotic Bax and
Caspase-3) (Wang et al., 2014).

Many studies have shown that PKR plays a central role
in angiogenesis, which in turn plays a central role in cancer,
neurodegeneration, and inflammation, cardiovascular diseases,
as well as age-related macular degeneration, a common cause for
blindness in the elderly. In two independent studies using in vitro
and in vivo models (each) for cardiovascular diseases mediated by
hypoxia and mechanical stress caused by hemodynamic pressure,
similar results were obtained, showing that PKR is necessary
for angiogenesis and neovascularization. Specifically, Zhu et al.
(2016) used the RF/6A rhesus choroid-retinal endothelial cell
line, where hypoxia was chemically induced using cobalt chloride
(CoCl2). In this system, PKR expression was upregulated
in parallel with p-PI3K, p-Akt, and VEGF expression, all
of which were downregulated using siRNA directed against
PKR (Zhu et al., 2016). The authors demonstrated that PKR
is upstream of p-PI3K, p-Akt, and VEGF using a p-PI3K
inhibitor, which affected p-PI3K, p-Akt, and VEGF, but not
PKR. In addition, the knockdown of PKR using siRNA in a
co-culture of RF/6A and ARPE-19 cells resulted in decreased
cell migration and tube formation, strongly implicating the
necessity of PKR in the formation of vasculature. In a mouse
model of choroidal neovascularization (CNV), which mimics
age-related macular degeneration, PKR was colocalized with
CD31, a marker of vascular epithelium. In this model, treatment
with monoclonal antibodies directed against PKR resulted in
decreased progression of CNV. These findings were supported
by another study, focusing on peripheral artery disease (Zhu
et al., 2015), where PKR−/− mice were shown to have delayed
blood flow recovery, with a 34% decrease in CD31 in the
ischemic tissue, indicating a reduced number of endothelial
cells. In vitro, the authors demonstrated in a model of human
umbilical vein endothelial cells (HUVECs) that pPKR expression
was increased in response to hypoxia, whereas inhibition of
PKR using siRNA resulted in reduced microtubule formation
and migration. Furthermore, VEGF expression was reduced
both in PKR−/− mice and in HUVECs treated with PKR

siRNA, supporting the findings of the study above regarding the
necessity of PKR for VEGF-mediated angiogenesis under hypoxia
conditions.

Other studies have shown the role of PKR in angiogenesis in
the context of hypoxia in tumors. For example, PKR was shown to
function as a tumor suppressor, downregulating transcription of
hypoxia-inducible factor 1α (HIF-1α) under hypoxia conditions.
This was shown to occur by PKR-regulated activation of T-cell
protein tyrosine phosphatase, which in turn suppresses signal
transducer and activator of transcription 3 (Stat3) (Papadakis
et al., 2010). The role of PKR in cancer is discussed in further
detail below.

Aging, as a risk factor for cancer, cardiovascular diseases, and
neurodegeneration, is also related to senescence of endothelial
cells. A recent study has shown that PKR inhibition (either by
siRNA for PKR or inhibition of its phosphorylation using 2-
AP) can reverse palmitate-induced (an independent risk factor
of cardiovascular diseases) senescence of HUVECs, by activating
JNK. JNK activation results in inhibition of silent information
regulator 1 (Sirt1), which serves as an anti-senescent factor (Li
et al., 2018), by affecting downstream targets such as histones,
transcription factors, and many other aging proteins, one of
which is the tumor suppressor p53 (Volonte et al., 2015). Taken
together, these studies point to PKR as an attractive target for the
treatment of cardiovascular diseases.

PKR IN CANCER

PKR, an Enzyme With Contentious Roles
in Cancer
While the role of PKR in metabolic stress and brain function is
well established and described above, the role of PKR in cancer
biology remains a subject of debate, as both tumor-suppressive
and tumor-stimulatory functions have been attributed to this
enzyme. The attribution of different and even contradictory
roles for PKR in tumorigenesis reflect its involvement in the
regulation of diverse cellular processes which may differentially
affect the cancer cell and its interaction with the tumor
microenvironment. Such processes include cell autonomous
events such as the negative regulation of protein synthesis
through eIF2α phosphorylation or signal transduction through
different pathways including NF-κB, which alter the susceptibility
of the cell to apoptosis and modulate the expression of
inflammatory cytokines. Thus, variations in PKR expression and
activity are predicted to affect both cancer-cell-autonomous and
non-cell-autonomous aspects of the developing tumor.

