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The choroid plexuses (ChPs) perform indispensable functions for the development,
maintenance and functioning of the brain. Although they have gained considerable
interest in the last years, their involvement in brain disorders is still largely
unknown, notably because their deep location inside the brain hampers non-
invasive investigations. Imaging tools have become instrumental to the diagnosis and
pathophysiological study of neurological and neuropsychiatric diseases. This review
summarizes the knowledge that has been gathered from the clinical imaging of ChPs in
health and brain disorders not related to ChP pathologies. Results are discussed in the
light of pre-clinical imaging studies. As seen in this review, to date, most clinical imaging
studies of ChPs have used disease-free human subjects to demonstrate the value of
different imaging biomarkers (ChP size, perfusion/permeability, glucose metabolism,
inflammation), sometimes combined with the study of normal aging. Although very
few studies have actually tested the value of ChP imaging biomarkers in patients with
brain disorders, these pioneer studies identified ChP changes that are promising data
for a better understanding and follow-up of diseases such as schizophrenia, epilepsy
and Alzheimer’s disease. Imaging of immune cell trafficking at the ChPs has remained
limited to pre-clinical studies so far but has the potential to be translated in patients
for example using MRI coupled with the injection of iron oxide nanoparticles. Future
investigations should aim at confirming and extending these findings and at developing
translational molecular imaging tools for bridging the gap between basic molecular and
cellular neuroscience and clinical research.

Keywords: choroid plexus, central nervous blood-CSF barrier, inflammation,

neurological disease

imaging, system,

Abbreviations: AD, Alzheimer’s disease; ASD, autism spectrum disorders; BCSFB, blood-CSF barrier; ChP, choroid plexus;
CRPS, complex regional pain syndrome; CSE, cerebrospinal fluid; CT, computed tomography; ITH, idiopathic intracranial
hypertension; MRI, magnetic resonance imaging; MS, multiple sclerosis; PET, positron emission tomography; US, ultrasound.
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INTRODUCTION

The choroid plexuses (ChPs) are small structures located in
the lateral, third, and fourth brain ventricles. They are formed
by numerous villi organized as a tight epithelium enclosing a
highly vascularized stromal core that contains immune cells and
fibroblasts. The ChPs produce the cerebrospinal fluid (CSF),
form a protective barrier between the blood and the CSF (the
blood-CSEF barrier, BCSFB) and secrete various biologically active
molecules. Hence, they play a vital role in maintaining the
microenvironment in which the brain is located (Ghersi-Egea
et al., 2018). The ChPs are also crucial for immune surveillance
of the brain and provide a port of entry for immune cells in
a range of neurological diseases (Schwartz and Baruch, 2014).
The development of therapeutic strategies to protect the BCSFB
may be helpful for the management of these diseases and is
thus gaining a growing interest (Dragunow, 2013). However,
to date, the role of ChP involvement in brain disorders is
largely unknown, notably because their deep location inside the
brain hampers non-invasive investigations. Imaging tools have
become instrumental to the diagnosis and pathophysiological
study of neurological and neuropsychiatric diseases. This review
summarizes the knowledge gathered through clinical imaging of
ChPs in health and neurological or neuropsychiatric disease not
related to a primary ChP pathology.

METHODS

Supplementary Figure 1 presents the literature search flow
chart. Supplementary Table 1 shows the summary of included
studies. Note that the review does not include primary ChP
pathology diseases such as ChP tumors, ventriculomegaly, and
hydrocephalus. Results are discussed in the light of pre-clinical
imaging studies whenever available.

RESULTS
Morphology

Choroid plexuse size can be quantified with standard computed
tomography (CT) and magnetic resonance imaging (MRI)
approaches, and with ultrasound (US) in fetal or newborn
infants. Contrast agent administration might be used to improve
delineation. Madhukar et al. (2012) documented the size of
normal ChPs in children between the ages of 0 and 16 years old.
This study was intended to provide reference data to allow the
detection of abnormal ChP size in developmental diseases, in
the continuity of earlier studies that measured ChP size increase
due to choroidal angiomatosis in children with Sturge-Weber
syndromes (Stimac et al., 1986; Griffiths et al., 1996). However,
it did not lead to further publications to date.

