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Background: Monoamine oxidases (MAOs) were discovered nearly a century ago. This
article aims to analyze the research literature landscape associated with MAOs as
privileged class of neuronal enzymes (neuroenzymes) with key functions in the processes
of neurodegeneration, serving as important biological targets in neuroscience. With the
accumulating publications on this topic, we aimed to evaluate the publication and citation
performance of the contributors, reveal the popular research themes, and identify its
historical roots.

Methods: The electronic database of Web of Science (WoS) Core Collection was
searched to identify publications related to MAQOs, which were analyzed according
to their publication year, authorship, institutions, countries/regions, journal title, WoS
category, total citation count, and publication type. VOSviewer was utilized to
visualize the citation patterns of the words appearing in the titles and abstracts, and
author keywords. CRExplorer was utilized to identify seminal references cited by the
MAO publications.

Results: The literature analysis was based on 19,854 publications. Most of them
were original articles (n = 15,148, 76.3%) and reviews (n = 2,039, 10.3%). The top
five WoS categories of the analyzed MAO publications were Pharmacology/Pharmacy
(n = 4,664, 23.5%), Neurosciences (n = 4,416, 22.2%), Psychiatry (n = 2,906, 14.6%),
Biochemistry/Molecular Biology (n = 2,691, 13.6%), and Clinical Neurology (n = 1,754,
8.8%). The top 10 institutions are scattered in the United States, UK, France, Sweden,
Canada, Israel, and Russia, while the top 10 countries/regions with the most intensive
research on the field of MAOs are the United States, followed by European and
Asian countries. More highly cited publications generally involved neurotransmitters,
such as dopamine (DA), serotonin, and norepinephrine (NE), as well as the MAO-A
inhibitors moclobemide and clorgyline, and the irreversible MAO-B inhibitors selegiline
and rasagiline.
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Conclusion: Through decades of research, the literature has accumulated many
publications investigating the therapeutic effects of MAO inhibitors (MAQOIs) on various
neurological conditions, such as Alzheimer’s disease (AD), Parkinson’s disease (PD),
and depression. We envision that MAO literature will continue to grow steadily, with
more new therapeutic candidates being tested for better management of neurological
conditions, in particular, with the development of multi-target acting drugs against

neurodegenerative diseases.

Keywords: molecular neuroscience, monoamine oxidase, tyramine, bibliometrics, history, Alzheimer’s disease,

Parkinson’s disease, depression

INTRODUCTION

Monoamine oxidases (MAOs, EC 1.4.3.4) were discovered by
Mary L.C. Hare (later known as Mary Bernheim) nearly a
century ago, back in 1928 (Hare, 1928). The discovery of
the first MAO, originally called tyramine oxidase, has paved
the way for researchers to study the potential of MAOs as
biological targets and development of therapeutics, mainly
related to neurological diseases (Zeller and Barsky, 1952; Slotkin,
1999; Youdim and Bakhle, 2006; Jo et al.,, 2012). MAOs are
flavin adenine dinucleotide (FAD) co-factor-dependent enzymes
localized on the mitochondrial outer membrane that catalyze
the oxidation of endogenous and xenobiotic monoamines
(Figure 1A). Therefore, MAOs play an important role in
the central and peripheral nervous system (CNS and PNS)
by modulating the levels of monoamine neurotransmitters
(Setini et al, 2005). Two isoforms are present in most
mammalian tissues, MAO-A and MAO-B. Although there is
~73% identity of the protein sequences, both MAOs are
important for the inactivation of various neurotransmitters
but display regional differences in enzyme activity, substrate
specificity, and distribution in the human brain and periphery
(Shih et al, 1999; Binda et al, 2002; Castagnoli et al,
2003). For example, serotonin (5-hydroxytryptamine, 5-HT) is
preferably degraded by MAO-A (Tong et al., 2013), whereas
MAO-B exhibits higher affinity toward benzylamine (BA) and
phenylethylamine (PEA; Youdim and Bakhle, 2006; Jo et al,
2012; Tong et al.,, 2013). Catecholamines such as dopamine
(DA), adrenaline (epinephrine), noradrenaline (norepinephrine,
NE), tryptamine, and tyramine are substrates for both MAO
isoforms (Figure 1B). However, DA is mainly metabolized
by MAO-B in substantia nigra, where MAO-B is the main
distributed isoform in glial cells and the increased MAO-B
activity is associated with loss of DA in the human brain
(Tzvetkov et al., 2017).

