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Prions are lethal pathogens, which cause fatal neurodegenerative diseases in mammals.
They are unique infectious agents and are composed of self-propagating multi-chain
assemblies of misfolded host-encoded prion protein (PrP). Understanding prion structure
is fundamental to understanding prion disease pathogenesis however to date, the
high-resolution structure of authentic ex vivo infectious prions remains unknown.
Advances in determining prion structure have been severely impeded by the difficulty
in recovering relatively homogeneous prion particles from infected brain and definitively
associating infectivity with the PrP assembly state. Recently, however, images of highly
infectious ex vivo PrP rods that produce prion-strain specific disease phenotypes in
mice have been obtained using cryo-electron microscopy and atomic force microscopy.
These images have provided the most detailed description of ex vivo mammalian prions
reported to date and have established that prions isolated from multiple strains have
a common hierarchical structure. Misfolded PrP is assembled into 20 nm wide rods
containing two fibers, each with double helical repeating substructure, separated by a
characteristic central gap 8–10 nm in width. Irregularly structured material with adhesive
properties distinct to that of the fibers is present within the central gap of the rod.
Prions are clearly distinguishable from non-infectious recombinant PrP fibrils generated
in vitro and from all other propagating protein structures so far described in other
neurodegenerative diseases. The basic architecture of mammalian prions appears to
be exceptional and fundamental to their lethal pathogenicity.
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INTRODUCTION

Prion diseases are a closely related group of neurodegenerative conditions which affect both
humans and animals. They include bovine spongiform encephalopathy (BSE) in cattle, scrapie
in sheep and goats, chronic wasting disease (CWD) in deer and elk, and the human prion
diseases, kuru, Creutzfeldt-Jakob disease (CJD), variant CJD (vCJD), fatal familial insomnia
(FFI) and Gerstmann–Sträussler–Scheinker disease (GSS; Prusiner, 1998; Collinge, 2001;
Wadsworth and Collinge, 2011; Haïk and Brandel, 2014; Greenlee and Greenlee, 2015;
Benestad and Telling, 2018; Rossi et al., 2019). They are exceptional pathogens (devoid of

Frontiers in Molecular Neuroscience | www.frontiersin.org 1 July 2019 | Volume 12 | Article 169

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/journals/molecular-neuroscience#editorial-board
https://www.frontiersin.org/journals/molecular-neuroscience#editorial-board
https://doi.org/10.3389/fnmol.2019.00169
http://crossmark.crossref.org/dialog/?doi=10.3389/fnmol.2019.00169&domain=pdf&date_stamp=2019-07-09
https://creativecommons.org/licenses/by/4.0/
mailto:c.terry@londonmet.ac.uk
mailto:j.wadsworth@prion.ucl.ac.uk
https://doi.org/10.3389/fnmol.2019.00169
https://www.frontiersin.org/articles/10.3389/fnmol.2019.00169/full
https://loop.frontiersin.org/people/670513/overview
https://loop.frontiersin.org/people/718564/overview
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Terry and Wadsworth Understanding Mammalian Prion Structure

significant coding nucleic acid) and comprise infectious
polymeric assemblies of misfolded host-encoded prion protein
(PrP; Prusiner, 1998; Collinge and Clarke, 2007; Collinge, 2016).
Prions propagate by means of seeded protein polymerization,
which involves recruitment of PrP monomers to fibrillar
assemblies followed by fragmentation of these structures to
generate more ‘‘seeds.’’ Different prion strains produce different
disease phenotypes in the same inbred host and appear to
be encoded by distinct misfolded PrP conformations and
quaternary assembly states (Prusiner, 1998; Collinge and Clarke,
2007; Collinge, 2016).