While performing an MRI morphometric brain analysis
study in patients suffering from type 1 complex regional pain
syndrome (CRPS), Zhou et al. (2015) serendipitously found a
significant enlargement of ChPs compared with controls. The
same phenomenon was observed with MRI in patients with

idiopathic intracranial hypertension (ITH) (Figure 1A; Lublinsky
et al., 2018). Using a different approach based on MRI texture
analysis, Chaddad et al. (2017) identified ChPs as one of the
regions having the most significant differences between patients
with autism spectrum disorders (ASD) and controls. According
to the authors, all these effects could result from the activation
of several biological processes including the presence of edema
and/or proliferation of ChP cells. Dedicated imaging techniques
for evaluating CSF production (see below) may help investigate
these hypotheses. Besides, if indeed increased ChP size observed
by imaging techniques reflects an increase in ChP epithelial cell
number, then it is likely that important choroidal functions other
than CSF secretion, such as trophic factors and hormone carrier
secretion, will be impacted as well.

Advanced MRI  techniques such as  diffusion-
weighted/diffusion tensor imaging (DWI/DTI) can be used
to detect microstructural tissue changes. DTT metrics have been
measured in the ChPs of human subjects thus showing the
feasibility of this imaging technique to characterize the ChPs
despite their small size (Grech-Sollars et al., 2015). The apparent
diffusion coefficient (ADC), reflecting the molecular motion of
water in the interstitial space, was shown to increase with aging in
ChPs (Alicioglu et al., 2017). According to the authors, this effect
may be related to increased water diffusion across the epithelium
via paracellular spaces, thus signaling BCSFB malfunction.

Calcifications

The occurrence of macroscopic calcifications can be detected on
CT and on T2*-weighted MRI scans. ChP calcification increases
in frequency and extent with age and is usually not associated
with a pathology (Yalcin et al., 2016). However, Bersani et al.
(1999) suggested a possible association between the size of ChP
calcification and the severity of symptoms in schizophrenic
patients independently of age, in line with a former study also
based on CT-scan (Sandyk, 1993). The cause remains unclear and
these results should be considered with caution as they have not
been replicated to date.

CSF Production

Because changes in CSF production rate likely contribute to
pathological processes, as exemplified in Alzheimer’s disease
(Silverberg et al., 2001; Serot et al., 2012), a validated imaging
biomarker of CSF production may be valuable for investigating
the involvement of ChPs in brain diseases. Net CSF flow
through the cerebral aqueduct may serve as a marker of
CSF production in the lateral ventricles, i.e., by the ChPs
(Spijkerman et al., 2018). This flow may be estimated in humans
using an phase-contrast MRI technique (Huang et al., 2004);
however, the relationship between these measurements and CSF
production has been recently questioned (Spijkerman et al,
2018). Of note, CSF production has choroidal and extrachoroidal
components. The imaging of extrachoroidal CSF production
and extraventricular CSF circulation is outside the scope of
this review; however, because it is in close relation with CSF
production at the ChPs, we briefly reviewed this literature in the
Supplementary Data 1.
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FIGURE 1 | Examples of different clinical imaging techniques available for investigating the involvement of ChPs in brain disorders. (A) 3D reconstruction of ChP
located within lateral ventricles space [red, before lumbar puncture (LP), and gray, after LP] in a patient with idiopathic intracranial hypertension (Lublinsky et al.,
2018); (B) ChP iron deposition (arrows on hypointense signals) detected by susceptibility-weighted MRI in a patient who had received both ultrasmall
superparamagnetic particles of iron oxide (USPIOs) 2 years earlier and multiple blood transfusions since (Daldrup-Link, 2017); (C) signal-time curves extracted in the
ChP from dynamic susceptibility contras-enhanced MRI data: the yellow curve represents the mean signal calculated from all the pixels in the ChP volume, while the
blue and red curves represent, respectively, the curve with lowest and highest baseline. After first passage of the gadolinium bolus (signal drop), the choroidal signals
visually exceed the baseline which indicates gadolinium chelate extravasation into the ChP stroma (Bouzerar et al., 2013); (D) PET/CT images showing the normal
ChP uptake of [(3Ga]-DOTA-E-[c(RGDfK)], targeting ay B3 integrin (This research was originally published in JNM. |opez-Rodriguez et al., 2016); (E) in vivo imaging
using the Tau tracer ["8F]JAV-1451 showing high retention in AD patient and post-mortem ChP histopathology showing immunoreactivity in epithelial cells (pink color)
with antibodies against pan-Tau in AD but not in normal control (NC) (Ikonomovic et al., 2016); (F) MRI and translocator protein (TSPO) labeling ['! C]PBR28 PET
images in a patient with left-sided temporal lobe epilepsy showing higher uptake in ipsilateral than in contralateral side in the ChP of lateral ventricles (red arrow) and
hippocampus (black arrow) (This research was originally published in JNM. Hirvonen et al., 2012); (G) in vivo MRI using the very small particles of iron oxide (VSOP)
and post-mortem Prussian Blue staining in a rat model of multiple sclerosis: VSOP (circles) was detected in the inflamed ChP at peak disease (Millward et al., 2013).