This duality of effects is predicted to be a source of differences
in experimental results and in their ensuing interpretation, with
dependence on tumor type, tumor stage, or experimental model.
Thus, results may differ between in vitro vs. in vivo studies,
immune-deficient vs. immunocompetent mouse models, and
tumors driven or not by inflammation. Also, the regulatory
role performed by PKR in transduction of oncogenic/tumor
suppressor signals may serve as a source for dual roles in
tumor progression. This is exemplified by the PKR-mediated
activation of NFκB (Maran et al., 1994). PKR was shown to
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activate NF-κB in diverse cellular contexts, with a differential
dependence on its enzymatic activity (Kumar et al., 1994;
Bonnet et al., 2000; Bonnet et al., 2006). As NF-κB may have
powerful, albeit contradictory (double-edged sword) roles in
cancer, mediating either tumor promotion or tumor suppression
in different tumor settings (Pikarsky and Ben-Neriah, 2006),
one can imagine similarly dual roles for PKR. Moreover, the
proposed non-enzymatic activity of PKR may support the
distinction between pro- or anti-tumorigenic roles, alternatively
resulting from modifications in PKR expression or activity. In
this context, functional interactions between PKR and pro-
tumorigenic signaling pathways [e.g., STAT3 (Shen et al., 2012) or
v-mos (Dagon et al., 2001)] were proposed to inhibit PKR activity,
resulting in a scenario where increased PKR expression may not
necessarily coincide with its increased activity.

Tumor Suppressor Roles of PKR
The notion that PKR functions as a tumor suppressor
is supported by: (i) Cell growth inhibition upon PKR
overexpression (Chong et al., 1992; Meurs et al., 1993). In
this context, PKR-mediated regulation of cellular replication
may occur either through the inhibitory effect of PKR on protein
synthesis, an essential resource for cell growth, or through
PKR-dependent phosphorylation of cell cycle regulators. Of note,
the expression and activity of PKR are differentially regulated in
the cell cycle (Zamanian-Daryoush et al., 1999), and exposure
to dsRNA upon mitotic breakdown of the nuclear envelope
and exposure of dsRNA was proposed as a mechanism for
PKR activation in mitosis (Kim et al., 2014). However, both
stimulatory (Kim et al., 2014) and inhibitory (Dagon et al.,
2001; Yoon et al., 2010) roles have been proposed for PKR
in mitotic progression, underscoring the putative dual role of
PKR in cancer. (ii) PKR-mediated stimulation of apoptosis
through different molecular mechanisms (Jagus et al., 1999; Gil
and Esteban, 2000) including transcription- and translation-
mediated increases in expression of receptors that mediate
programmed cell death (e.g., Fas (CD95/Apo-1) and/or pro-
apoptotic Bcl2 effector proteins (Balachandran et al., 1998),
which result in increased caspase activity (Gil et al., 2002). (iii)
Functional interactions between PKR and tumor suppressors
which regulate apoptosis (e.g., p53). Indeed, PKR is a p53
target gene (Yoon et al., 2009). Moreover, Type I interferon
increases expression of both p53 (Takaoka et al., 2003) and
PKR, and PKR amplifies interferon β induction by dsRNA
(McAllister et al., 2012). Furthermore, PKR and p53 physically
interact, and PKR positively regulates p53 transcriptional activity
(Cuddihy et al., 1999a,b), while p53 positively regulates gene
induction by dsRNA (Hummer et al., 2001). Together, these data
suggest that PKR and p53 are intertwined in a positive feedback
loop. However, other studies show that dsRNA stimulates
p53 degradation (Marques et al., 2005; Baltzis et al., 2007),
suggesting a negative feedback loop involving p53 and PKR, and
underscoring the complexity of their functional interactions.
(iv) In vivo experiments demonstrating an inverse correlation
between PKR expression and/or activity and tumorigenicity.
For example, knockdown of PKR in HCT116 human colon
cancer cells supported rapid tumor growth and resistance to

genotoxic drugs in nude mice (Yoon et al., 2009). Similarly,
expression of dominant−negative mutants of PKR resulted
in malignant transformation of NIH 3T3 cells and endowed
these cells with the ability to generate tumors in nude mice
(Koromilas et al., 1992; Meurs et al., 1993; Barber et al., 1995).
(v) Reduced expression and/or activity of PKR in tumors. For
example, in head and neck carcinoma, PKR and the proliferation
marker PCNA exhibited inversely correlated expression patterns,
suggesting a proliferation-inhibitory role for PKR (Haines
et al., 1998). Furthermore, in myelodysplastic syndrome (a
slow growing form of blood cancer), deletion of chromosome
5q, and the ensuing lack of IRF1 expression, lead to reduced
PKR expression (Beretta et al., 1996). In addition to reduced
expression, inactivation of PKR, similarly to what occurs in cells
of patients with B-cell chronic lymphocytic leukemia (Hii et al.,
2004), was also suggested to support tumorigenesis.

