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The packaging of DNA into chromatin determines the transcriptional potential of cells
and is central to eukaryotic gene regulation. Case sequencing studies have revealed
mutations to proteins that regulate chromatin state, known as chromatin remodeling
factors, with causal roles in neurodevelopmental disorders. Chromodomain helicase
DNA binding protein 8 (CHD8) encodes a chromatin remodeling factor with among
the highest de novo loss-of-function mutation rates in patients with autism spectrum
disorder (ASD). However, mechanisms associated with CHD8 pathology have yet to
be elucidated. We analyzed published transcriptomic data across CHD8 in vitro and
in vivo knockdown and knockout models and CHD8 binding across published ChIP-seq
datasets to identify convergent mechanisms of gene regulation by CHD8. Differentially
expressed genes (DEGs) across models varied, but overlap was observed between
downregulated genes involved in neuronal development and function, cell cycle,
chromatin dynamics, and RNA processing, and between upregulated genes involved in
metabolism and immune response. Considering the variability in transcriptional changes
and the cells and tissues represented across ChIP-seq analysis, we found a surprisingly
consistent set of high-affinity CHD8 genomic interactions. CHD8 was enriched near
promoters of genes involved in basic cell functions and gene regulation. Overlap
between high-affinity CHD8 targets and DEGs shows that reduced dosage of CHD8
directly relates to decreased expression of cell cycle, chromatin organization, and RNA
processing genes, but only in a subset of studies. This meta-analysis verifies CHD8 as
a master regulator of gene expression and reveals a consistent set of high-affinity CHD8
targets across human, mouse, and rat in vivo and in vitro studies. These conserved
regulatory targets include many genes that are also implicated in ASD. Our findings
suggest a model where perturbation to dosage-sensitive CHD8 genomic interactions
with a highly-conserved set of regulatory targets leads to model-specific downstream
transcriptional impacts.
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INTRODUCTION

Genetic studies have found that heterozygous loss-of-function
mutations to chromatin remodeling genes significantly
contribute to autism spectrum disorder (ASD) neurobiology,
presumably through disruptions to transcriptional regulation
in the developing and mature brain (O’Roak et al., 2012a,b;
Parikshak et al., 2013; De Rubeis et al., 2014; Iossifov et al.,
2014; Sanders et al., 2015; Vissers et al., 2016). The gene
encoding chromodomain helicase DNA binding protein 8
(CHD8) has one of the highest observed mutation rates in
sporadic ASD (O’Roak et al., 2012a; Krumm et al., 2014;
Barnard et al., 2015), and mutations to CHD8 have also
been identified in cases from schizophrenia and intellectual
disability cohorts (McCarthy et al., 2014; Tatton-Brown
et al., 2017). In addition to primary neurodevelopmental
and psychiatric disorder diagnosis, patients that carry CHD8
mutations present with comorbid macrocephaly, craniofacial
dysmorphology, and gastrointestinal pathology (Bernier et al.,
2014).

CHD8 belongs to the CHD family of ATP-dependent
chromatin remodelers (Hall and Georgel, 2007; Marfella
and Imbalzano, 2007; Hargreaves and Crabtree, 2011). CHD
family proteins are distinguished by tandem chromodomains
predicted to enable histone binding (Flanagan et al., 2005).
As some CHD proteins demonstrate chromatin remodeling
activity (Tong et al., 1998; Hall and Georgel, 2007; McKnight
et al., 2011), CHD8 has been speculated to drive pathological
changes in neurodevelopmental gene expression by targeting
and remodeling chromatin at specific promoters and enhancers
(Sugathan et al., 2014; Ceballos-Chávez et al., 2015; Cotney et al.,
2015). This is supported by evidence that CHD8 can reposition
nucleosomes in vitro and in mammalian cell culture (Thompson
et al., 2008).

Several mechanisms have been suggested to underlie CHD8
binding specificity, including through histone modifications
associated with open chromatin (Yuan et al., 2007; Rodriguez-
Paredes et al., 2009; Sugathan et al., 2014; Cotney et al., 2015)
and recruitment via protein–protein interactions (Ishihara et al.,
2006; Yuan et al., 2007; Thompson et al., 2008; Nishiyama
et al., 2009; Rodriguez-Paredes et al., 2009; Shen et al., 2015;
Fang et al., 2016). While the impact of haploinsufficiency
on CHD8 function is unclear, loss of CHD8 in in vitro
and in vivo models dysregulates ASD-associated and CHD8-
target gene expression (Sugathan et al., 2014; Cotney et al.,
2015; Katayama et al., 2016; Gompers et al., 2017). Whether
reported patterns of transcriptional dysregulation associated
with CHD8 haploinsufficiency are due to direct effects versus
downstream or secondary changes to CHD8 regulation remains
unresolved.

Knockdown or haploinsufficiency of Chd8 in animal models
has recapitulated specific neuroanatomical, gastrointestinal,
cognitive, and behavioral phenotypes observed in patients
(Sugathan et al., 2014; Katayama et al., 2016; Gompers
et al., 2017; Platt et al., 2017), though reported phenotypes
vary across models. Published studies encompass in vitro
and in vivo systems and shRNA knockdown or targeted

mutation of CHD8. Despite the variety of models, there appear
to be general patterns of neurodevelopmental disruption
caused by reduced CHD8 expression, characterized by
impacts to neuronal proliferation, differentiation, and
synaptic function. However, discrepancies between studies
make it difficult to reconcile consistent mechanisms and
phenotypes.