While lacking the overt infectivity of prions, many other
proteins are also capable of seeded protein misfolding and the
generation of self-propagating polymeric or amyloid protein
assemblies now appears to be widely involved in the pathogenesis
of many other human diseases. Consequently ‘‘prion-like’’
mechanisms and the prion strain phenomena have become a
major research focus in other neurodegenerative conditions,
in particular, in Alzheimer’s disease (AD) and Parkinson’s
disease where propagating assemblies of amyloid-β, tau and
α-synuclein are being studied (Prusiner, 2013; Goedert, 2015;
Collinge, 2016; Walker, 2016; Qiang et al., 2017; Condello
et al., 2018; Peng et al., 2018; Vaquer-Alicea and Diamond,
2019). Notably, in the case of tau, structurally distinct fibrillar
assemblies from brain have recently been characterized in AD,
Pick’s disease and chronic traumatic encephalopathy (CTE)
strongly suggesting that distinct strains of propagating tau
assemblies are contributing to different disease phenotypes
in humans (Fitzpatrick et al., 2017; Falcon et al., 2018;
Falcon et al., 2019).

Significantly, while iatrogenic transmission of
neurodegenerative diseases was thought to be restricted
to prions, there is now considerable evidence for human
transmission of cerebral amyloid angiopathy and amyloid-β
protein pathology resulting from discontinued medical practices
involving treatment with human cadaveric pituitary-derived
growth hormone or cadaveric dura mater grafting (Jaunmuktane
et al., 2015; Frontzek et al., 2016; Ritchie et al., 2017; Cali et al.,
2018; Purro et al., 2018; Banerjee et al., 2019). These findings
now underscore the importance of fully understanding the
prion-like properties of proteopathic seeds generated in other
neurodegenerative diseases and systematically establishing their
potential risks for iatrogenic transmission.

At present there is considerable debate regarding the
nomenclature that should be used in describing the propagation
of non-PrP protein assemblies (to distinguish them from lethal
PrP prions) with terms such as propagons and prionoids being
proposed (Collinge, 2016; Kara et al., 2018; Scheckel and Aguzzi,
2018; Duyckaerts et al., 2019; Eraña, 2019). Biological criteria
that a propagating protein assembly must fulfill in order to
be regarded as truly ‘‘prion-like’’ have yet to be defined (Kara
et al., 2018; Scheckel and Aguzzi, 2018; Duyckaerts et al., 2019;
Eraña, 2019) and structural classification of propagating protein
assemblies remains a key goal. Indeed, in this context, it should
be noted that propagation and spread of assemblies of amyloid-β,
tau and α-synuclein in animal models of other neurodegenerative
diseases rarely result in lethal neurodegeneration, suggesting that

the basic architecture of mammalian prions may be unique and
central to their lethality (Collinge, 2016; Terry et al., 2019).

Here, we now highlight recent advances in prion isolation
and structural characterization that have provided the first
meaningful opportunity to compare the basic architecture of
authentic infectious mammalian prions with the structures
of protein assemblies from other neurodegenerative diseases.
Current available data indicate that mammalian prions have
unique structural features that readily distinguish them from
propagating assemblies of amyloid-β, tau and α-synuclein that
have been described in other neurodegenerative diseases.

KEY MOLECULAR FEATURES OF
PRION DISEASES

The central feature of prion diseases is the aberrant misfolding
of PrP which can adopt distinct conformations and assembly
states (Prusiner, 1998; Collinge and Clarke, 2007; Rodriguez
et al., 2017). The normal form of the protein, referred to as
PrPC (the cellular isoform) is a highly conserved cell surface
glycosylphosphatidylinositol (GPI)-anchored sialoglycoprotein
with an ordered C-terminal domain containing three α-helices,
a short anti-parallel β-sheet and a flexible disordered N-terminal
domain (Wüthrich and Riek, 2001; Rodriguez et al., 2017) and is
soluble in detergents and sensitive to digestion with proteases.
In contrast, disease-associated isoforms of PrP that comprise
infectious prion assemblies are found only in prion-infected
tissue and are composed of detergent-insoluble polymeric PrP
structures some of which become protease-resistant and are
classically termed PrPSc (the scrapie isoform; Meyer et al., 1986;
Prusiner, 1987, 1991, 1998). PrPSc is derived from PrPC by
conformational rearrangement and neither systematic study of
known covalent post-translational modifications nor amino acid
sequencing have shown any consistent variations between PrPSc

and PrPC (Prusiner, 1991, 1998; Riesner, 2003). The structural
transition of PrPC to fibrillar assemblies of PrPSc involves
acquisition of a beta sheet rich configuration (Pan et al., 1993;
Caughey et al., 1998; Prusiner, 1998; Riesner, 2003; Rodriguez
et al., 2017) likely to be similar to amyloid where beta sheets stack
perpendicular to the fiber axis forming a cross-beta structure
(Eisenberg and Sawaya, 2017; Iadanza et al., 2018).