PKR and Tumor Promotion
The established roles of inflammation in cancer progression
(Coussens and Werb, 2002; Hanahan and Weinberg, 2011), the
pro-inflammatory nature of NF-κB signaling and its multiple
roles in cancer development (Taniguchi and Karin, 2018), and
the identification of PKR as a stimulator of NF-κB activity
(Kumar et al., 1994; Maran et al., 1994; Bonnet et al., 2000, 2006)
form a strong rationale for pro-tumorigenic signaling by PKR.
Indeed, PKR has been identified as overexpressed and activated
in several cancers including hematopoietic malignancies (Basu
et al., 1997), breast cancer (Kim et al., 2000), melanoma, and
colon cancer (Kim et al., 2002). For example, in melanoma, eIF2α

phosphorylation and the ensuing translation reprogramming
were recently described as drivers of phenotypic plasticity,
invasiveness and therapeutic resistance in melanoma (Falletta
et al., 2017). These studies suggest that eIF2α kinases, such
as PKR, may switch melanoma from a proliferative to an
invasive cancer cell, driving metastasis in this manner. Indeed,
interference with PKR reduced the growth and metastatic
potential of murine melanoma (Delgado André and De Lucca,
2007; André et al., 2014). Moreover, and in accord with a
correlation between PKR expression and tumor progression,
primary melanomas revealed minimal PKR immunoreactivity,
while melanoma lymph node metastases expressed high levels of
PKR (Kim et al., 2002).

Recent transcriptomic studies in multiple cancer types (e.g.,
The Cancer Genome Atlas, TCGA) and their compilation into
accessible public databases [e.g., cBio Portal, (Cerami et al., 2012;
Gao et al., 2013)] allow for a global assessment of PKR expression
in human tumors. The picture that emerges is one in which
PKR (EIF2AK2) is broadly expressed across different cancer
types, individual patients within a defined cancer type show
considerably variable (up to 10-fold) levels of PKR expression
(Figure 4A), PKR is rarely mutated, and 5–10% of patients show
overexpression of PKR. Visualization of publically accessible
TCGA data with the UCSC Xena browser1 shows survival data
(Kaplan–Meier curves for overall survival) across multiple cancer
types (TCGA PanCanAtlas, 12830 patients). These data revealed

1https://xenabrowser.net
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FIGURE 4 | Increased expression of PKR correlates with activation of interferon-STAT1 signaling and with poor prognosis in multiple cancer types. To evaluate the
expression of EIF2AK2 (PKR) in samples of cancer patients, we employed cBio Portal to assess studies of The Cancer Genome Atlas (TCGA). (A) Expression of
EIF2AK2. Graph depicts the RPKM value of EIF2AK2 expression in different patient samples, ordered according to the median value of expression in the given
cancer type. Blue puncta are samples where the EIF2AK2 sequence is wild type, red are samples in which EIF2AK2 is mutated. (B) Analysis of survival of cancer
patients according to EIF2AK2 expression. Graph depicts the survival of patients (12830 patients form the PANCAN TGCA database, assessed and visualized with
the UCSC Xena browser) classified according to a threshold of EIF2AK2 expression (blue, low expression; red, high expression). (C) Correlation of expression of
EIF2AK2 and STAT1 in pancreatic cancer patients (196 cases, PAAD TGCA study, visualized with the UCSC Xena browser). (D,E) Analysis of survival of pancreatic
cancer patients according to EIF2AK2 (D) or STAT1 (E) expression. Graph depicts the survival of patients (196 patients form the PAAD TGCA database, assessed
and visualized with the UCSC Xena browser) classified according to threshold expression (blue, low expression; gray, median expression; red, high expression).

that higher levels of PKR expression correlated with poor
survival (Figure 4B, p = 4.441E-16). For example, in pancreatic
cancer (PAAD study, TCGA pancreatic cancer database, 196
cases), EIF2AK2 expression is considered as an unfavorable
prognostic marker2; and data depiction with the UCSC Xena
browser shows a negative correlation between PKR expression
and survival (p = 0.001, Figure 4C). Indeed, expression of STAT1
(an interferon stimulated gene, and a mediator of interferon-
transcriptional activity) and its correlation with survival in this
cohort revealed a similar scenario to the one observed with PKR
(Figures 4D,E). Together, these data support the notions of a

2https://www.proteinatlas.org

pro-tumorigenic association of PKR expression and cancer, and
of the regulation of its expression by JAK-STAT signaling in
cancer cells. Of note, JAK-STAT signaling pathway is intimately
associated with the transduction of signals from inflammatory
cytokines (e.g., interferon gamma), suggesting that the pro-
tumorigenic role of PKR occurs within the context of tumor-
related inflammation.