As MAOs play a key role in regulating neurotransmitter
levels, altered MAO levels may associate with several neurological
diseases. The abnormal MAO-A genotype is associated with
Brunner syndrome (Brunner et al., 1993) and autism (Cohen
et al,, 2011). Furthermore, the elevated MAO-A levels may link
to major depression (Meyer et al, 2006; Tong et al., 2013).
Similarly, there seems to be an association between the increased
MAO-B levels (~4-fold with aging) and neurodegenerative
diseases, such as Alzheimer’s disease (AD) and Parkinson’s

disease (PD; Saura et al, 1994; Mallajosyula et al., 2009).
The preferences in substrate (neurotransmitter) affinity are
essential for the different clinical significance of both MAOs,
e.g., via inhibiting the activity either of MAO-A or MAO-B
by monoamine oxidase MAO inhibitors (MAOIs). Therefore,
selective inhibition of MAO-A in the human brain is an
established approach for the treatment of mental disorders,
while selective MAO-B inhibitors are those used for treating
of PD (Riederer et al., 2004a; Yamada and Yasuhara, 2004;
Tzvetkov et al.,, 2017). Subsequently, a number of MAOIs have
been developed and approved worldwide for the treatment
of neurological or psychiatric diseases. For example, the
irreversible non-selective MAOQIs tranylcypromine, the selective
MAO-A inhibitors such as the irreversible inhibitor clorgyline
and the reversible inhibitor moclobemide are used to treat
depression and anxiety (for structures, see Figure 2; Riederer
et al.,, 2004b; Tzvetkov et al., 2017). A meta-analysis reported
that selective MAO-A inhibitors have a better efficacy than
tricyclic antidepressants for managing atypical depression
(Henkel et al., 2006). Furthermore, the irreversible MAO-B
inhibitors selegiline and rasagiline (first generation MAO-B
inhibitors) are approved as monotherapy for early PD or in
combination with levodopa in late-stage PD (Lakhan, 2007;
Fowler et al., 2015). However, it is known that irreversible
MAO inhibition may cause adverse pharmacological effects
and safety complications (Kumar et al., 2016). In 2015, the
reversible MAO-B inhibitor safinamide has been approved
as an add-on drug to levodopa or to DA agonists for the
treatment of motor complications in patients with mid-to
late-stage or early PD, respectively (Deeks, 2015). In contrast,
the reversible MAO-B inhibitor sembragiline, a compound
that was patented and investigated as a smoking-cessation
agent, was discontinued in clinical phase III as a medication
for the treatment of moderate AD (Borroni et al., 2017;
Tzvetkov et al., 2019).

The resolution of the X-ray co-crystal structures of both
human MAO-A and MAO-B with a number of irreversible
and reversible inhibitors has not only gained new insight into
the structure of these enzyme-ligand complexes, but also has
newly inspired the research in the field of MAO inhibition
as potential therapeutic approach in neurological diseases
(Binda et al.,, 2002, 2004, 2007; De Colibus et al., 2005).
Although electron paramagnetic resonance (EPR) experiments
showed that human MAO-A and MAO-B isoenzymes are
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FIGURE 1 | Oxidative deamination of monoamines catalyzed by monoamine oxidases (MAOs) A and B. (A) General reaction scheme showing the binding of a
monoamine (neurotransmitter) to the flavoenzyme (E-FAD) to vield the respective aldehyde and ammonia via reduction of the flavin adenine dinucleotide (FAD)
co-factor toward FADH> (step 1), followed by conversion of the aldehyde (step 2) either to carboxylic acid via aldehyde dehydrogenase (ALDH) or into alcohol (glycol)
by aldehyde reductase (ALR). (B) Localization of MAOs on the mitochondrial outer membrane and their specificities in the oxidative deamination of monoamine

neurotransmitters (Maggiorani et al., 2017).