To date, the critical molecular events during infection
that generate prototypical PrPSc and how this causes
neurodegeneration remains poorly defined. Notably, in many
prion strain/host combinations the majority of disease-related
PrP and prion titre is destroyed by protease-treatments that are
typically used to detect prototypical PrPSc (Safar et al., 1998,
2005; Cronier et al., 2008; D’Castro et al., 2010; Tixador et al.,
2010; Sandberg et al., 2014). These findings indicate that the
term PrPSc, often used interchangeably with prion infectivity,
should be restricted to material as classically biochemically
defined (infectious detergent-insoluble, protease-resistant
PrP assemblies). Such prototypical PrPSc comprises a small
proportion of total disease-related PrP isoforms and while
it is clearly an infectious structure its specific contribution
to other aspects of disease pathogenesis remains unclear
(Sandberg et al., 2014). Notably in this context, it is now thought
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that a distinct oligomeric or monomeric PrP isoform designated
PrPL (for lethal) may comprise the neurotoxic species, and that
prototypical PrPSc and indeed prions per se may not themselves
be highly neurotoxic (Collinge and Clarke, 2007; Sandberg
et al., 2011, 2014; Collinge, 2016). Determining the structural
relationship between infectious and neurotoxic PrP species and
whether protease-sensitive and protease-resistant infectious
PrP assemblies are simply different-sized particles of essentially
the same PrP structure has yet to be resolved. Consequently,
it is now clear that a complete understanding of prion disease
pathogenesis will require knowledge not only of infectious PrP
structures but also the role of other PrP assemblies that may be
variably generated during prion disease pathogenesis (Collinge
and Clarke, 2007; Collinge, 2016).

BRIEF OVERVIEW OF HISTORICAL
STUDIES ON PRION STRUCTURE

High resolution structural analysis of infectious mammalian
prions has been obstructed by two central problems. First,
the difficulty in recovering relatively homogeneous particles
from affected tissue whose composition and PrP assembly state
can be directly correlated with infectivity, and second, the
failure to reproducibly generate high-titre synthetic prions from
fully defined constituents. Although the formation of prions
in vitro from recombinant PrP or isolated PrPC preparations
(either alone or in combination with non-protein cofactors) has
been reported, specific-infectivities are generally too low for
meaningful structural analysis (Collinge and Clarke, 2007; Diaz-
Espinoza and Soto, 2012; Schmidt et al., 2015; Collinge, 2016) and
preparations with high prion titre (for example Moudjou et al.,
2016) have not yet been structurally characterized. Consequently,
the goal of solving infectious prion structure continues to rely
upon the isolation of high-titre ex vivo prions in a form suitable
for detailed structural study.

Scrapie associated fibrils (SAFs; Merz et al., 1981) and prion
rods (Prusiner et al., 1983) were first described in prion-enriched
isolates from infected brain tissue more than 35 years ago.
While contemporary comparison of SAFs and prion rods now
suggest they are synonymous, at the time of their discovery
(before the PrP gene was identified) they were interpreted very
differently. While Merz et al. (1984) proposed that SAFs may
represent a new class of filamentous animal virus, Prusiner
et al. (1983) proposed that prion rods were infectious protein
assemblies (prions) composed of a protein designated PrP 27–30
(subsequently established to be proteolytically truncated PrPSc)
and that the morphology of the prion rods was incompatible
with a uniform virus structure (DeArmond et al., 1985); in
particular, that the length of the prion rods was not essential
for preservation of prion infectivity (Barry et al., 1985; Prusiner,
1987). Subsequently, Prusiner (1991, 1998) proposed that the
prion rods were an artifact of purification and suggested that
protease-truncation of PrPSc to PrP 27–30 in the presence of
detergent facilitated the assembly of prion rods from smaller
infectious oligomers of PrPSc (McKinley et al., 1991). While this
proposal at the time clearly excluded a viral etiology for prion
diseases, this situation also left the field having to contend with