Iron Deposits

Choroid plexuses are involved in iron exchanges between
the blood and the brain (Morris et al., 1992; Deane et al.,
2004; Rouault et al., 2009). They secrete transferrin (Leitner
and Connor, 2012) and serve as an iron storage tissue (Lu
et al., 1995; Rouault et al., 2009). MRI is a powerful tool to
detect excessive iron in the brain. Several teams have reported
iron deposition in ChPs of patients with transfusion-induced
iron overload (Figure 1B; Kira et al., 2000; Qiu et al, 2014;
Hasiloglu et al., 2017). Age-associated iron deposits were also
documented in ChPs of mouse lemur, a non-human primate
model of pathological brain aging (Joseph-Mathurin et al., 2013).
The authors showed that immunization against A worsened
ChP iron deposits and suggested that MRI of human subjects
immunized against AP should be evaluated to determine whether
iron accumulation also occurred in humans.

Capillary Perfusion and Permeability

The ChP blood flow is about fivefold higher than the cerebral
blood flow (Maktabi et al., 1990). In contrast to the blood-
brain barrier (BBB), the ChP capillaries are fenestrated and
permeable, allowing free communication between the ChP
stroma and the peripheral blood for molecules of different sizes.
In physiological conditions, macromolecules with molecular
weights up to ~800 kDa or size ~12 nm may diffuse into

the ChP stroma (Strazielle and Ghersi-Egea, 2013). As a
consequence, conventional contrast agents used in clinical MRI
and CT (<2 kDa) diffuse into the stroma of ChPs, leading
to homogenous enhancement (Guermazi et al, 2000). This
physiological enhancement may be used to normalize abnormal
brain enhancements (Miller et al., 2016; Vakil et al., 2017; Kim
et al., 2018). In turn, Azuma et al. (2018) proposed a 4-point
scale to score physiological enhancement of circumventricular
organs including ChPs, on MRI, with the aim of recognizing
abnormal enhancement in future investigations. Furthermore,
ChP capillary permeability and perfusion may be quantified
by dynamic contrast-enhanced/dynamic susceptibility contrast
enhanced MRI (DCE/DSC-MRI) (Figure 1C; Artzi et al., 2013;
Bouzerar et al., 2013; Vakil et al., 2017). This latter approach
was used to show that ChP capillary permeability and perfusion
decreased with aging (Bouzerar et al., 2013). In a mouse model
of AD, stromal leakage of an iodinated liposome (size: 100-
150 nm) was found in ChPs using microCT (Tanifum et al,
2014). However, the quantification of this leakage did not
significantly differ compared to aged-matched control wild-type
animals, thus suggesting that this phenomenon was independent
from the pathology. Hence further studies are needed to
determine whether the measurement of capillary perfusion
and/or permeability at ChPs might serve as a biomarker in
neurodegenerative diseases.
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BCSFB Permeability

The BCSFB at the ChPs is formed by the epithelium whose
cells are sealed with tight junctions. As a consequence, no
enhancement is seen in the CSF after contrast medium
administration, unless the BCSFB is damaged. In patients, reports
of contrast medium leakage into the brain ventricles are scarce
(excluding cases of hemorrhage; Phatouros et al., 1999). A case
of contrast leakage mimicking intraventricular hemorrhage was
recently described in an ischemic stroke patient who had been
treated with intravenous thrombolysis (IVT) (Park et al., 2017).
A study investigating a small series of ischemic stroke patients
undergoing mechanical thrombectomy in combination with IVT
reported a blood-CSF arachnoid barrier disruption only (Renu
et al., 2017). In pre-clinical ischemic stroke studies, two teams
have reported MRI contrast medium leakage into the ventricles
early after reperfusion (Nagahiro et al., 1994; Batra et al,
2010), in line with a previous study showing an increase in
BCSFB permeability in rat models of focal cerebral ischemia
(Ennis and Keep, 2006). Other brain pathologies that have
been shown to display intraventricular conventional contrast
medium extravasation in small animal models include Wernicke’s
encephalopathy (Nixon et al., 2008), meningitis (Ichikawa et al,,
2010), and experimental autoimmune encephalomyelitis (EAE),
an animal model of multiple sclerosis (MS) (Wuerfel et al., 20105
Waiczies et al., 2012).