dimeric in their physiological forms (Kumar et al, 2016),
the crystallographic studies revealed that the human MAO-A
isoenzyme crystallizes as monomer (De Colibus et al., 2005;
Son et al, 2008), whereas human MAO-B crystallizes as
dimer (Binda et al, 2007). Furthermore, the active site of
the human MAO-A consists of a single hydrophobic cavity
with a volume of ~550 A3, while the bipartite cavity of
human MAO-B has a volume of ~700 A3, divided into
substrate binding site with the FAD co-factor (~400 A3
and entrance hydrophobic cavity (~300 A3 De Colibus
et al., 2005). The X-ray structures of human MAO-A and
human MAO-B complexes with the covalent (irreversible)
bonded MAO-A inhibitor clorgyline and the non-covalent
(reversible) MAO-B inhibitor safinamide, respectively, are
showed in Figure 3.

In the current study, we aimed to analyze the research
literature landscape concerning MAOs as privileged biological
targets, in particular, in neuroscience from two bibliometric
perspectives. First, we evaluated the publication and citation
data of the literature, to identify the major contributors in
terms of authors, institutions, countries/regions, and journals.
By analyzing the words from titles, abstracts and keywords,
we identified the hotspots of the field and revealed which
themes were more investigated and cited in the period of time
between 1928 and March 2019. Second, after performing the
traditional citation analysis, we evaluated the cited references
of the literature associated with the MAOs research. Cited
reference analysis enables researchers to identify seminal
publications that are important to a pre-defined body of
literature, which may not be identified by traditional citation
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FIGURE 2 | Chemical structures of the most known irreversible and reversible monoamine oxidase inhibitors MAQ inhibitors (MAOIs). The international
nonproprietary, brand or generic names with the approval year (for approved drug), producer/developer companies, as well as the medical conditions are indicated.
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analysis due to several reasons. For example, that may be
not all-time highly cited publications (only highly cited by
a pre-defined body of literature, such as literature related to
MAO:s), but also not mentioning the exact words used by the
literature search or not directly dealing with the topic of the
literature search. Using this technique, we aimed to identify
the historical roots and seminal references that may not be
all-time highly cited but are still very important to the research
field of MAOs.

MATERIALS AND METHODS

Data Source

In March 2019, we assessed the Web of Science (WoS)
Core Collection electronic database, a multidisciplinary online
database hosted by Clarivate Analytics, to search with the
following string: TOPIC = (“monoamine oxidase™” OR “MAO-
A*” OR “MAO-B*” OR MAOA* OR MAOB*).

This search strategy identified publications that contain any
one of these words and their derivatives in their title, abstract or
keywords. No additional filters like publication year, document
type (e.g., research article, review, editorial, and others), or
publication language, were used.

Data Extraction
The identified publications were evaluated for the following
data: (1) publication year; (2) journal title; (3) total citation

count; (4) authorship; (5) WoS category; and (6) manuscript
type. The publication and citation data of authors, institutions,
countries/regions, and journals were evaluated with the
“Analyze” function of WoS. Then, we extracted the “full
records and cited references” of these publications using the
VOSviewer software (v.1.6.10, 2019). VOSviewer is a computer
program that analyses the words within the titles and abstracts
of the publications and produces a bubble map that illustrates
their word frequency together with citation data (Van Eck
and Waltman, 2010). Each bubble represents a keyword or
a phrase. The bubble size indicates the keyword’s frequency
(“n” represents multiple appearances in a publication count as
one). The bubble color indicates the citation per publication
(CPP) count for articles containing that keyword. Inter-bubble
distance indicates frequency of co-occurrence or respective terms
in publications. The term map visualizes terms that appeared in
at least 199 (1.0%) of the included manuscripts. Another bubble
map was similarly generated for author keywords that appeared
in at least 20 (0.1%) of the publications.