the idea that large fibrillar PrP assemblies associated with prion
infectivity might not actually represent authentic biologically
relevant structures. Consequently, many researchers chose not to
pursue structural characterization of the prion rods and instead
focused on either trying to isolate smaller infectious oligomers
of PrPSc from infected brain or generating synthetic prions
from bacterially expressed recombinant PrP. While numerous
studies have now proposed various possible PrP structures as the
authentic infectious prion assembly state (Silveira et al., 2005;
Sim and Caughey, 2009; Wille et al., 2009; Requena and Wille,
2014; Vázquez-Fernández et al., 2016, 2017) none of these have
been convincingly correlated with high specific prion infectivity
and no international consensus has been reached on their in vivo
relevance (Baskakov et al., 2019).

RECENT PROGRESS IN PURIFYING AND
CHARACTERIZING MAMMALIAN PRIONS

The availability of cell-based prion bioassays (Klöhn et al., 2003;
Mahal et al., 2007; Schmidt et al., 2015) has recently enabled
the development of novel procedures for isolating extremely
pure, intact high-titre infectious prions from mammalian brain
(Wenborn et al., 2015). Misfolded PrP in these preparations
is highly protease-resistant and is assembled into rod-like
structures, PrP rods (akin to prion rods identified by Prusiner
and colleagues), which faithfully transmit prion strain-specific
phenotypes when inoculated into mice (Wenborn et al., 2015).
PrP rods are intrinsically infectious in cell culture infectivity
assays and form aggregates whose size and number appear to
determine the number of infectious units available to cells at
inoculation (Terry et al., 2016). Filtration of the rod preparations
showed no evidence for the presence of small infectious
oligomers of PrPSc and thermal and chemical inactivation
profiles of prion infectivity indicated the destruction of the
same infectious structures in isolated PrP rod preparations or
starting brain homogenate (Terry et al., 2016). Importantly,
exploration of the origin of the PrP rods showed no evidence for
their artifactual generation during purification as they could be
isolated from brain without using detergent and the dimensions
and morphology of the rods from crude brain homogenate
were not noticeably influenced by variable exposure to protease
and detergent (Terry et al., 2016). Differences in the length of
propagating infectious PrP rods in brain (in which the ends
of the rod may comprise the infectious surface) can readily
explain variance in specific prion infectivity with respect to PrP
monomers and also account for the widespread distribution
of infectious prion particles that is seen when prion-infected
brain homogenate is fractionated by sedimentation velocity
ultracentrifugation (Prusiner et al., 1987).

INFECTIOUS EX VIVO PrP RODS HAVE
UNIQUE STRUCTURAL FEATURES

Examination of infectious PrP rods isolated from multiple
prion strains by negative-stain electron microscopy (EM),
negative-stain electron tomography, cryo-EM and atomic
force microscopy (AFM) have recently revealed a common
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three-dimensional architecture (Terry et al., 2016, 2019).
Infectious PrP rods are ∼20 nm wide and are composed of two
fibers (each with a double helical substructure) separated by a
distinct gap of 8–10 nm in width. AFM showed that the central
gap contains irregularly-structured material that appears to be
compositionally distinct from the surface of the individual fibers.
This finding is consistent with the idea that PrP N-linked glycans
in the gap may be contributing to the overall stability of the rod
and as a consequence its infectivity (Terry et al., 2016, 2019). The
overall architecture of the infectious PrP rods is very distinct to
the structure of non-infectious PrP fibrils generated in vitro from
recombinant PrPwhich comprise long, single fibers (10 nmwide)
formed by a double helical arrangement of two protofilaments
(Tattum et al., 2006; Terry et al., 2016, 2019; Figure 1).