In turn, BCSFB integrity represents a hurdle for delivering
drugs to the brain. The assessment of the drug-permeability
barrier at the level of the ChP epithelium is therefore a desirable
aim to understand cerebral pharmacokinetics. Non-metabolized
radiotracers transported by both P-glycoprotein (ABCBI, also
known as multidrug resistance protein) and multidrug resistant
associated proteins (MRPs and ABCCs) have been used to this
aim: the radiolabeled drug localized to ChPs with no detectable
activity in adjacent CSF whether in healthy (Rao et al., 1999) or in
epileptic subjects (Langer et al., 2007), such showing the efficacy
of the BCSFB to prevent drug entry into the CSF. As MRPs rather
than P-glycoprotein are expressed in ChPs both in rodent and
humans (Gazzin et al., 2008), it is likely that the former plays a
special role as biochemical barrier at ChPs. Another pre-clinical
example is represented by the presence of **Cu-labeled fusion
protein etanercept (a TNF antagonist) into both the CSF and the
ChPs following intravenous perispinal administration (Tobinick
et al., 2009), thus demonstrating the potential of such techniques
to investigate drug-concentration in both compartments.

Receptor Imaging

In the literature, there are a number of PET studies that mention
ChP non-specific uptake due to radiotracer extravasation or
binding to calcification, which were thus excluded from this mini-
review. A few studies, however, suggested specific ChP uptake of
tracers targeting o, B3 integrins (Figure 1D; Minamimoto et al.,
2015; Lopez-Rodriguez et al., 2016) or serotonin receptors (5-
HTRs) (Ettrup et al., 2016; Schankin et al., 2016). An fMRI study
also reported an increased BOLD signal in ChPs of volunteers
administered with a 5-HT,¢ receptor agonist (Anderson et al.,
2002). This is in line with the known expression of these

receptors in ChPs. Altogether these data suggest that imaging
ChP receptors is feasible in humans.

Proteinopathies

Proteinopathies can be explored with PET radiotracers targeted
at aggregated proteins; yet, in these brain imaging studies, ChPs
are usually disregarded because signal enhancement is thought to
reflect non-specific uptake, also called “off-target binding” (Lowe
et al., 2016). However, in the case of the recently developed Tau
radiotracer flortaucipir (also known as ['8F]AV-1451 or ['8F]-
T807), elevated ChP binding has attracted considerable interest
because of ChP proximity (and potential signal contamination) to
hippocampus, a key region for staging tauopathy in Alzheimer’s
disease (AD) (Pontecorvo et al., 2017; Lee et al., 2018). At
the moment, there are conflicting reports on the substrate of
this radiotracer uptake in ChPs: while off-target binding to
leptomeningeal melanocytes (adjacent to the lateral ventricles;
Marquie et al., 2017), or to ChP calcifications (Lowe et al., 2016),
have been suggested by autoradiographic studies, Ikonomovic
et al. (2016) reported the histological detection of Tau protein
aggregates in ChP epithelial cells, thus suggesting a possible
“on-target” binding (Figure 1E). Therefore there is still an
open debate regarding the interpretation of ChP signals in PET
studies of proteinopathies.

In addition, the accumulation of aggregated proteins within
epithelial cells may alter the ChP metabolic activity. Daouk et al.
hypothesized that dynamic PET imaging with 'F-FDG could
be useful to assess glucose metabolism as a marker of ChP
epithelium activity in elderly adults, with a view to early diagnosis
of AD. The FDG uptake in ChPs decreased with increasing
disease severity, thereby providing the proof-of-concept that
PET-FDG is feasible and useful to study ChP functional behavior
in AD patients (Daouk et al., 2016).

Immune Responses

The ChP stroma contains immune cells such as macrophages,
neutrophils, dendritic cells, B and T cells and serves as a
gateway for immune cell trafficking into the CSF (Ghersi-Egea
et al., 2018). PET imaging of translocator protein 18 kDa
(TSPO) is the method of choice for clinically evaluating
neuroinflammation (Kreisl et al., 2016) as it is overexpressed
in activated microglia/macrophages. In patients with unilateral
temporal lobe epilepsy, a higher uptake of the TSPO radiotracer
[''C]PBR28 was observed in the ChPs ipsilateral to the seizure
focus (Figure 1F; Hirvonen et al, 2012). In a mouse model
of chronic systemic inflammation, Drake et al. (2011) showed
with histological experiments an intense recruitment of activated
immune cells at ChPs, while in their parallel human study, they
did not examine a potential uptake of the TSPO radiotracer !'C-
PK11195 in ChPs of patients at risk of stroke, probably because
of the expected “off-target” effect.