Characterizing convergent patterns of CHD8 genomic
interactions and transcriptional outcomes caused by CHD8
haploinsufficiency across studies could significantly advance
understanding of core pathophysiology associated with CHD8
mutations and reveal chromatin-associated mechanisms
underlying complex brain disorders. While published
models of CHD8 haploinsufficiency vary considerably in
design, nearly all have leveraged genomic approaches to
determine the impact of reduction of CHD8 dosage on gene
expression. Many have also examined CHD8 interaction
targets genome-wide. The methods used, RNA sequencing
(RNA-seq) and chromatin immunoprecipitation followed by
sequencing (ChIP-seq), generate comparable quantitative data
enabling direct comparisons of results across models and
studies.

We re-analyzed published RNA- and ChIP-seq data
and built an online user interface enabling browsable
comparison of gene expression changes linked to CHD8
haploinsufficiency. Across studies, we found overlapping changes
in gene expression across haploinsufficiency models and a
strikingly consistent set of high-affinity CHD8 interaction
target genes across all binding datasets. The findings of this
meta-analysis suggest evolutionarily-conserved and non-cell-
type specific high-affinity genomic targets of CHD8 across
human, mouse, and rat models. By disrupting these genomic
interactions, or by secondary mechanisms, reduction in CHD8
expression directly and indirectly altered transcription of genes
critical for neurodevelopment and previously implicated in
neurodevelopmental disorders.

MATERIALS AND METHODS

CHD8 Genomic Datasets
Next-generation sequencing datasets generated from CHD8
studies were identified through a literature search with the
keyword “CHD8” in PubMed and Gene Expression Omnibus
(GEO) databases. Raw data from publications that featured RNA-
seq or ChIP-seq analysis were downloaded from GEO with the
exception of three publications that hosted raw data on DNA
Data Bank of Japan (DDBJ) (Katayama et al., 2016) and Sequence
Read Archive (SRA) (Wilkinson et al., 2015; Platt et al., 2017).
A total of fifteen publications corresponding to 305 sequencing
libraries were included in the analysis. Libraries from Cotney
et al. (2015) generated from fetal brain and libraries from Han
et al. (2017) designed for analysis of alternative splicing were
not included in the analysis. To enable comparison of genomic
binding properties, we also included published ChIP-seq data for
two brain transcription factors, Nkx2.1 and cFos (Malik et al.,
2014; Sandberg et al., 2016). All data included were stated to be
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in compliance with respective animal care and use committees at
time of original publication.

RNA-seq Analysis
RNA-seq computational analysis was performed following an
established pipeline using standard software, as described
previously (Gompers et al., 2017). Briefly, unaligned sequencing
reads were assessed for general quality using FastQC (Version
0.11.2) and aligned to the mouse (mm9) or human (GRCh37)
reference genome using STAR (Version 2.5.2b, Dobin et al.,
2013). Aligned reads mapping to genes according to the mm9
genes.gtf or to gencode.v19.annotation.gtf were counted at the
gene level using subreads featureCounts (Version 1.5.0-p1, Liao
et al., 2014). Overall data quality, including testing for GC-bias,
gene body coverage bias, and proportion of reads in exons was
further assessed using RSeQC (Version 2.6.4, Wang et al., 2012).
Raw gene count data and sample information as reported in
the respective repositories were used for differential expression
analysis using edgeR (Version 3.4.4, Robinson et al., 2010).
Genes with at least 0.1 count per million were included in a
general linearized model using a sequencing-run factor-based
covariate with genotype or knockdown as the variables for
testing. For some datasets, additional covariates were included
if described in the original publication. Where possible, overall
patterns of differentially expressed genes were compared to the
original publication to ensure consistency in results. Normalized
expression levels were generated using the edgeR rpkm function.
Normalized log2(RPKM) values were used for plotting summary
heatmaps and for expression data of individual genes. Variation
in sequencing depth and intra-study sample variability partially
account for differences in sensitivity and power across studies and
likely drive some differences observed including the total number
of differentially expressed genes (DEGs). To capture an inclusive
set of DEGs, DEGs were defined by uncorrected p-values < 0.05.
DEG sets were used for gene set enrichment analysis for Gene
Ontology via goseq (Young et al., 2010). Enrichment among
overlapping DEGs across studies was performed by comparing
observed overlap to overlap among randomly selected genes
across 1000 permutations.

ChIP-seq Analysis
ChIP-seq analysis was also performed using an established
pipeline and standard methods, as reported before (Gompers
et al., 2017). Briefly, unaligned sequencing reads were assessed
for general quality using FastQC and mapped to the mouse
(mm9), human (hg19), or rat (rn5) genome using BWA (Version
0.7.13, Li and Durbin, 2009). Significant peaks with a p-value
of <0.00001 were identified using MACS2 (Version 2.1.0,
Feng et al., 2011) with model-based peak identification and
local significance testing disabled. Test datasets were analyzed
comparing each individual ChIP-seq experiment to matched
input or IgG controls. Input and IgG libraries were analyzed
using the same approach to test for technical artifacts that could
confound ChIP-seq results, generally following a previously-
reported quality control strategy (Marinov et al., 2014). Enriched
regions from IP and control datasets were annotated to genomic
features using custom R scripts and the combined UCSC and

RefSeq transcript sets for the mouse or human genome build.
Regions from the rat genome were lifted over to conserved
regions in the mouse genome (mm9). CHD8 target genes were
assigned by peak annotation to transcript start site (TSS) or to
the nearest TSS for distal peaks. HOMER was used to perform
de novo motif discovery with default parameters (Version 4.7,
Heinz et al., 2010). Where possible, we verified that results from
ChIP-seq reanalysis were consistent with original publication.