Notably, because of their helical twist, PrP rods when
imaged on a surface alternate between narrower, edge-on and
wider, face-on views of the structure. Consequently, the overall
architecture of this twisted assembly is often hard to distinguish
in EM images, which are two-dimensional density projections.
However, the twist of the paired fibers in the rod, as well as
a twisted two stranded structure within each fiber, becomes
apparent when the three dimensional structure of the assembly
is resolved by tomography (Terry et al., 2016). Significantly,
visualization of the PrP rods by tomography and the ensuing
recognition of their basic architecture (Terry et al., 2016, 2019)
now enables the structural features of the PrP rods to be readily
seen in most published EM images of SAFs and prion rods from
earlier studies, including those from CJD brain (Merz et al.,
1984). Collectively, these new data overturn previous dogma
and firmly establish ex vivo PrP rods as the authentic infectious
prion assembly state that should now be targeted in future high
resolution imaging studies.

At present without a high-resolution three-dimensional
structure of infectious PrP rods, the detailed arrangement
of secondary structure components of PrP within the fibers
of the rod remains unknown. Knowledge of the structures of
alternative single fiber PrP amyloid fibrils (either generated

FIGURE 1 | Structural differences between infectious ex vivo PrP rods and
non-infectious recombinant prion protein (PrP) fibrils generated in vitro. Panels
(A,B) show sections from negative stain electron tomography reconstructions
that were originally published in (Terry et al., 2016), scale bars, 50 nm.
Non-infectious recombinant PrP fibrils (A) appear as single fibers ∼10 nm
wide comprised of two closely intertwined protofilaments (Tattum et al., 2006;
Terry et al., 2016). In contrast infectious ex vivo PrP rods (B) are ∼20 nm
wide and are composed of two fibers (each with a double helical
substructure) separated by a central gap of 8–10 nm in width which is filled
with irregularly structured material (Terry et al., 2016, 2019).

in vitro or isolated from mice expressing mutant PrP) cannot
be applied with any certainty to the PrP rods (Terry et al., 2016,
2019). From the various PrP fibrillar structures that have been
characterized to date, two major structural models for prions
have been proposed; the parallel in-register intermolecular
β-sheet (PIRIBS) architectures and the 4-rung beta solenoid
model (Baskakov et al., 2019). Determining whether either of
these models applies to infectious PrP rods is now dependent on
obtaining their high resolution structure.

While strain-specific structural differences in infectious PrP
rods may become apparent with future application of higher
resolution imaging methods (such as cryo-tomography and
subtomogram averaging) their basic architecture can now
be compared with fibrillar assemblies of other proteins that
propagate in other neurodegenerative diseases (Table 1). Based
upon the available data the structure of infectious PrP rods can be

TABLE 1 | Studies reporting the structures of fibrillar protein assemblies from patients with various neurodegenerative diseases other than prion diseases.

Neurodegenerative disease (assembled protein) Structural method Tissue source Reference

Alzheimer’s disease (AD; Amyloid-β) Negative stain EM Brain from patients with AD Paravastu et al. (2009)

Alzheimer’s disease (Amyloid-β) Negative stain EM Brain from patients with AD Lu et al. (2013)

Alzheimer’s disease (Tau) Cryo-EM Brain from patients with AD Fitzpatrick et al. (2017)

Pick’s disease (Tau) Cryo-EM Brain from patients with Pick’s disease Falcon et al. (2018)

Chronic traumatic encephalopathy (CTE; Tau) Cryo-EM Brain from patients with CTE Falcon et al. (2019)

Parkinson’s disease/dementia with Lewy bodies
(α-synuclein)

Negative stain EM Brain from patients with dementia with
Lewy bodies

Spillantini et al. (1998)

Amyotrophic lateral sclerosis (ALS; SOD1) Negative stain EM Spinal cord from patients with familial
ALS

Kato et al. (1997, 2000)

Frontotemporal lobar degeneration (FTLD-U) and
amyotrophic lateral sclerosis (TDP-43)

Negative stain EM Brain from patients with FTLD-U and
ALS

Lin and Dickson (2008)

