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Schizophrenia (SCZ) is a common psychiatric disorder with polygenetic pathogenesis.
Among the many identified candidate genes and loci, the group of tumour suppressor
genes has drawn our interest. In this mini-review article, we describe evidence of a
correlation between major tumour suppressor genes and SCZ development. Genetic
mutations ranging from single nucleotide polymorphisms to large structural alterations
have been found in tumour-related genes in patients with SCZ. Epigenetic mechanisms,
including DNA methylation/acetylation and microRNA regulation of tumour suppressor
genes, have also been implicated in SCZ. Beyond genetic correlations, we hope to
establish causal relationships between tumour suppressor gene function and SCZ
risk. Accumulating evidence shows that tumour suppressor genes may mediate cell
survival and neural development, both of which contribute to SCZ aetiology. Moreover,
converging intracellular signalling pathways indicate a role of tumour suppressor genes in
SCZ pathogenesis. Tumour suppressor gene function may mediate a direct link between
neural development and function and psychiatric disorders, including SCZ. A deeper
understanding of how neural cell development is affected by tumour suppressors may
lead to improved anti-psychotic drugs.

Keywords: schizophrenia risk gene, tumour suppressor gene, neurodevelopment, Wnt pathway, molecular
targeting drugs

GENETIC FACTORS OF SCHIZOPHRENIA

Schizophrenia (SCZ) has a worldwide prevalence of approximately 1% (Leucht et al., 2007). The
clinical symptoms of SCZ include delusions, hallucinations, social deficits, and emotional and
cognitive impairments (Sass and Parnas, 2003). SCZ has become a major health burden as it
affects patients’ well-being as well as the welfare of their families and society at large (Millier
et al., 2014). The disease typically has an early onset around adolescence (Häfner et al., 1993),
raising the possibility of genetic factors contributing to its pathogenesis. In addition, classical twin
studies of SCZ have revealed a high heritability (Sullivan et al., 2003). However, early efforts to
identify candidate SCZ genes by linkage analysis did not produce consistent results (Shi et al., 2008),
suggesting that SCZ aetiology could not be attributed to a single genemutation.We now understand
that genetic contributions to SCZ are inherently complex and include structural variations and
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single-nucleotide variations (Chen et al., 2015). Modern genetic
techniques, especially genome-wide association studies and
next-generation DNA sequencing approaches, have significantly
accelerated the identification of SCZ risk genes and loci.
Perhaps unsurprisingly, these studies, using data from very large
patient populations, have found that multiple gene variants
are significantly associated with SCZ, further supporting the
polygenic and heterogeneous nature of SCZ aetiology.

At present, the principal candidate loci for SCZ include the
Disrupted in SCZ-1 gene, which regulates neurodevelopment
(Miyoshi et al., 2003), and the major histocompatibility
complex genes (Purcell et al., 2009), suggesting immune
system involvement in SCZ pathology. Other major risk
genes include those encoding transcription factors and
synaptic proteins such as voltage-gated calcium channels
(Schizophrenia Working Group of the Psychiatric Genomics
Consortium, 2014). In addition, a group of tumour suppressor
genes have also been associated with SCZ (Catts and Catts,
2000). Their possible involvement is bolstered by a recently
published transcriptomic meta-analysis that demonstrated
an inverse relationship between psychiatric disorders and
cancer risk, and identified three major signalling cascades
including the p53, Wnt, and peptidylprolyl cis/trans isomerase
NIMA-interacting 1 pathways that might mediate this
relationship (Ibáñez et al., 2014). In this review article, we
will revisit the evidence for the association between SCZ
and tumour suppressor genes. Efforts to understand this
relationship may result in the identification of novel biomarkers
for early SCZ diagnosis and aid in the exploration of SCZ
pathology.