Visualization of Crystal Structures of MAOs
Visualization of the 3D crystal structures of the human
MAO-A and human MAO-B enzyme was performed with
the SeeSAR software (v.9.0, 2019 form BioSolvelT). SeeSAR
enables quick and interactive assessments of the free energy
of binding and torsions (Bietz et al, 2014). The crystal
structure of the human MAO-A enzyme in complex with
clorgyline (PDB code: 2BXS; De Colibus et al,, 2005) and
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FIGURE 3 | Visualization of the crystal structures of AIMAO-A and hAMAO-B. The binding mode of irreversible and reversible MAO inhibition on the example of the
most prominent MAO-A inhibitor clorgyline (irreversible) and MAO-B inhibitor safinamide (reversible) is represented. (A) Ribbon representation of the co-crystallized
structure of clorgyline with the monomer AMAO-A (PDB: 2BXS, resolution: 3.15 A). The C-terminal membrane region and the N-terminus are depicted. The surface
for binding site is colored in gray transparent. (B) Representation of the covalent bonding (1.38 A) between the irreversible MAO-A inhibitor clorgyline and the FAD
co-factor. (C) Ribbon representation of the co-crystallized structure of safinamide with AMAO-B (PDB: 2V5Z, resolution: 1.6 A). The respective chain A and B of
hMAQO-B dimer with FAD are depicted. (D) HYDE (HYdrogen bonding and DEsolvation) analysis of desolvation effects and interactions for safinamide (off-white).
HYDE visual affinity assessment as embedded in SeeSAR: green = favorable, red = unfavorable and non-colored = no relevant for affinity. The interacting amino acid
residues, important water molecules and FAD are shown. Visualization and HYDE analysis were performed using the SeeSAR tool from BioSolvelT (v.8.2, 2019).

of the human MAO-B enzyme in complex with safinamide
(PDB code: 2V5Z; Bindaetal,, 2007) were obtained from
the Protein Databank (PDB) and used for visualization of
the binding modes for the respective ligands (inhibitors). The
HYDE scoring function as embedded in SeeSAR considers
the free energy by computing the difference between the
unbound and bond states. H-bonds (approximate enthalpy) and
dehydration (“desolvation”, approximate entropy) effects of all
non-hydrogen/heavy atoms (HA), contributing to the overall
Gibbs free energy (AG) are computed with respect to their
accessibility to water before and after binding (Betz et al., 2016).
After HYDE computations that run for very few seconds, SeeSAR
visualizes the (HYDE-) estimated free energy of binding (AG);
spherical “coronas” ranging from dark red (unfavorable) to
dark green (favorable for affinity) visualize the contribution
of an atom and its environment to the overall free energy of
binding; corona sizes correlate with the amount of contribution
(Schneider et al., 2012).

The extracted data was also imported into CRExplorer
(v.1.9, 2018), a computer program that performs cited reference
analysis (Thor et al, 2016), and outputs the results as a
“reference publication year spectroscopy” (RPYS) that shows
a waveform with high peaks in years when the seminal
references were published (Slotkin, 1999; Marx et al., 2014;
Yeung and Wong, 2019; Yeung et al, 2019c). For instance,
the articles published in years 1926, 1927, 1928, 1929, and
1930 were cited by the publications within the dataset
45, 52, 146, 56, and 55 times, respectively. The 5-year
median value was 55. Therefore, on the waveform there
was a positive peak in 1928 with a magnitude of 91
(because the citation count for 1928 was 146, which positively
deviated from its 5-year median by 91). We only considered
references with >10% contributions to positive peaks with
magnitude >50. We recorded their citations received from
publications within the dataset and total citations as recorded
by WosS.
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FIGURE 4 | Publication trend. (A) Publication trend of monoamine oxidase (MAO) publications. There has been a continuous research interest (apparent as a linear
growth of publication counts) since the 1990s. (B) Detailed comparison of annual total academic publications and annual MAO publications. The former was
extracted from PubMed database using MEDSUM (http://webtools.mf.uni-j.si/public/medsum.html), because Web of Science does not allow such a search query.