PKR in cancer therapy. Due to its roles as a mediator of
apoptosis and anti-viral responses, PKR expression and function
have been implicated in two forms of anti-cancer therapy:
chemotherapy and oncolytic virotherapy. In the former, PKR
expression and activity have been positively associated with the
therapeutic effects of 5-Fluorouracil [5-FU, (García et al., 2011)],
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doxorubicin (Peidis et al., 2011), bozepinib (Marchal et al.,
2013), and histone deacetylase inhibitors [HDACi, (Peidis et al.,
2010)]. Concerning oncolytic virotherapy, which aims at the
specific infection and killing of cancer cells (oncolysis) and
the activation of anti-tumor immunity, defects in interferon
signaling in cancer cells expose these cells to viral oncolysis
(Stojdl et al., 2000; Danziger et al., 2016). Specifically, defects
in PKR activation were identified as a central mechanism by
which oncogenic Ras enables oncolysis of transformed cells
with oncolytic reovirus (Strong et al., 1998). In addition to
oncolysis resulting from productive infection (a scenario which
may benefit from defects in PKR expression or function), we have
recently identified a novel form of viral oncolysis (oncolysis by
non-productive viral infection, ONPVI) in which the combined
exposure of interferon-responsive prostate cancer cells to a novel
oncolytic virus (epizootic hemorrhagic disease virus-Tel Aviv
University, EHDV-TAU) and interleukin-6, induced caspase-
mediated cell death. ONPVI occurred in the context of STAT-
1-dependent upregulation of multiple anti-viral gene products,
including PKR (Danziger et al., 2018); opening the possibility
that PKR may contribute to virally induced cancer cell death.
Given the dependency of anti-immune checkpoint therapy
on functional interferon-gamma/JAK-STAT signaling (Zaretsky
et al., 2016; Sharma et al., 2017), and the positive feedback
loop involving interferon signaling and PKR expression/function,
we speculate that PKR may also play roles in this form of
therapy. Together, these data suggest that the assessment of the
status of PKR expression and function in cancer cells may be
important for the choice of optimal therapeutic options, and
that the development of means to manipulate its expression and
function may have future applications in combination therapy
settings.

TOOLS FOR INHIBITING PKR

Taken together, the studies above point to PKR as a hub
for co-morbidity and an attractive target for the treatment of
metabolic diseases, cardiovascular diseases, neurodegenerative
diseases, inflammation, and cancer. Moreover, when it comes
to aging and correlated cognitive decline (Segev et al., 2015),
PKR inhibition should serve both as an anti-neurodegenerative
disorders agent and a pro-cognitive agent. The main obstacles to
better understand PKR are (i) the available tools to inhibit PKR
activity in general and specific functions of PKR in particular,
(ii) the differences in expression levels between different cells,
and (iii) the ability to manipulate PKR in specific cell types
within a tissue. The most widely used pharmacological PKR
inhibitor is the highly potent small molecule imidazolo-oxindole
C16, also known as PKRi, which targets the ATP binding site
of PKR. C16 has an IC50 of 210 nM in vitro (Jammi et al.,
2003), and is typically used at doses of 210–500 nM in vitro
for 1 h (Table 1). Incubation of cells with high concentrations
of C16 induces high cell toxicity (see PKR in Learning and
Memory section above). C16 has been successfully used by i.p.
administration in mice and rats to elicit memory enhancement,
indicating that the compound can cross the blood brain barrier.
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Table 1 shows that inhibition of PKR with C16 rarely inhibits
eIF2α phosphorylation, the most known and cited substrate of
PKR. It is clear that, in the brain, PERK is the dominant kinase
to control basal levels of eIF2α phosphorylation (Ounallah-Saad
et al., 2014); however, we do not know if this is the case in
different neuronal subtypes (e.g., inhibitory versus excitatory
neurons). Another less specific pharmacological inhibitor of PKR
is the 2-aminopurine (2-AP) compound, which competes for
ATP at the ATP binding site of PKR, and thereby inhibits its
phosphorylation (Hu and Conway, 1993). This compound is less
potent than C16, and is used in vitro at doses of 4–10 mM for
4 h (Endoh et al., 2009). Other inhibitors of PKR have been
developed, although these were less potent than C16 (Weintraub
et al., 2016).