THE CORRELATION BETWEEN TUMOUR
SUPPRESSOR GENES AND SCZ

Epidemiological Studies of Tumour
Susceptibility in Patients With SCZ
The first argument for the relationship between SCZ and tumour
suppressor genes is based on epidemiological surveys indicating
reduced cancer risk in schizophrenics and their relatives. For
example, a well-designed study found a significantly lower
risk of cancer in patients with familial aggregated SCZ and
their biological parents when compared to that in the general
population (Gal et al., 2012). Similar results were obtained
in sibling studies reporting a reduced cancer risk in the
affected siblings of patients with SCZ (Levav et al., 2007).
We speculate that the upregulation of tumour suppressor
gene expression may confer susceptibility to SCZ. However,
Lichtermann et al. (2001) provided contradictory evidence
by showing that patients with SCZ had a higher risk of
lung or pharyngeal cancer than their unaffected relatives,
whose risk was lower than that in the general population.
The authors argued that the elevated cancer risk in patients
with SCZ was likely attributable to their unhealthy lifestyles,
whereas the lower-than-normal risk in unaffected siblings
might reflect the protective effects of increased tumour
suppressor gene expression uncompromised by unhealthy

lifestyle changes. In any case, this evidence is consistent with
an interaction between SCZ and tumour suppressor gene
function.

Gene Association Studies Linking
TP53 and Wnt Pathway Genes to SCZ
The earliest evidence correlating SCZ with a tumour suppressor
gene was the finding that SCZ was associated with mutations
in the TP53 gene (Catts and Catts, 2000). This gene encodes
the well-established tumour suppressor protein p53 (Jiang
et al., 2011), and TP53 mutations are frequently observed
in various human cancers (Levine and Oren, 2009). The
role of p53 in SCZ pathogenesis was further supported by
three separate lines of evidence: (1) two new SCZ candidate
genes were found on human chromosome 6q21, which was
previously shown to contain a tumour suppressor gene (Morelli
et al., 2000), and an SCZ-associated gene locus containing
the common fragile site FRA6F was observed in various
human leukaemias (Morelli et al., 2002); (2) increased apoptosis
was reported to result in neurodevelopmental abnormalities,
including SCZ (Sanders et al., 2013); and (3) p53 was
reported to induce cellular apoptosis to prevent malignant
transformation and tumour development (Vousden and Prives,
2009).

The involvement of multiple tumour suppressor genes in
SCZ indicates that certain cellular mechanisms may regulate
both tumourigenesis and neural function. Among such putative
mechanisms, Wnt signalling is widely reported to be involved in
SCZ pathogenesis (Peng et al., 2014). In fact, Wnt signalling is a
pleiotropic pathway mediating nearly every aspect of cell growth,
including tumorigenesis. For example, Wnt1 was identified
as an oncogene (Nusse et al., 1984). It is not unexpected
that the Wnt pathway can mediate SCZ by modulating
neurodevelopment. In the canonical Wnt pathway, Akt kinase,
which is a glycogen synthase kinase 3β inhibitor, and β-catenin
are the major downstream effector proteins. An early study
reported decreased β-catenin expression in the hippocampal
regions of patients with SCZ (Cotter et al., 1998). More
compelling evidence was recently obtained by demonstrating
abnormal Wnt signalling in human-induced pluripotent stem
cells from patients with SCZ during differentiation into neural
progenitor cells (Topol et al., 2015). In addition, frizzled
protein 7, which is a Wnt receptor, was recently found to be
upregulated in patients with SCZ (Hoseth et al., 2018). The
second tumour suppressor gene product of the canonical Wnt/β-
catenin pathway to be associated with SCZ is adenomatous
polyposis coli (APC). In an animal study using the N-methyl-
D-aspartate receptor antagonist MK-801 to induce SCZ-like
behaviours, APC gene expression in the prefrontal cortex and
ventral tegmental area was associated with SCZ symptoms
(Yu et al., 2011). Furthermore, a systematic study using
the transmission disequilibrium test identified three single
nucleotide polymorphisms (SNPs) of the APC gene that are
correlated with SCZ (Cui et al., 2005). Taken together, these gene
associations suggest a possible link between the Wnt signalling
pathway and SCZ.
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Other Candidate Tumour Suppressor
Genes Associated With SCZ
Other tumour suppressor genes have also been associated with
SCZ. For example, transforming growth factor-beta type II
serine/threonine kinase receptor on chromosome 3p22 was
shown to be transcriptionally upregulated in patients with
SCZ, and its transcription was normalised after antipsychotic
treatment (Numata et al., 2008). Protocadherins have also been
associated with SCZ and tumour suppressor functions (Kim
et al., 2011). Similar to lung cancer, the prevalence of colorectal
cancer is reported to be lower in SCZ cohorts than in unaffected
individuals (Catts et al., 2008). In a detailed study, allele-specific
expression of the mutated in colorectal cancer gene at the
rs2227948 and rs2227947 loci was found to be significantly
different between patients with SCZ and healthy individuals
(Wang et al., 2016), suggesting that mutated in colorectal cancer,
a potential tumour suppressor gene, might be involved in SCZ.
The tumour suppressor gene histidine triad nucleotide-binding
protein 1 is down-regulated in the prefrontal cortex of patients
with SCZ (Elashoff et al., 2007). In human patients with SCZ,
histidine triad nucleotide-binding protein 1 is associated with
acute behavioural changes (Su et al., 2003), whereas histidine
triad nucleotide-binding protein 1 knockout mice show elevated
anxiety- and depression-like behaviours (Sun et al., 2017). We
have summarised the major tumour suppressor genes associated
with SCZ described to date in Table 1.