Frontotemporal lobar degeneration (TDP-43) Negative stain EM Brain from patients with FTLD with
TDP-43 proteinopathy

Thorpe et al. (2008)

Amyotrophic lateral sclerosis and frontotemporal lobar
degeneration (TDP-43)

Negative stain EM Brain from patients with ALS and
FTLD-with TDP-43 proteinopathy

Nonaka et al. (2013)

Frontotemporal lobar degeneration (TDP-43) Negative stain EM Brain from patients with FTLD with
TDP-43 proteinopathy

Laferrière et al. (2019)
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readily distinguished from fibrillar structures of tau, amyloid-β,
α-synuclein, TDP-43 and SOD1 because none of these possess a
prominent central gap region that resembles the PrP rods.

CO-PROPAGATION OF INFECTIOUS PrP
RODS AND TRANSMISSIBLE PrP
AMYLOID

Prion-infected transgenic mice expressing mutant
GPI-anchorless PrP replicate authentic prions (that are
transmissible to wild-type mice) but they also develop intense
PrP amyloid plaques in their brain which are not seen in the
brain of prion-infected wild-type mice (Chesebro et al., 2005,
2010). Based upon the currently available evidence (summarized
in Terry et al., 2019) it appears that prion infection in these mice
leads to the propagation of infectious PrP rods which account
for the transmissible prion infectivity and structurally distinct
single PrP fibers (10 nm wide; Vázquez-Fernández et al., 2016)
which account for the striking PrP amyloid plaque deposits that
distinguish these mice.

Importantly, such co-propagation of infectious paired-fiber
PrP rods and distinct single-fiber amyloid PrP assemblies
may also be occurring in some inherited prion diseases in
particular in patients with GSS disease phenotypes in which
amyloid plaques are a prominent neuropathological feature
(see Terry et al., 2019). This could readily explain why
biochemically-distinct PrP assemblies from GSS patients with
the P102L PrP mutation can transmit different phenotypes to
experimental mice resulting in either a clinically silent PrP
amyloidosis or a lethal spongiform encephalopathy (Piccardo
et al., 2007; Barron et al., 2016; Barron, 2017). Variation in
the substructure of infectious PrP rods or distinct amyloid
PrP fibrils (governed by the specific PrP missense mutation)
would be expected to dictate highly specific strain transmission
properties via conformational selection (Collinge, 1999, 2016;
Collinge andClarke, 2007;Wadsworth et al., 2010) as has recently
been demonstrated for PRNP P102L and A117V mutations
(Asante et al., 2009, 2013, 2015). Notably, while patients with
different PRNP missense mutations that produce full-length

mutant PrP (for example P102L) would be expected to be
capable of co-propagating both authentic prions (infectious
PrP rods) and alternative transmissible PrP amyloid assemblies,
patients with different PRNP stop mutations which produce
C-terminally truncated PrP devoid of N-linked glycans (for
example Y163X; Mead et al., 2013) may only be capable of
propagating transmissible PrP amyloids giving rise to distinct
disease phenotypes (Mead and Reilly, 2015).

CONCLUDING REMARKS

Prion-infected brain contains multiple disease-related PrP
assemblies. Infectious PrP rods comprise authentic prions that
generate a lethal transmissible spongiform encephalopathy when
inoculated into a susceptible host. Neurotoxicity accompanying
the propagation of authentic prions is thought to involve
the generation of a distinct toxic PrP species whose steady-
state level may determine the rate of neurodegeneration. In
some inherited prion diseases transmissible PrP amyloids only
may be generated while in others transmissible PrP amyloids
may variably co-propagate with authentic prions and act as
a major modifier of clinicopathological phenotype. Studying
the transmission properties of synthetic prion preparations is
complex and experiments should be carefully designed and
interpreted in order to differentiate between the generation
of authentic lethal prions and transmissible PrP amyloids.
At present, propagating fibrillar assemblies of proteins in
other neurodegenerative diseases appear to have biological
and structural properties that are more closely aligned with
transmissible PrP amyloids rather than authentic lethal prions.
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