The PKR can also be inhibited by monoclonal antibodies and
using genetic tools such as siRNA or viral vectors harboring
an shRNA sequence directed against PKR, and both approaches
have been successfully used in vitro and in vivo (André et al.,
2014; Zhu et al., 2015, 2016). However, a new direction with
promising high specificity is the use of biological, custom-
designed peptides, whose advantages include high potency, high
specificity, relative lack of toxicity, predictable metabolism, and
selective targeting of specific functions (Kaidanovich-Beilin and
Eldar-Finkelman, 2006; Eldar-Finkelman and Eisenstein, 2009;
Fosgerau and Hoffmann, 2015). Indeed, some peptide drugs have
already been FDA approved (Kaspar and Reichert, 2013). Still,
peptides suffer from disadvantages, which include instability,
high susceptibility to degradation, susceptibility to hydrolysis
and oxidation, tendency for aggregation, short half-life, limited
bioavailability due to their low membrane permeability, and
consequently, the inability to administer them orally (Fosgerau
and Hoffmann, 2015). However, in recent years there have
been technological developments allowing to overcome some
of the drawbacks of peptides, such as conferring membrane
permeability by fusion to the Tat peptide or insertion of
peptides into liposomes, micelles, nano-emulsions, or polymer
nanoparticles to confer membrane permeability (Kaidanovich-
Beilin and Eldar-Finkelman, 2006). Nevertheless, this strategy is
still under development.

SUMMARY AND FUTURE

As can be clearly understood from the review above, we, the
authors, recognize the complexity of PKR-mediated signaling
in different cells and/or body/organs at different developmental
stages and cellular compartments (Figures 2, 3). The main
points we conclude from the many excellent papers summarized
above are:

(1) PKR level and post-translation modifications are
excellent biomarkers for neurodegenerative diseases (e.g.,
AD, dementia, Parkinson’s disease, Huntington’s disease, and
prion disease) and cancer (Figure 4, based on open source
data).

(2) Inhibition of PKR is predicted to be highly beneficial in
age-related neurodegenerative diseases. PKR is positioned in the
center of metabolic syndrome disease, including glucose or Aβ

load and inflammation and its inactivation reduces the insult
(Figure 1).

(3) PKR inhibition contributes positively and directly to
cognitive function in young and old mice.

(4) Inhibition of PKR is beneficial in certain cases of cancer.
However, here, the situation is more complex as the role of PKR
in tumors (pro- or anti-tumorigenic) may differ according to
tumor type and/or stage.

(5) PKR inhibition or deletion is not essential for an
organism response to viral infection as detected in PKR
KO mice or prolonged treatments with the best-known PKR
inhibitor, C16, and thus has the potential to serve as medical
treatment.

(6) Treatment with C16 following different stimulations in
most cases does not affect eIF2α phosphorylation levels, although
many publications are trying to explain the phenotypes of
PKR inhibition via regulation of mRNA translation (Table 1).
Moreover, brains of PKR KO mice do not show significant change
in eIF2α phosphorylation. On the other hand, most papers do
show a clear effect of PKR inhibition on the NF-κB pathway
(Table 1).

(7) The recent findings that PKR detects not only exogenous,
viral dsRNA but also endogenous dsRNA, such as mitochondrial
RNA, point to it as a new target for reducing oxidative stress and
apoptosis in disease states and specifically in neurodegenerative
diseases.

We hypothesize that better understanding of PKR equilibrium
and function in different scenarios, in addition to its ‘traditional’
role in cellular viral response, can be extremely important
in understanding basic related biological processes such
as inflammation, metabolism, aging, cancer, and brain
function in normal and pathological states. Moreover, we
predict that potent, non-toxic, specific inhibition of PKR
function/s will serve as treatment for different diseases in
certain situations. The most plausible steps in order test our
hypotheses are:

(1) Identify small molecule inhibitors for PKR. Weintraub and
colleagues (2016) employed a computational chemistry screening
approach, which yielded interesting but unsatisfactory results.
Screening small molecule libraries is the next reasonable step.

(2) Better understanding of the interplay of levels of PKR
expression, function, and cell states.

(3) Identifying new tools (i.e., non-small molecule inhibitor),
such as peptides, to inhibit specific functions of PKR.

(4) Understanding the role of PKR in specific cellular
and subcellular compartments (e.g., neuronal dendrites) and
cellular-specific context using genetics and/or pharmacokinetic
tools.

We believe that the steps proposed above together with the
new tools of omics and precision biology will allow better
fundamental understanding of PKR functions to be translated
into treatment of currently incurable diseases.
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