GENETICS OF TUMOUR SUPPRESSORS
AND SCZ SUSCEPTIBILITY

Single gene mutations can present in multiple forms, from SNPs
to whole-gene duplications or inversions/deletions (indels).
Unique phenotypes are associated with different mutant alleles
and loci. In genetic studies of SCZ, a number of different
candidate loci have been identified. The relationship between
p53 polymorphisms and SCZ was reported in an early study
showing that patients carrying specific alleles had reduced
vulnerability to lung cancer (Park et al., 2004). Specifically,
whereas the rs1042522 locus (containing a Pro72Arg mutation
and a 16-bp insertion) was not significantly associated with
an increased risk of SCZ (Papiol et al., 2004), rs2078486 and
other SNP loci in the TP53 gene appeared to significantly
increase or decrease SCZ susceptibility (Yang et al., 2004). In
a subsequent study, transmission disequilibrium test-based
analyses consistently linked specific p53 polymorphisms,
including CAA indels and a 16-bp indel, to SCZ pathogenesis in
independent patient cohorts (Ni et al., 2005). Moreover, a study
of an isolated Spanish population revealed structural variations
in TP53 at the D17S1566 marker that conferred a high risk
of SCZ (Tabarés-Seisdedos et al., 2008). A case-control study
further elaborated the relationship between the TP53 codon
72 polymorphism and SCZ risk (Lung et al., 2009), whereas TP53
alleles carrying BstUI (exon 4) and MspI (intron 6) restriction
sites were shown to confer greater susceptibility to lung cancer in
Turkish patients with SCZ (Ozbey et al., 2011). Taken together,
these studies demonstrate the existence of multiple TP53 loci
associated with increased susceptibility to SCZ.

Additional candidate genes and loci associated with SCZ
continue to be identified. A genomic study focusing on human
chromosome 8p has identified dozens of risk loci, encoding
both protein and microRNA in each region, including various
tumour suppressor genes with structural variations, such as copy
number variants, microdeletions, and microduplications, all of
which contribute to SCZ (Tabarés-Seisdedos and Rubenstein,
2009). The breast cancer 2 and partner and localiser of
breast cancer 2 genes, two commonly known risk genes
for breast cancer, have been reported to be associated with
SCZ at the rs420256 and rs9567552 loci, respectively (Tesli
et al., 2010). Polymorphisms of glutathione peroxidase, in
which higher numbers of GAG repeats can increase the
risk of SCZ, are associated with prostate and colon cancer
development (Zmorzynski et al., 2015). The genome-wide
association study approach has revealed other candidate loci
conferring susceptibility to SCZ. The gene encoding the
epigenetic reader bromodomain-containing protein 4 is a major
risk locus in both breast cancer and SCZ (Zuber et al., 2017).
A study of bromodomain-containing protein 4 expression
revealed that the rs138880 allele was associated with SCZ
(Dyrvig et al., 2017). Moreover, analysis of X-ray repair cross-
complementing 4 polymorphisms revealed protective effects of
the rs6452536 and rs35268 loci against SCZ and colorectal
cancer in a Chinese population (Wang et al., 2010). A
genome-wide association study of oral squamous cell carcinoma
identified a novel SNP at the X-ray repair cross-complementing
4 rs1412115 locus, in which an A > G substitution increases
the risk of oral squamous cell carcinoma and is also related
to SCZ (Ma et al., 2015). Opposing evidence also exists, as
another study of cervical squamous cell carcinoma revealed
correlations between TATC or CAA indel polymorphisms and
increased risk of both cancer and SCZ (Shi et al., 2012).
Nonetheless, the convergence of genetic risk for multiple
tumour types and SCZ strongly indicates common underlying
cellular mechanisms. In examining the Wnt signalling pathway,
the gene encoding a major Wnt receptor, frizzled-3, was
found to have a number of SNPs associated with SCZ
pathogenesis (Katsu et al., 2003). Similar patterns for SCZ-related
SNPs have been found in a downstream Wnt effector gene,
Dickkopf 4, in a Chinese population (Proitsi et al., 2008). In
addition, three SNPs in APC exons that are associated with
SCZ, including rs2229992, rs42427, and rs465899 have been
identified (Chambers and Perrone-Bizzozero, 2004). The gene
encoding brain-derived neurotropic factor, which is indirectly
related to the Wnt pathway, has also been implicated in
suppressing tumour pathogenesis (Cao et al., 2010), and
its rs6265 SNP genotype has recently been found to affect
SCZ pathogenesis (Zhang et al., 2018). The major tumour
suppressor genes and loci related to SCZ are summarised in
Table 1.