RESULTS AND DISCUSSION

In general, the literature search resulted in 19,854 publications,
which were released in the period of time between 1928 and
March 2019. Figure 4 illustrates the continuous linear growth
in MAO publications since the 1990’s. The limited number
of publications before the 1990’s could be partly because of
a lack of recording by WoS. The majority of the publications
were original articles (n = 15,148, 76.3%) and reviews
(n = 2,039, 10.3%). The remaining number of publications
includes mainly meeting abstracts (n = 1,424), but also
proceedings (n = 865), and brief articles (n = 378). The
publications were mainly written in English (n = 19,099,
96.2%). The top five WoS categories of the analyzed MAO
publications were Pharmacology/Pharmacy (n = 4,664, 23.5%),
Neurosciences (n = 4,416, 22.2%), Psychiatry (n = 2,906,
14.6%), Biochemistry/Molecular Biology (n = 2,691, 13.6%),

and Clinical Neurology (n = 1,754, 8.8%). This distribution
was different for other topics such as anti-vascular endothelial
growth factor (Yeung et al, 2019a) or antioxidant literature
(Yeung et al., 2019b), in both of which Pharmacology/Pharmacy
ranked third (7.3% and 11.8%, respectively); though these
analyses also showed that original articles were the major
publication type followed by review articles. The publications
were contributed by over 46,000 authors from more than
7,200 institutions in 125 countries/regions and published
in over 3,200 journals. All these data suggested the broad
scientific community and importance of MAO research filed for
neuroscience worldwide.

The top 10 most prolific authors have published at least
88 articles each, with CPP counts between 30.5 and 65.3
(Table 1). The top 10 institutions are scattered in the United
States, UK, France, Sweden, Canada, Israel, and Russia, with
CPP counts ranking from 9.2 to 54.3 (Table 2). The top 10
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TABLE 1 | The top 10 contributing authors.

TABLE 4 | The top 10 contributing journals.

Author Number of Citations per Journal Number of Citations per
publications publication publications publication
(% of total) (% of total)
Moussa B.H. Youdim 247 (1.2%) 55.6 Journal of Neurochemistry 340 (1.7%) 50.8
Lars Oreland 232 (1.2%) 34.8 Biochemical Pharmacology 272 (1.4%) 29.8
Jean C. Shih 143 (0.7%) 53.4 Journal of Neural Transmission 227 (1.1%) 22.6
Keith F. Tipton 117 (0.6%) 47.4 Brain Research 215 (1.1%) 29.4
Dennis L. Murphy 107 (0.5%) 65.3 Biological Psychiatry 185 (0.9%) 38.3
Neal Castagnoli Jr. 102 (0.5%) 36.5 European Journal of 183 (0.9%) 27.9
Kevin Chen 102 (0.5%) 57.2 Pharmacology
Merton Sandler 95 (0.5%) 33.2 Life Sciences 176 (0.9%) 29.1
Vivette Glover 91 (0.5%) 30.5 Neuroscience Letters 168 (0.8%) 19.7
Peter Riederer 88 (0.4%) 46.1 British Journal of Pharmacology 167 (0.8%) 33.9
Psychopharmacology 158 (0.8%) 37.0

TABLE 2 | The top 10 contributing institutions.

Institution Number of Citations per
publications publication
(% of total)

National Institutes of Health 528 (2.7%) 48.5

(NIH USA)

University of California 463 (2.3%) 48.6

University of London 349 (1.8%) 50.5

French National Institute of 321 (1.6%) 38.2

Health and Medical

Research (INSERM)

Harvard University 307 (1.5%, 54.3

(1.5%)

Uppsala University 278 (1.4%) 27.5
( )
(1.4%)

University of Toronto 273 (1.4%, 34.3
French National Center for 270 (1.4%, 32.0
Scientific Research (CNRS)

Technion-Israel Institute of 266 (1.3%) 51.2
Technology

Russian Academy of 248 (1.2%) 9.2
Sciences

TABLE 3 | The top 10 contributing countries.