Gene Set Enrichment Analysis
For primary analysis, we used the Gene Set Enrichment Analysis
tool and the MSigDB database (GSEA, version 3.0, Subramanian
et al., 2005) to test for annotated gene sets that show a shift toward
tails of log fold change (logFC) rank of RNA-seq or ChIP-seq
data. By using this rank-based method, we were able to overcome
differences in number of significant genes across datasets. For
ChIP-seq, only the top 2000 peaks were used, as enrichment
testing is confounded when too large a fraction of included genes
are associated. GSEA was used to test for enrichment of gene
ontology (GO) and pathway terms. Terms with less than 500
and greater than 20 genes were used, with 1000 permutations
tested to determine expected enrichment. Heatmaps showing
normalized enrichment score absolute values were plotted for
GO and pathway terms for data visualization. As confirmation
that top DEGs show similar enrichment to overall rank-based
methods, the goseq R package (Version 1.30.0, Young et al.,
2010) was used to test enrichment of GO terms for DEGs,
correcting for gene length. Analysis required a minimal node
size, or number of genes annotated to GO terms, of 20. The
internal ‘weight01’ testing framework and Fishers test was used
to account for multiple testing comparisons. Test gene sets for
DEGs and CHD8 interaction targets were compared against a
background set of expressed genes based on the minimum read-
count cutoffs for each dataset for DEGs or a background set
of all conserved mouse-human genes identified across RNA-
seq datasets for CHD8 target genes. Heatmaps showing positive
log2(observed/expected) values were plotted for GO terms for
data visualization. Finally, genes associated with high-affinity
CHD8 binding were defined as those present in the top 2000
peaks from any ChIP-seq dataset and were intersected with the
Simons Foundation Autism Research Initiative (SFARI) set of
ASD risk genes.

Code and Data Availability and
Additional Analysis Visualization
Data that support the findings of this study are available from
the corresponding author upon request. Accession numbers
in parentheses and DOIs for all published gene sets used in
enrichment analysis:

Ceballos-Chávez et al. (2015) (GSE62428): 10.1371/journal.
pgen.100517;
Cotney et al. (2015) (GSE57369): 10.1038/ncomms740;
de Dieuleveult et al. (2016) (GSE64825): 10.1038/nature16505;
Durak et al. (2016) (GSE72442): 10.1038/nn.4400;
Gompers et al. (2017) (GSE99331): 10.1038/nn.4592;
Jung et al. (2018) (GSE87370): 10.1038/s41593-018-0208-z;
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Katayama et al. (2016) (DRA003116): 10.1038/nature19357;
Platt et al. (2017) (PRJNA379430): 10.1016/j.celrep.
2017.03.052;
Shen et al. (2015) (GSE71183, GSE71185): 10.1016/j.
molcel.2015.10.033;
Suetterlin et al. (2018) (GSE81103): 10.1093/cercor/bhy058;
Sugathan et al. (2014) (GSE61492): 10.1073/pnas.1405266111;
Wang et al. (2015) (GSE71594): 10.1186/s13229-015-0048-6;
Wang et al. (2017) (GSE85417): 10.1186/s13229-017-0124-1;
Wilkinson et al. (2015) (PRJNA305612): 10.1038/tp.2015.62;
Zhao et al. (2018) (GSE107919): 10.1016/j.devcel.2018.05.022.

Expanded results of the meta-analysis reported here
are available from the interactive web server available at
https://github.com/NordNeurogenomicsLab/. ChIP-seq datasets
available as Track Hubs for upload to the UCSC Genome Browser
and analysis scripts are also available at https://github.com/
NordNeurogenomicsLab/.

RESULTS

Patterns of Transcriptional Pathology
Associated With CHD8
Haploinsufficiency
We reanalyzed a total of 254 RNA sequencing libraries corres-
ponding to 12 studies of CHD8 knockdown or heterozygous
mutation (Table 1). Almost all datasets represented neuronal
model systems except for one dataset using an acute myeloid
leukemia cell line (Shen et al., 2015). Analysis of all datasets was
performed using the same pipeline with quality control steps and
study-specific exceptions for consistency as well as covariate and
batch structure as described in original publication (Figure 1A).
Results for differential expression testing across all genes and
studies included in this analysis are available via our interactive
web site (Figure 1B) and included as Supplementary Table S1.

We verified that differential expression generated in our re-
analysis here mirrored original publications using Spearman
correlation for logFC of DEGs between the original and re-
analysis, shown in Figure 1C. Unsurprisingly, relative gene
expression levels varied widely across studies, with principle
components of variation dominated by species of origin and
experiment (data not shown). Pairwise comparisons between
DEGs from individual datasets revealed specific similarities in
gene expression changes. For example, comparison of DEGs
at the p < 0.05 cutoff level between Gompers et al. (2017);
Jung et al. (2018), and Suetterlin et al. (2018) datasets revealed
strong positive correlations in the direction of differential gene
expression, where genes that were significantly up- or down-
regulated in one dataset followed the same pattern in the other
(Figure 1D). We tested the similarity between DEGs across
studies, finding significant overlap across some studies, with
the strongest overlap among datasets testing the impact of
heterozygous Chd8 mutation on mouse embryonic and postnatal
brain (Figure 1F).