EPIGENETIC REGULATION OF TUMOUR
SUPPRESSOR GENES IN SCZ

In addition to the direct regulation of protein expression
and function by variants in protein-coding regions, epigenetic
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TABLE 1 | Major tumour suppressor genes and loci contributing to schizophreni(SCZ) susceptibility.

Tumour suppressor gene SCZ-related loci Gene functions References

TP53 (p53) rs2078486, D17S1566 marker Suppressing tumourigenesis, promoting apoptosis Catts and Catts (2000)
WNT1 Regulating cell growth Peng et al. (2014) and Topol et al. (2015)
CTNNB (β-catenin) Cell growth and metabolism Cotter et al. (1998)
FZD7 Tissue development Hoseth et al. (2018)
APC rs2229992, rs42427, and rs465899 Regulation of cell proliferation and tissue development Yu et al. (2011)
PCDHs Suppressing tumour growth Kim et al. (2011)
MCC Suppression of colorectal cancer Wang et al. (2016)
HINT1 Epigenetic regulation Su et al. (2003)
BRCA2, PALB2 rs420256, rs9567552 Tumour suppressor Tesli et al. (2010)
BDNF rs6265 Neurotrophic factor Zhang et al. (2018)

mechanisms play an important role in SCZ onset by regulating
protein expression without altering the gene sequence. Evidence
is continuously growing for the role of epigenetics in SCZ
occurrence (Dempster et al., 2013). Mutations in both coding
and non-coding regions can affect gene expression levels,
thus affecting biological function. In a study investigating the
correlation between SCZ risk and variants of the deleted in
colorectal cancer gene, the SNP locus rs2270954 was found
to reside in the 3’ untranslated region, thus presumably
mediating gene function without affecting the protein sequence
(Grant et al., 2012). Recent studies have shown that the
correlation between SCZ and tumorigenesis may be regulated
epigenetically through the involvement of microRNAs (Rizos
et al., 2016). For example, miR-183, previously shown to
mediate the expression of multiple tumour suppressor genes,
was upregulated in a cohort of patients with SCZ (Rizos
et al., 2012). Similarly, miR-137 may play a dual role in
brain tumour suppression and neural development underlying
psychiatric disease, including SCZ (Mahmoudi and Cairns,
2017). Another recently identified non-coding RNA, miR-193a-
3p, is a circulatory marker for various tumours and has also
been identified in patients with SCZ (Grossi et al., 2017). These
studies have demonstrated that both genetic and epigenetic
regulation of certain tumour suppressor genes contributes to the
risk of SCZ.