County Number of Citations per
publications publication
(% of total)
USA 6,050 (30.5%) 37.4
UK 1,519 (7.7%) 35.3
China 1,374 (6.9%) 14.6
Japan 1,359 (6.8%) 20.9
Germany 1,219 (6.1%) 29.0
Italy 1,091 (5.5%) 31.5
Canada 1,058 (5.3%) 31.3
France 969 (4.9%) 28.3
Spain 794 (4.0%) 26.3
India 732 (3.7%) 14.9

countries/regions with the most intensive research on the field
of MAOs are the United States, followed by European and Asian
countries (Table 3). In terms of CPP, China and India were
lagging behind the other eight countries. The huge publication
shares of these countries are similar to the pattern observed in
the scientific literature of neuroscience in general (Yeung et al,,
2017; Yeung, 2018).

Most of the top 10 journals were specialized in pharmacology
and neuroscience. Among them, Journal of Neurochemistry had
the highest publication and CPP counts (Table 4).

Figure 5 shows the words appearing in the title and
abstracts of all analyzed 19,854 publications. Among the largest
bubbles, several keywords were represented such as treatment
(n = 4,189; CPP = 30.9), disease (n = 2,957; CPP = 31.9),
inhibitor (n = 3,370; CPP = 28.6), and monoamine oxidase
inhibitor (n = 1,915; CPP = 30.3). Meanwhile, examples of
words with highest CPPs included reactive oxygen species
(ROS; n = 239; CPP = 50.4), major depression (n = 233;
CPP = 48.9), SSRI (selective serotonin reuptake inhibitor,
n =232; CPP = 46.8), aggression (n = 282; CPP = 45.6), substantia
nigra (n = 268; CPP = 44.9), apoptosis (n = 252; CPP = 41.4),
neuroprotection (n = 233; CPP = 40.2), and neurotoxicity
(n = 406; CPP = 40.0).

The author keywords of the publications are visualized in
Figure 6. The most frequently mentioned medical conditions
and associated with such conditions chemicals/pharmaceuticals
are listed in Tables 5, 6, respectively. PD, depression and
AD were most frequently mentioned, which are consistent
to previous analyses showing that PD and AD are among
the most intensively investigated medical conditions in
neuropharmacology (Yeung et al, 2018). The frequently
mentioned chemicals/pharmaceuticals involved common
neurotransmitters, such as DA, serotonin (5-hydroxytryptamine,
5-HT), and (NE, also known as noradrenaline, NA), MAOIs
like selegiline, rasagiline, moclobemide, and clorgyline, as
well as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP),
which is a prodrug of 1-methy4-phenylpyridinium (MPPY),
a mitochondrial neurotoxin leading to destruction of glial
cells in substantia nigra and, therefore, associated with PD
(Table 6, Figures 3, 7; Kopin, 1987; Edmondson et al., 2009;
Tripathi et al., 2018). Furthermore, it is also suggested that
substantia nigra is rich in DA, which may undergo enzymatic
oxidation via the MAO-B enzyme to form ROS, which plays
a key role in the development of PD (Fahn and Cohen,
1992; Jenner and Olanow, 1996). It is believed that the
high activity of MAO-B will increase the peroxidative stress
that similarly contributes to the formation of AD (Benzi
and Moretti, 1995). Therefore, MAOIs and in particular
reversible MAO-B inhibitors, have been extensively evaluated
for their neuroprotective effects as single therapeutics or in
combination with other medications for the treatment of
AD and PD, while selective reversible MAO-A inhibitors
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FIGURE 5 | Bubble map of words from titles and abstracts of the 19,854 monoamine oxidase publications. Words from titles and abstracts were analyzed and
visualized using the VOSviewer software (v.1.6.10, 2019). The map shows around 335 terms that appeared in at least 1.0% (199) of publications. Each bubble
represents a term or phrase. Larger bubbles represent words (or terms) that appeared more frequently. More yellowish bubbles represent words that appeared in
publications with more citations. Bubbles in closer proximity represent words (or terms) that co-appeared more frequently.