Further pairwise comparisons between studies and expression
for specific genes can be done using our interactive web browser

available at https://github.com/NordNeurogenomicsLab/. This
interactive resource allows for analysis of principle components,
differential expression of individual genes, and overall differential
expression patterns for all included datasets (Figure 1B).

Considering expression of CHD8 itself, most knockdown and
heterozygous knockout models resulted in a 20% or greater
significant decrease in mRNA (Figure 1E). However, published
data from some models showed a subtler decrease or even a
significant increase in CHD8. As stated before, we verified that
these findings were consistent with originally-published RNA-
seq data. Protein-level validation of CHD8 dosage decrease
was performed in all original publications to confirm CHD8
haploinsufficiency in each model, but the results are difficult
to compare considering the use of different and unvalidated
CHD8 antibodies across studies. The absence of reduced CHD8
mRNA expression for some studies raises questions regarding
what expectations should be for gene dosage models.

Across all studies, upregulated and downregulated DEGs
passed inclusive (p < 0.05), moderate (FDR < 0.1), and stringent
(FDR < 0.05) thresholds, though numbers of DEGs varied widely
(Supplementary Figure S1A). Large differences in number and
effect size of DEGs across studies may be a result of differences
in experimental design, impact of knockdown and knockout on
CHD8 dosage, methods, and statistical sensitivity related to intra-
study sample variability and sequencing depth. Variability in gene
expression could also be due to differences in sensitivity to CHD8
dosage between developmental stages and type of model used to
carry out these experiments.

Enriched Functional Gene Sets
Associated With CHD8
Haploinsufficiency
We next performed gene set enrichment analysis of biological
pathways and Gene Ontology (GO) terms using GSEA
and goseq (Figure 1G, Supplementary Tables S2, S3 and
Supplementary Figures S1B–D). While relatively small numbers
of individual genes showed overlapping significant changes
in expression across pairwise study comparisons, we found
strong correlation in DEG functional groups across studies.
This analysis identified four general signatures across published
models. The majority of datasets exhibited one or more of these
signatures. Upregulated signatures included immune response
and energy metabolism. Downregulated signatures included
cell cycle, chromatin organization, RNA processing, neuronal
differentiation, and synaptic signaling. These patterns were also
present when comparing only the DEGs using goseq rather
than GSEA, which uses logFC rank. The general pattern of
enriched functional groups held across lenient (Supplementary
Figures S1B,C) and stringent (Supplementary Figure S1D)
statistical thresholds (Supplementary Tables S2, S3). Clustering
of datasets by enrichment for representative terms and biological
pathways according to GSEA are shown in Figure 1G.

Of 36 total datasets, around 11 had synaptic or neuro-
developmental terms enriched, 7 had cell cycle, chromatin
organization, and RNA processing terms enriched, 11 had a
combination of both, and 7 had neither trend represented
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FIGURE 1 | Differential gene expression across CHD8 models. (A) RNA-seq data analysis pipeline. (B) Example screen captures of tools available through
the R Shiny interactive web browser. Shown are example pairwise comparisons between the Jung et al. (2018) and Suetterlin et al. (2018) RNA-seq
datasets. All plots and tables generated using the online interface can be downloaded and analyzed using pseudo counts or relative expression.

(Continued)
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FIGURE 1 | Continued
Top Left: Principle component analysis (PCA) showing the first two components separating multiple Jung et al. (2018) and Suetterlin et al. (2018) datasets.
Multidimensional scaling (MDS) plots are also available but are not shown. Bottom Left: Table showing log fold gene expression changes and significance values for
individual genes meeting a p < 0.05 cutoff between select Jung et al. (2018) and Suetterlin et al. (2018) datasets. Heatmaps and scatterplots of select gene
expression changes are also available but are not shown. Top Right: Log fold change scatterplot generated using select Jung et al. (2018) and Suetterlin et al. (2018)
datasets for genes meeting a p-value < 0.05 criteria. Bottom Right: Chd8 log fold change bar plot generated for multiple Jung et al. (2018) and Suetterlin et al.
(2018) datasets using the interactive web interface. (C) Bar plot showing Spearman correlation in fold change between genes identified as significant according to
original publication and genes included in current analysis for each RNA-seq dataset. (D) Correlation scatterplots between select Gompers et al. (2017) and
Suetterlin et al. (2018); Jung et al. (2018) and Suetterlin et al. (2018) datasets. Data are plotted according to log fold change on the x- and y-axis of genes meeting a
p < 0.05 statistical cutoff. (E) Change in CHD8 mRNA across models. Data plotted according to fold change, as indicated by the gray bars, with gray dotted lines
indicating 0.5- and 1-fold change. Data are also plotted according to -log(10) p-value, as indicated by red dots for each gray bar, with a red dotted line indicating a
significance value of p < 0.05. Red dots above the red dotted line represent CHD8 fold changes meeting a p < 0.05 cutoff. Hs, human; Mm, mouse. (F) Heatmap
showing enrichment of genes meeting a p < 0.05 statistical threshold between included RNA-seq datasets. The legend indicates log2(observed/expected)
enrichment. (G) Heatmap showing enrichment of gene ontology and pathway terms across RNA-seq datasets using GSEA. Included datasets are plotted on the
y-axis. Significant terms are plotted on the x-axis for downregulated gene sets and upregulated gene sets separately, as indicated with “_Up” and “_Down” suffixes,
respectively. The legend indicates absolute value normalized enrichment scores. Data are hierarchically clustered according to similarity as indicated by the
dendrograms. Hs, human; Mm, mouse.