CELLULAR AND MOLECULAR
MECHANISMS OF TUMOUR
SUPPRESSOR GENE INVOLVEMENT
IN SCZ

Although the abovementioned evidence highlights the
correlation between tumour suppressor genes and SCZ
susceptibility, we still lack evidence of a causal relationship.
One possible hypothesis is that tumour suppressor genes
participate in SCZ pathogenesis through neurodevelopment
or neural functions. The first piece of supporting evidence for
the above hypothesis was reported for the p53 gene, whose
over-expression was shown to lead to excessive neuronal
death and impaired neural function (Hughes et al., 1997). In
patients with SCZ, p53 activation can enhance apoptosis in
dermal fibroblasts (Catts et al., 2006) and stem-cell-derived
fibroblasts from medication-free individuals (Gassó et al.,

2014). Therefore, p53 hyper-activation may enhance tumour
surveillance at the cost of higher neuronal apoptosis, which
impairs psychiatric function. In addition, transcriptional
regulation may help to explain the potentially causal relationship
between tumour suppressor gene activity and SCZ. Dysbindin-
1, the product of the SCZ risk gene dystrobrevin binding
protein 1, increases TP53 gene expression and leads to excessive
neurite outgrowth (Ma et al., 2011). The above developmental
effects of p53 highlight possible routes by which tumour
suppressor- and SCZ-associated genes may interact to affect SCZ
risk.

Other tumour suppressor genes may also contribute to
SCZ pathogenesis due to their effects on neural development,
including axon guidance and dendritic arborisation. They
include SCZ risk genes such as disrupted in SCZ-1 (Miyoshi
et al., 2003; Mackie et al., 2007). Wnt signalling is associated
with SCZ pathogenesis and regulates brain development
during both embryonic and postnatal stages (Inestrosa et al.,
2012). Specifically, canonical and non-canonical Wnt pathways
mediate axon guidance and dendritic arborisation, indicating
possible roles in SCZ development. Aberrant Wnt signalling
and decreased neurite numbers were observed in reprogrammed
neurons derived from human-induced pluripotent stem cells
in patients with SCZ (Brennand et al., 2011). Given that
Wnt activation can facilitate tumour growth, its deactivating
mutations may simultaneously reduce tumorigenesis and
impair neuronal development, probably increasing SCZ
risk. In addition to direct regulation of neural development,
the Wnt pathway may be modified epigenetically, as the
tumour-suppressing miR-137 can simultaneously modulate Akt
pathway activity (Thomas et al., 2017) and the expression
of brain-derived neurotrophic factor (Hill et al., 2014),
highlighting its dual effects on tumour growth and SCZ
risk. Downstream of the Wnt pathway, converging molecular
pathways further orchestrate tumour cell surveillance and
neurodevelopment. For example, heterozygous knockout of
the tumour suppressor gene APC leads to development of
age-dependent working memory deficits and hypoactivity
(Koshimizu et al., 2011). A mutation in the mouse APC
gene has also been reported to result in abnormal dendritic
spine formation and long-term potentiation in hippocampal
neurons, and is associated with impaired social interaction
(Onouchi et al., 2014). Although some of the above
findings are inconsistent with our proposed model, they
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still suggest the involvement of tumour-related genes in neural
function.

SCZ pathogenesis is inherently a polygenic event involving
interactions among multiple risk genes. A recent association
study reported that the interaction between the SNP loci of two
tumour suppressor genes, thioredoxin interacting protein and
AF1q, contributed to SCZ susceptibility (Su et al., 2017). The
molecular mechanisms underlying such gene interactions mainly
resides in epigenetic or transcriptional regulation. For example,
Wnt activation can epigenetically enhance the expression of
transcription factor 4, which is a transcription factor for SCZ
risk genes (Hennig et al., 2017). Interestingly, transcription factor
4 mediates apoptosis and epithelial-mesenchymal transition
genes in addition to neurodevelopmental factors (Forrest et al.,
2013), making it a potent ‘‘dual player’’ candidate for SCZ and
cancer. Upstream of Wnt signalling, disrupted in SCZ-1 can
stimulate the transcriptional activity of β-catenin (Boccitto et al.,
2016) and upregulate Wnt activity. Outside the Wnt pathway,
other tumour suppressor gene may also interact with SCZ risk
genes, such as protein phosphatase 2A (Palanichamy et al.,
2017).