were successfully developed as antidepressants (Sano et al.,
1997; Riederer et al., 2004a; Youdim and Bakhle, 2006). Many
investigations have been conducted along these research
directions, and thus accumulating publication counts. In
recent years, dual inhibition of MAO-A/B is considered as
privileged strategy in addition to other biological effects for
the development of so called multi-target-directed ligands
(MTDLs) for the treatment of neurodegenerative diseases, in
particular, AD (Kumar et al., 2016; Tzvetkov and Atanasov,
2018). In addition, some research articles deal with the
investigation of the key role of MAOs as potential drivers
in non-neurological disorders, for example, mitochondrial
dysfunctions associated with cardiac aging (Sheydina et al., 2011;
Maggiorani et al., 2017).

Furthermore, we performed an analysis of the citation
count of references per year for the whole investigated period
of time 1928-2019. For this purpose, we applied the RPYS
method as embedded in CRExplorer (Thor et al, 2016).
Figure 8 shows the RPYS plot for the cited reference analysis
for each year and for each publication. Following the RPYS
method, 16 positive peaks with magnitude >50 for 17 separate
years were found, as follows: 1928, 1934, 1937, 1949, 1951,

1957, 1965, 1968, 1972, 1976, 1980, 1985, 1995-1996, 2000,
2004, and 2006. From the figure, it seemed that the gray
bars formed a bell that centered on the 2000-2010 years,
meaning that many cited references were published during these
years. Potential explanations could be that in those years the
recombinant forms of MAO enzymes were available and the
crystal structure solved, thus these important references were
more cited. Meanwhile, there was a strong positive peak in 2000.
Some references were cited >100 times by the analyzed MAO
publications, though they did have >10% contributions to the
peak. Two such exemplars were reporting inhibition of MAO
by coumarin derivatives (Gnerre et al., 2000), and a potential
association between MAOA gene polymorphism and variability
in aggressiveness and impulsivity (Manuck et al., 2000). Nine
seminal references fulfilled our predefined criteria of having
>10% contributions to a positive peak with magnitude >50.
All of them were published in 1972 or before (Table 7). The
seminal paper by Mary Bernheim (Hare, 1928) was identified
in the first positive peak. Another notable seminal reference
was by Lowry et al. (1951), which described the technique
of a biochemical assay to measure the total level of protein
in a test solution. It should be noted that by analyzing
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TABLE 5 | Medical and mental conditions mentioned in the author keywords of
0.5% (n = 100) of the monoamine oxidase publications.

TABLE 6 | Chemicals and pharmaceuticals mentioned in the author keywords of
0.5% (n = 100) of the monoamine oxidase publications.

Medical condition Number of Citations per Chemical/pharmaceutical Number of Citations per
publications publication publications publication
(% of total) (% of total)
Parkinson’s disease 789 (4.0%) 29.9 Dopamine 665 31.7
Depression 483 (2.4%) 30.2 Serotonin 649 32.1
Alzheimer’s disease 316 (1.6%) 26.6 Selegiline 257 24.4
Anxiety 134 (0.7%) 29.0 MPTP (1-methyl-4-phenyl- 180 32.8
Schizophrenia 125 (0.6%) 30.1 1,2,3,6-tetrahydropyridine)
Aggression 120 (0.6%) 43.0 Rasagiline 178 32.1
Moclobemide 173 21.2
Norepinephrine 113 26.7
Clorgyline 110 22.9

the cited references, we were able to identify not only the
historical root of MAO but also articles reporting methods
that became standard techniques in protein research field and
thus highly cited by the MAO field. If only seminal papers
regarding the MAO proteins were focused on, then these
references were identified in four representative years: 1928,
1957, 1968, and 1972.