when analyzed using GSEA (Figure 1G). In addition, 13 had
strong enrichment of upregulated pathways, but these datasets
tended not to have enrichment of neuronal or gene regulatory
pathways. The trend of enrichment of these signatures in
the GSEA and goseq datasets showed some correlation to
the model system used in each study. In vitro models were
more likely to have neuronal terms or fail to have a trend
represented while in vivo models were more likely to have
both, or only gene regulation associated terms, represented.
There is also some indication that in vivo models of postnatal
brain tended to have more enrichment of neuronal terms while
models of embryonic brain were more likely to also have
enrichment of terms associated with gene regulation. Overall, our
results suggest that CHD8 knockdown or heterozygous knockout
produces model-specific differential gene expression, with
overlap present among general functional classes. Expression
changes appear to be more consistent in embryonic and postnatal
brain tissues of germline Chd8 haploinsufficient mice across
studies.

CHD8-DNA Interactions Occur
Throughout the Genome Enriched for
Promoters
We reanalyzed a total of 51 ChIP-seq sequencing libraries from
nine studies of CHD8 genomic interaction patterns (Table 2).
Analyzed datasets represented both neuronal and non-neuronal
model systems. We included both in vivo tissue preparations
and in vitro culture models from neuronal and non-neuronal
cell fates to allow additional examination of tissue or cell-
type specificity of CHD8 interactions. Five of the datasets
were generated from bulk mouse tissue at adult (3 studies;
Katayama et al., 2016; Gompers et al., 2017; Platt et al., 2017)
and embryonic (2 studies; Cotney et al., 2015; Katayama et al.,
2016) timepoints allowing for investigation of CHD8 interactions
in vivo across time. Other data were generated from cellular
models, with 2 studies using human neuronal lineage cells
(Sugathan et al., 2014; Cotney et al., 2015), 2 using mouse or
human cancer cell lines (Ceballos-Chávez et al., 2015; Shen
et al., 2015), and 1 using mouse embryonic stem cells (de

Dieuleveult et al., 2016). Finally, we included 1 cell-type-specific
ChIP-seq study profiling oligodendrocyte precursors and mature
oligodendroctyes isolated from rat brain (Zhao et al., 2018). As
control comparisons, we also included ChIP-seq datasets for
neurodevelopmental (Nkx2.1) and activity-dependent neuronal
(cFos) transcription factors (Malik et al., 2014; Sandberg et al.,
2016).

ChIP-seq data were analyzed using the same steps for
immunoprecipitated, or experimental, and control data in
our analysis pipeline (Figure 2A). De novo motif analysis
performed on CHD8 peak regions across experiments identified
various general promoter-associated transcription factor
binding sequences, but no clear primary binding motif
for CHD8 (Figure 2B). These findings are consistent with
original publications, none of which identified a strong
candidate primary binding motif, suggesting that CHD8
interactions are not mediated by direct DNA sequence
recognition.

There was large variation in number of called peaks, likely
due to experimental design and technical differences (Figure 2C,
Left). Eleven of the control ChIP-seq libraries were found to have
more than 250 called peaks with strong promoter enrichment
(Supplementary Figure S2), suggesting some level of technical
artifact associated with chromatin preparation (Marinov et al.,
2014). Of note, experiments with the largest number of peak
calls in the control datasets were among the CHD8 ChIP datasets
with the largest number of peaks. Across all ChIP-seq datasets,
CHD8 genomic interactions most commonly occurred near
promoters (Figure 2C, Right and Supplementary Figure S2).
Furthermore, binding to promoter-defined peaks tended to
approach 100% as the number of called peaks decreased,
suggesting that higher-affinity interactions for CHD8 are strongly
biased to promoters. In comparison, the 2 control transcription
factor datasets showed much higher proportion of non-
transcription start site (TSS) binding. Consistent with original
studies that compared Chd8 binding in WT and heterozygous
Chd8 mutant mouse brain, no difference between genotypes
was identified, suggesting that haploinsufficiency doesn’t have
a strong impact on Chd8 genome-wide interaction patterns.
Increased affinity and frequency of promoter interactions
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by CHD8 was clearly evident in the coverage data signal
for mouse tissues, human cell lines, and rat cell culture
(Figure 2C, Middle), with ADNP and SUV420H1 loci shown as
examples.

Strong Correlation of CHD8 Genomic
Interaction Across Studies Suggests
Conserved Regulatory Targets
In contrast to variable differential expression changes across
RNA-seq studies, CHD8 binding targets were strikingly
consistent, particularly among high-affinity peaks (as defined
by peak rank). Overall correlation (Spearman’s coefficient)
was compared for target genes (defined via TSS peak or as the
nearest TSS to a distal peak, Figure 3A). There was correlation
across all CHD8 ChIP-seq datasets, with reduced correlation
for datasets with fewer peaks and the highest correlations for
datasets with the largest number of peaks. In comparison,
Nkx2.1 and cFOS showed little correlation to each other or
any of the CHD8 datasets. At the level of individual genes,
high-affinity targets showed remarkable consistency across all
datasets (Supplementary Table S4).

Some of the datasets showed ubiquitous binding across the
genome and others showed much smaller target sets, consistent
with differences described in original publications. While the
number of interactions varied, specific targets and their rank
were largely the same. In other words, the strongest interactions
were conserved across all CHD8 ChIP-seq datasets. Focusing
on high-affinity, or top-ranked targets, we tested these datasets
for functional enrichment. GSEA analysis of the top 2000
peaks showed that these high-affinity regulatory interaction
targets were overwhelmingly genes involved in RNA and protein
processing, cell cycle, chromatin organization, transcription, and
metabolism (Figure 3B). In contrast, these genes did not show
enrichment in the targets of Nkx2.1 or cFos, indicating this
pattern is specific to CHD8.