In addition to converging molecular pathways and
transcriptional regulation between tumour suppressor and
SCZ risk genes, shared epigenetic regulation of these two groups
of genes may confer SCZ and cancer phenotypes. For example,
age-related DNA methylation can elevate the risk of both SCZ
and cancer (Jenkins et al., 2014). Histone deacetylase 2 regulates
metabotropic glutamate receptor 2 promoter activity (Kurita
et al., 2012) in addition to p53 expression levels (Wagner et al.,
2014). Therefore, epigenetic regulation of DNA represents
another mechanism linking cancer risk and SCZ, although not
all studies have reported results consistent with our hypothesis
of an inverse correlation between cancer and SCZ risk. As an
additional layer of gene function regulation, post-translational
modification of tumour gene protein products has also been
implicated in SCZ. One study reported that a novel tumour
suppressor gene, zinc fingers DHHC-type 14, encoded an
enzyme for S-acylation that is implicated in SCZ (Greaves
and Chamberlain, 2014). Taken together, the separate lines of
evidence discussed above support the existence of genetic and
epigenetic regulatory networks underlying SCZ pathogenesis
and tumorigenesis.

FIGURE 1 | A working model for “double edged” effects of tumour suppressor genes on both cancer and schizophrenia (SCZ) risk. The over-expression or
gain-of-function mutation of tumour suppressor genes confer dual effects including closer monitoring of unwanted cell proliferation, plus potential interruption on
neural development that leads to higher SCZ risk in adults. The correlation and potentially “trade-off” between SCZ and cancer risk requires further study.
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CONCLUSION AND FUTURE
PERSPECTIVES

Wehave summarised the recentmajor progress in understanding
the roles of tumour suppressor genes in SCZ pathogenesis
and discussed potential underlying cellular and molecular
mechanisms. Tumour suppressor genes have been associated
with neurodevelopmental disorders other than SCZ, such as
autism (Crespi, 2011). These findings reinforce the general
concept that abnormalities in neurodevelopment can lead
to a spectrum of behavioural deficits that spans autism,
SCZ, and other syndromes. Research on the role of tumour
suppressor genes in SCZ has important implications for drug
development. Typical antipsychotics such as haloperidol can
cause neuronal apoptosis via p53 activation, whilst atypical drugs
can have the opposite effect of neuroprotection (Nandra and
Agius, 2012). We therefore expect that atypical antipsychotic
drugs should have better efficacy and fewer adverse effects
in SCZ cases with tumour suppressor gene hyperactivation.
In reviewing associations of SCZ with the Wnt pathway,
we hypothesise that drugs targeting this pathway may be
effective antipsychotics (Freyberg et al., 2010; Singh, 2013).
The feasibility of correcting epigenetic abnormalities in vivo
warrants more research and development as a potential
pharmacological approach for SCZ. Histone deacetylase 2 is a
critical mediator of atypical antipsychotic drug action (Kurita
et al., 2012) and the tumorigenic activity of p53 (Wagner et al.,
2014). While anti-tumour drugs targeting specific cellular and
molecular pathways are being rapidly developed, antipsychotic
drugs are meeting hurdles in the traditional path. Therefore,
screening anti-tumour drugs for potential neural modulating
properties may provide promising fast-track candidates for
SCZ treatment. Conversely, recent studies have suggested that
anti-psychotic drugs might be effective in decreasing cancer
risk (Shi et al., 2015), which may partially explain the lower
cancer incidence observed in patients with SCZ (Raviv et al.,
2014; Xu et al., 2017). However, the anti-tumorigenic effect of
anti-psychotic drugs is unlikely to fully explain those surveys.
Rather, we hypothesise that tumour suppressor genes may
protect patients with SCZ from cancer onset. This ‘‘double-
edged sword’’ model (Figure 1) reflects the intricate balance
between preventing dysregulated cell growth and protecting
against abnormal neural development, in which a higher
risk of tumour onset is traded for a lower incidence of

SCZ, and vice versa. In summary, tumour suppressor genes
and SCZ are highly correlated genetically, molecularly, and
potentially pharmacologically. Further investigation is required
to achieve a better, clinically translatable understanding of the
cellular mechanisms of tumour suppressor gene involvement in
neurodevelopment and behaviour.

HYPOTHESIS

Based on our current knowledge of tumour suppressor gene
involvement in SCZ pathogenesis, we propose a working model
in which at least certain SCZ cases can be attributed to functional
hyperactivation of tumour suppressor genes, resulting in a
concomitant reduction in susceptibility to cancers. Because
tumour suppressor genes can inhibit cell proliferation and
growth, they can also affect normal development or activity of
neural tissues, thus leading to SCZ.
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