Alternatively, neuroinflammation may be assessed with MRI
by labeling cells with a contrast agent. Reticuloendothelial
MRI contrast media (such as superparamagnetic particles
of iron oxide or SPIO) are taken up by phagocytic cells
following their intravenous administration. SPIO-enhanced MRI
has been extensively used to monitor phagocytic cells in
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subjects with neuroinflammatory diseases (Chauveau et al., 2011;
Gkagkanasiou et al., 2016). With regard to ChPs, only pre-clinical
data have been published to date. An accumulation of contrast
material was observed in the ChPs of animal models of ischemic
stroke (Wiart et al., 2007; Desestret et al., 2009; Henning et al,,
2009) and EAE (Wuerfel et al., 2010; Millward et al., 2013, 2017).
These results were obtained using contrast agents of various
formulations and size (~1000 kDa for Gadofluorine M and 7-
150 nm for SPIOs). Contrast agents were found in the stroma
(Figure 1G) with evidence of internalization by phagocytic cells
(Wuerfel et al., 2010; Millward et al., 2017). Of note, the very small
SPIOs (VSOP) were also found in the endothelium (Millward
et al., 2013) and epithelium (Millward et al., 2017). Altogether,
these data confirm ChPs involvement in neuroinflammatory
diseases and suggest that SPIO-enhanced MRI might represent
a powerful tool to study immune activation. Although clinical
MRI studies have been conducted using ultrasmall (<50-nm)
SPIO (USPIO) in patients with ischemic stroke (Cho et al., 2007;
Nighoghossian et al., 2007) and MS (Tourdias et al., 2012), to
the best of our knowledge, none has specifically examined the

ChPs. Retrospective analysis of those data might help determine
whether these pre-clinical observations have a translation in the
clinical field.

SUMMARY AND FUTURE DIRECTIONS

Despite an increasing interest, the ChPs are still relatively
understudied using neuroimaging. One reason for this lack
of data is the small size of ChPs, which may be even more
problematic in neurodegenerative diseases due to atrophy (Serot
et al,, 2003). Another reason is the unspecific ChP uptake of
clinically approved contrast agents in physiological conditions,
thus complicating image interpretation in pathological
conditions. In addition, partial volume effects and/or spill-
over from adjacent tissues may biased the quantitative values
measured in ChPs. For all these reasons, ChPs are still viewed as
challenging structures to image.

Despite these limitations, there is a growing body of
evidence showing that ChP imaging is feasible and valuable.
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Figure 2 presents imaging strategies that may be used to obtain
information about ChPs morphology and function. To date,
most clinical imaging studies of ChPs have used human subjects
free from neurological disease to show the interest of different
ChPs imaging biomarkers, sometimes combined with the study
of normal neurodevelopment or aging. Very few have actually
tested the value of ChP imaging biomarkers in patients with
neurodiseases; but these pioneer studies gave promising results
in CRPS, IIH, ASD, schizophrenia, epilepsy, and AD. Future
investigation should aim at confirming and extending these
findings, evaluating their clinical relevance, and using them to
investigate the involvement of ChPs in brain disorders.

Retrospective analysis of neuroimaging databases with a
focus on ChPs might provide some answers in this respect.
Morphological and functional changes in ChPs may be readily
estimated by MRI, CT, and PET imaging, all approaches
being relatively widespread in clinical trials that make use of
neuroimaging. The questions that need to be answered are
related to the potential of the different imaging techniques to
differentiate between normal and pathological conditions, to
follow-up disease progression and to monitor the effects of
therapy. In addition, the study of inflammation at the ChPs
may bring some new insights into the role of these structures in
neuro-inflammatory disorders.

There are obvious limitations to retrospective studies,
especially for the study of ChPs, since by definition they
were not optimized to image such small structures. In the
future, prospective studies should thus be properly designed,
by making use of the latest technological developments such as
hybrid imaging with PET/MR and the development of dedicated
imaging tools. In parallel, further pre-clinical investigation
is needed to elucidate the biological correlates of ChPs
imaging biomarkers.

CONCLUSION

In summary, the clinical assessment of ChP alterations
associated with brain disorders using neuroimaging methods
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