Comparing the functional terms enriched in the differential
RNA across studies, CHD8 appears to directly target and
activate genes associated with most of these basic cellular
processes. The CHD8 datasets included a number of cell-
type specific experiments, for example the oligodendrocyte and
oligodendrocyte precursor experiments. We did not observe a
difference in the high-affinity targets in these datasets. This
suggests that CHD8 shows high-affinity for a remarkably
conserved set of promoters from embryonic stem cells to
differentiated oligodendrocytes.

Relationship Between Genomic
Interaction and Gene Expression
Changes
Most genes with CHD8 interactions at or distal to the promoter
did not exhibit significant changes in gene expression, regardless
of the study, suggesting that there are additional determinants of
target gene sensitivity to CHD8 dosage (Figure 4A). However,
we did observe specific overlap between regulatory targets and
downregulated genes among a subset of the studies (Figure 4B,
top and Supplementary Table S5). Upregulated DEGs, including
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FIGURE 2 | CHD8 binds to promoters across the genome. (A) ChIP-seq analysis pipeline. (B) Motifs identified in CHD8-bound regions. ELF1, ELK1, E2F, CTCF, and
YY1 transcription factors were most commonly represented across datasets. The numbers in parentheses indicate the number of datasets with that motif identified.
(C) Plots showing the number of peaks with CHD8 binding and preferential promoter binding by CHD8. Each row corresponds to one dataset. Each dataset is
identified by name toward the middle of the panel. Left: Horizontal bar plot showing the number of significant peaks (MACS2 cutoff of p < 0.00001) identified.
Control cFos (Malik) and Nkx2.1 (Sandberg) datasets are indicated with gray bars. Middle: CHD8 binding near promoters of select chromatin remodeling genes
(ADNP, SUV420H1) in the mouse, human, and rat ChIP-seq datasets. Two control dataset tracks indicated in black show cFos (Malik) or Nkx2.1 (Sandberg) binding.
Linear representations of each gene for each respective genome is indicated above each browser capture grouping and under each respective scale bar. Height of
the y-axis is scaled to show the peak for each track. SUV420H1 is Kmt5b in rat. Right: Horizontal bar plot showing percentage of significant peaks overlapping with
the transcription start site of the nearest gene. Control cFos (Malik) and Nkx2.1 (Sandberg) datasets are indicated with gray bars.

those involved in metabolism, were not enriched for CHD8
genomic interactions.

For datasets exhibiting downregulation of target genes, there
was a clear relationship between strength of CHD8 binding,
increased gene expression, and downregulation with CHD8
haploinsufficiency. Fifteen out of the 36 analyzed datasets showed
this trend (Supplementary Figure S3). For instance, an increased
signature of downregulation was observed as CHD8 target
affinity increased with three studies of in vivo Chd8 knockdown
or heterozygous knockout in mouse brain (Durak et al., 2016;
Gompers et al., 2017; Suetterlin et al., 2018; Figure 4B).
Regardless of the experiment, CHD8 interaction affinity was also
strongest for genes that were more highly expressed (Figure 4B,

bottom and Supplementary Figure S4). However, high levels
of expression alone did not predict CHD8 interaction or DEG,
indicating that expression level does not solely determine CHD8
interactions or sensitivity of regulatory targets to reduced CHD8
dosage.

While individual studies of the role of CHD8 haplo-
insufficiency in neurodevelopmental disorders all highlight
strong enrichment of ASD-relevant genes among DEGs, our
data suggests that this signal can be separated into direct
genomic interaction targets and more brain- and neuron-specific
genes. We tested this by looking at the overlap of high-
affinity CHD8 targets with genes annotated as high-confidence
ASD genes in the SFARI gene database (Figure 4C). Indeed,
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FIGURE 3 | Unexplained specificity of CHD8 binding near chromatin, RNA processing, cell cycle, and metabolism promoters across CHD8 ChIP-seq datasets.
(A) Heatmap showing correlation across included CHD8 and control ChIP-seq datasets. Legend indicates the correlation between datasets. (B) Heatmap showing
enrichment of gene ontology and pathway terms for the top 2000 significant peaks meeting a MACS2 significance cutoff of p < 0.00001 across ChIP-seq datasets
using GSEA. Legend indicates absolute value normalized enrichment scores. Data are hierarchically clustered as indicated by the dendrograms. Control datasets for
both panels are indicated in white font outlined by a gray box.

we found a large proportion of ASD-relevant genes involved
in chromatin organization and cell cycle among high-affinity
CHD8 targets. In comparison, SFARI ASD genes associated with
neurogenesis, axonogenesis, and synaptic signaling showed much
lower representation in the high-affinity target sets.

DISCUSSION

This meta-analysis of published genomic datasets from in vitro
and in vivo mouse, human, and rat studies revealed both
consistent and study-specific effects of CHD8 haploinsufficiency
on gene expression and largely concordant high-affinity
CHD8 genomic interaction loci. Our results illustrate both
the power and limitation of comparing genomic datasets
and challenge previous assumptions regarding the regulatory
mechanisms and transcriptional pathology associated with
CHD8 haploinsufficiency.