The current analysis has some limitations. First, the search
strategy might limit the body of literature to be analyzed.
Second, some MAO articles might not be indexed by the
WoS database, especially the older ones. Alternative databases
could be considered, such as Scopus, to identify additional
publications, but data from multiple databases cannot be merged
due to their differences in indexing and counting, and thus
cannot be integrated in our analysis. Readers should also be
aware of the general increase of scientific production along

the 20th century (Figure 4B), which was growing in a higher
level compared to MAO publications in recent years (until
70s the trend was the opposite and the number of MAO
articles was increasing more rapidly than the total number
of academic articles). Nevertheless, the graph shows that the
interest in these proteins is still very high. In general, the
number of scientific articles, citations, journals, and institutions
has been also progressively increasing. It would be interesting
to normalize the results (publication and citation data of the
MAQO research field) with respect to these changing parameters.
However, such normalization would be very complicated and
hence not applicable for the current study. To the best of the
authors’ knowledge, a similar bibliometric analysis approach
has not been done before so that in the future it can be
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TABLE 7 | Seminal references of monoamine oxidase publications identified by the RPYS method.

Year References % Contribution to the peak Citations by MAO publications All-time total citations
1928 Hare (1928) 65.1 95 318*

1934 Lineweaver and Burk (1934) 50.3 77 12,422*

1937a Blaschko et al. (1937a) 20.1 45 473*

1937b Blaschko et al. (1937b) 10.7 24 197*

1949 Gornall et al. (1949) 16.2 62 16,989

1951 Lowry et al. (1951) 80.0 1,437 3,37,283

1957 Glenner et al. (1957) 12.0 140 685

1968 Johnston (1968) 22.5 1,218 1,596

1972 Knoll (1972) 10.3 688 1,014*

*Citation count recorded from Google Scholar, as the publication is not indexed by Web of Science.

applied to other targets (e.g., specific proteins) to allow a

g 30000 £ better comparison.
g § 25000 E In conclusion, the current MAO literature analysis highlights
£§ 20000 3 the popular research themes in the scientific literature related
gg 15000 A 2 to MAOs and historical roots of MAO research as a quick
& £ 10000 £ guide for fellow researchers. Through decades of research,
£% 5000 g the literature has accumulated many publications investigating
° 0 £ the therapeutic effects of at least two generations of MAOIs
P O S O SN PO : . s

RGN IR QI SRR LR QS on various neurological conditions, such as AD, PD, and
Reference publication year depression. The analyzed data showed that the United States
is the major contributor, together with some European and
FIGURE 8 | Rgference publication year speotrog:opy (RP‘l(S)lmethod. Asian countries. Many of the articles were published in

The reference lists of the 19,854 monoamine oxidase publications were harmacology and neuroscience iournals. Publications involvin
analyzed using the CRExplorer software (v.1.9, 2018). References were p gy K ) R &
sorted by publication year (horizontal axis), and the citation counts received the neurotransmitters DA, serotonin, and NE, as well as
by all references published in the same year were added up and visualized the MAO-A inhibitors moclobemide and clorgyline, and the
in bars (gray vertical axis). The waveform showed the fluctuations in the irreversible MAO-B inhibitors selegiline and rasagiline had
devilation gf the annual citation count from its 5-year median (red over 20 citations per publication. We envision that the
vertical &xis) number of publications related to MAOs research will continue
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to grow steadily, with more new drugs being tested for
better management of neurological conditions, in particular,
with the development of multi-target acting drugs against
neurodegenerative diseases. Moreover, the analysis of the
scientific literature suggested that in addition to the pivotal role
of MAOs as biological targets in neuroscience, the research field
will also be directed toward investigations of MAOIs as potential
therapeutics for other pathophysiological processes associated
with aging, such as increased sensitivity to apoptosis, increased
production of mitochondrial ROS, and others.
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