Knockdown or heterozygous mutation of CHD8 led to
characteristic changes in gene expression across studies and
model systems. At the gene-by-gene level, these expression
changes varied considerably between CHD8 models, especially
when considering lenient (p < 0.05) vs. stringent (FDR < 0.05)
statistical thresholds. Future work should take this into
consideration when analyzing differential gene expression data
from CHD8 models. Compared to the high variability across
in vitro models, the impact of germline heterozygous Chd8
mutation in mouse brain was much more consistent, with
four of the five studies showing significant DEG overlap. At
the level of gene set enrichment, we found global patterns

of transcriptional dysregulation with downregulation of genes
involved in gene regulation and neuronal development and
function and upregulation of genes involved in immune signaling
and metabolism.

In contrast to differences in the RNA data, the ChIP-seq results
were highly consistent for high-affinity genomic interactions.
Comparison across ChIP-seq experiments shows that CHD8
preferentially targets promoters, with no evidence of direct
binding through a specific DNA motif. Peaks with the highest
signal were constant across experiments, regardless of the model,
suggesting that CHD8 preferentially interacts with promoters of
a set of genes linked to cellular processes such as those involved
in cell cycle, chromatin organization, and RNA processing.
We found reduced transcription of these CHD8 target genes
in some models, though our data also highlight widespread
genomic promoter interactions for CHD8 without obviously
strong transcriptional impact from CHD8 haploinsufficiency for
most targets.

While the clear concordance in high-affinity genomic CHD8
interactions suggests common regulatory functions across cell
types, it remains to be examined whether the observed
dysregulation of neurodevelopmental disorder-relevant neuronal
genes is related to context-dependent CHD8 regulatory activity in
the brain given the current cellular heterogeneity and technical
challenges existing with available CHD8 ChIP-seq. Of note, we
did not see enrichment among high-affinity or low-affinity targets
for cell-type-specific genes in the datasets examined here, which
include some cell-specific analyses. Possible explanations for
changes in expression for genes that are not high-affinity CHD8
targets include secondary impacts, increased dosage sensitivity

Frontiers in Molecular Neuroscience | www.frontiersin.org 10 January 2019 | Volume 11 | Article 481

https://www.frontiersin.org/journals/molecular-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-neuroscience#articles


fnmol-11-00481 January 10, 2019 Time: 18:52 # 11

Wade et al. CHD8 Targets Contrast Haploinsufficiency Impacts

FIGURE 4 | Comparing differentially expressed genes in CHD8 models to high-affinity CHD8 interactions. (A) Heatmap showing correlation between the top 500
rank-ordered significant CHD8 peaks for each ChIP-seq dataset with genes meeting a p < 0.05 significance cutoff in each RNA-seq dataset. The legend indicates
absolute value normalized enrichment score. Enrichment is comparable using the top 2000 genes. Data were hierarchically clustered according to dataset similarity.

(Continued)

Frontiers in Molecular Neuroscience | www.frontiersin.org 11 January 2019 | Volume 11 | Article 481

https://www.frontiersin.org/journals/molecular-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-neuroscience#articles


fnmol-11-00481 January 10, 2019 Time: 18:52 # 12

Wade et al. CHD8 Targets Contrast Haploinsufficiency Impacts

FIGURE 4 | Continued
(B) Comparison between the Platt et al. (2017) Chd8 ChIP-seq dataset and the Gompers et al., 2017 (Left), Durak et al. (2016) (Middle), and Suetterlin et al. (2018)
(Right) differential expression gene sets. Top: Change in log fold change expression of genes according to CHD8 binding. Bottom: Change in log2RPKM sequence
coverage of genes according to CHD8 binding. Boxes were plotted according to CHD8 binding affinity bins: all genes meeting at least 0.1 count per million
sequencing coverage (Expressed Genes), any genes having CHD8 binding (All Bound Genes), and all genes having binding ranked according to CHD8 peak
significance (Top 250 Bound, Rank 251–1000 Bound, Rank 1001–2000 Bound). (C) Bar plot showing the total number of SFARI risk genes, in parentheses,
annotated to select gene ontology terms, and the proportion of SFARI genes bound by CHD8 for each ontology terms, as indicated by the gray bars.

for lower-affinity genomic interaction targets, or a function of
CHD8 that is not dependent on specific genomic interactions.

We note a number of technical issues that impacted this
meta-analysis, many of which are associated with variation
in methods and sequencing depth. Surprisingly, we found
considerable differences in CHD8 expression across models
despite the use of common design strategies for testing the
impacts of haploinsufficiency. Though we did not find an
obvious correlation between CHD8 transcript levels and up- or
downregulated gene expression, it seems likely that differences in
experimental design, including CHD8 knockdown or knockout,
contributed toward meaningful variation between models. We
also noted differences in ChIP-seq datasets that suggest very
different genome-wide binding patterns depending on the
experiment. We note that enrichment in control libraries was
present across several published datasets, which could confound
CHD8-specific peak discovery. Different studies also used
various CHD8 antibodies with unknown and unvalidated CHD8
specificities. Nonetheless, by examining patterns across datasets,
we identified consistent patterns of enrichment suggesting that
overall findings from ChIP-seq targeting CHD8 reliably identify
common high-affinity interactions.

It is clear from previous publications and this meta-analysis
that CHD8 is critical for neurodevelopment. However, despite
the limitations of comparing genomic datasets across variable
models, our analysis challenges the simple model that cell-specific
CHD8 genomic interaction patterns drive differences in the
impact of CHD8 haploinsufficiency. Our results suggest that, as
a chromatin remodeler, CHD8 primarily targets genes involved
in cell cycle, chromatin organization, and RNA processing
regardless of cell type. Therefore, as an essential gene with
widespread expression across neurons and glia, homozygous
loss of CHD8 would likely impact cellular viability in general
while heterozygous mutation or knockdown would have subtler,
more unpredictable, impacts depending on the cellular context.
Such a model would explain the widespread changes in gene
expression across model systems and varied reports of impact
on proliferation depending on dosage. Nonetheless, given the
limitations of current studies we cannot rule out the possibility
of cell-type or context-dependent specificity of CHD8 function.

Our results raise two questions that could be addressed by
application of RNA-seq and ChIP-seq in the future: (1) What
are the developmental stage, cell-type, and region-specific
impacts of CHD8 haploinsufficiency in the developing and
mature brain, and (2) Does CHD8 have context-dependent
function in specific stages, cell types, and regions with regard
to genomic interaction patterns? Beyond addressing these two
key issues, additional clarity regarding the role of CHD8 in

the brain will come from studies examining molecular and
biochemical properties underlying CHD8 function in the brain.
As CHD8 haploinsufficiency may represent common features
of haploinsufficiency of other general chromatin remodelers
implicated in ASD, further characterization of CHD8 models
and CHD8 genomic interactions could reveal essential functions
driving pathology in neurodevelopmental disorders.
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FIGURE S1 | Consistency in RNA-seq results with goseq analysis across different
statistical thresholds. (A) Bar plots showing log-scaled differentially expressed
gene numbers for uncorrected p-value < 0.05 (top), FDR < 0.1 (middle), and
FDR < 0.05 (bottom) thresholds with downregulated gene counts in black bars
and upregulated gene counts in gray bars. (B–D) Heatmaps showing enrichment
of gene regulation, neuronal function, and neurodevelopmental gene ontology
terms when analyzing genes meeting a significance cutoff of p < 0.05 (B),
FDR < 0.1 (C), and FDR < 0.05 (D) using the goseq statistical package. Included
datasets are plotted on the x-axis. Significant terms are plotted on the y-axis for
downregulated gene sets and upregulated gene sets separately, as indicated
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with “Up” and “Down,” at the beginning of each listed ontology term. The legend
indicates log2(observed/expected) enrichment. Data were hierarchically clustered
according to dataset similarity and term enrichment as indicated by dendrograms
on the x- and y-axis. Ontology terms were selected to match terms for gene set
enrichment analysis in Figure 1. Hs, human; Mm, mouse.

FIGURE S2 | Significant peak number and preferential promoter binding by CHD8
(or control proteins) for all ChIP-seq datasets. Horizontal bar plots show the
number of peaks meeting a MACS2 significance cutoff of p < 0.00001 (Left) and
percentage of significant called peaks overlapping with the transcription start site
of the nearest gene (Right). Control cFos (Malik) and Nkx2.1 (Sandberg) datasets
are indicated with gray bars.

FIGURE S3 | Remaining log fold change plots from the CHD8 binding by
differential gene expression comparison analysis. All datasets were analyzed using
the Platt et al. (2017) Chd8 ChIP-seq dataset. Datasets shown are from the CHD8
RNA-seq analysis and are loosely organized based on overlap between
downregulated genes, no clear trend, or upregulated genes from top to bottom,
which sometimes spanned multiple rows. Each plot shows log fold change on the
y-axis and CHD8 binding affinity bin on the x-axis for each dataset as indicated by
name above each plot. CHD8 binding affinity bins: all genes meeting at least
0.1 count per million sequencing coverage (Expressed Genes), any genes having
CHD8 binding (All Bound Genes), and all genes having binding ranked according
to CHD8 peak significance (Top 250 Bound, Rank 251–1000 Bound, Rank
1001–2000 Bound). Full models for certain datasets were chosen as they
exhibited similar signal as the individual timepoint or brain region datasets.

FIGURE S4 | Remaining RPKM plots from the CHD8 binding by differential gene
expression comparison analysis. All datasets were analyzed using the Platt et al.
(2017) Chd8 ChIP-seq dataset. Datasets shown are from the CHD8 RNA-seq
analysis. Each plot shows normalized log2RPKM on the y-axis and CHD8 binding
affinity bin on the x-axis for each dataset as indicated by name above each plot.
CHD8 binding affinity bins: all genes meeting at least 0.1 count per million
sequencing coverage (Expressed Genes), any genes having CHD8 binding (All
Bound Genes), and all genes having binding ranked according to CHD8 peak
significance (Top 250 Bound, Rank 251–1000 Bound, Rank 1001–2000 Bound).
Full models for certain datasets were chosen as they exhibited similar signal as the
individual timepoint or brain region datasets.

TABLE S1 | Log fold change expression data for all analyzed genes in each
RNA-seq dataset according to a p < 0.05 or an FDR < 0.1 statistical cutoff.

TABLE S2 | Normalized enrichment scores for all analyzed GSEA gene ontology
and pathway terms for each RNA-seq dataset.

TABLE S3 | Log2(observed/expected) enrichment scores for all analyzed goseq
gene ontology terms according to different statistical thresholds (p-value < 0.05,
FDR < 0.1, FDR < 0.05) for each RNA-seq dataset.

TABLE S4 | Significance peak percentile values for all analyzed genes in each
ChIP-seq dataset. 0 indicates no significant peak identified near the target gene.

TABLE S5 | Normalized enrichment scores for analysis of overlap in ranked genes
between RNA-seq and ChIP-seq datasets.
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