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Status epilepticus (SE, a prolonged seizure activity) leads to reactive astrogliosis and
astroglial apoptosis in the regional specific manners, independent of hemodynamics.
Poly(ADP-ribose) polymerase-1 (PARP1) activity is relevant to these distinct astroglial
responses. Since various regulatory signaling molecules beyond PARP1 activity may
be involved in the distinct astroglial response to SE, it is noteworthy to explore
the roles of protein kinases in PARP1-mediated reactive astrogliosis and astroglial
apoptosis following SE, albeit at a lesser extent. In the present study, inhibitions of
protein kinase C (PKC), AKT and extracellular signal-related kinases 1/2 (ERK1/2), but
not calcium/calmodulin-dependent protein kinase II (CaMKII), attenuated CA1 reactive
astrogliosis accompanied by reducing PARP1 activity following SE, respectively.
However, inhibition of AKT and ERK1/2 deteriorated SE-induced dentate astroglial loss
concomitant with the diminished PARP1 activity. Following SE, PKC- and AKT inhibitors
diminished phosphoprotein enriched in astrocytes of 15 kDa (PEA15)-S104 and
-S116 phosphorylations in CA1 astrocytes, but not in dentate astrocytes, respectively.
Inhibitors of PKC, AKT and ERK1/2 also abrogated SE-induced nuclear factor-κB
(NF-κB)-S311 and -S468 phosphorylations in CA1 astrocytes. In contrast, both AKT
and ERK1/2 inhibitors enhanced NF-κB-S468 phosphorylation in dentate astrocytes.
Furthermore, PARP1 inhibitor aggravated dentate astroglial loss following SE. AKT
inhibition deteriorated dentate astroglial loss and led to CA1 astroglial apoptosis following
SE, which were ameliorated by AKT activation. These findings suggest that activities of
PARP1, PEA15 and NF-κB may be distinctly regulated by PKC, AKT and ERK1/2, which
may be involved in regional specific astroglial responses following SE.

Keywords: 3CAI, BIM, epilepsy, KN-93, PJ-34, SC79, seizure, U0126

Frontiers in Molecular Neuroscience | www.frontiersin.org 1 July 2019 | Volume 12 | Article 180

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/journals/molecular-neuroscience#editorial-board
https://www.frontiersin.org/journals/molecular-neuroscience#editorial-board
https://doi.org/10.3389/fnmol.2019.00180
http://crossmark.crossref.org/dialog/?doi=10.3389/fnmol.2019.00180&domain=pdf&date_stamp=2019-07-24
https://creativecommons.org/licenses/by/4.0/
mailto:jieunkim@hallym.ac.kr
mailto:tckang@hallym.ac.kr
https://doi.org/10.3389/fnmol.2019.00180
https://www.frontiersin.org/articles/10.3389/fnmol.2019.00180/full
https://www.frontiersin.org/articles/10.3389/fnmol.2019.00180/full
https://www.frontiersin.org/articles/10.3389/fnmol.2019.00180/full
https://www.frontiersin.org/articles/10.3389/fnmol.2019.00180/full
https://www.frontiersin.org/articles/10.3389/fnmol.2019.00180/full
https://www.frontiersin.org/articles/10.3389/fnmol.2019.00180/full
https://loop.frontiersin.org/people/251279/overview
https://loop.frontiersin.org/people/306410/overview
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Kim and Kang Protein Kinases in Astrocytes Following SE

INTRODUCTION

Astrocytes are the most abundant glial cells, which participate
in a wide variety of complex and essential functions including
the maintenance of neuronal excitability (Anderson and
Swanson, 2000; Mazzanti et al., 2001) and the homeostasis
of extracellular environment as well as metabolism in the
brain (Kasischke et al., 2004; Simard and Nedergaard, 2004;
Takano et al., 2006). Following various insults, astrocytes
show reactive astrogliosis, which inhibits dendritic and axonal
remodeling in neuronal circuits, and releases various growth
and trophic factors regulating synaptogenesis, neurogenesis, and
neuroinflammation after brain injury (Horner and Gage, 2000;
Panickar and Norenberg, 2005; Rossi et al., 2007; Shibuya, 2009).

Accompanied by reactive astrogliosis, status epilepticus (SE,
a prolonged seizure activity) results in acute and devastating
astroglial loss, which is characterized by a pattern of selective
vulnerability (Schmidt-Kastner and Ingvar, 1994, 1996). In
the hippocampus, SE leads to apoptosis of astrocytes in the
molecular layer of the dentate gyrus (referred as dentate
astrocytes below; Kang et al., 2006; Kim et al., 2008, 2014,
2017). This SE-induced astroglial apoptosis is relevant to
poly(ADP-ribose) polymerase-1 (PARP1) degradation (Kim
et al., 2014). Unlike the molecular layer of the dentate
gyrus, PARP1 activation is involved in reactive gliosis of
astrocyte in the CA1 region (referred as CA1 astrocytes below)
where astroglial apoptosis is undetected (Kang et al., 2006;
Kim et al., 2014). Basically, PARP1 repairs DNA damage
following various injuries. Thus, PARP1 degradation and/or its
cleavage lead to apoptosis (Kaufmann et al., 1993; Lazebnik
et al., 1994). Since PARP1 utilizes NAD+ to form poly(ADP-
ribose) polymers (PAR), PARP1 hyperactivation also leads to
NAD+ depletion and the subsequent failure of bioenergetics
that promotes necrotic cell death (Ha and Snyder, 1999;
Ying et al., 2002).

Phosphoprotein enriched in astrocytes of 15 kDa (PEA15)
is a small phosphoprotein, which is abundantly expressed
in astrocytes (Danziger et al., 1995), and protects astrocytes
from apoptosis (Estellés et al., 1999; Kitsberg et al., 1999).
PEA15 functionality is controlled by phosphorylations:
Protein kinase C (PKC) phosphorylates serine (S) 104 site.
Calcium/calmodulin-dependent protein kinase II (CaMKII)
or AKT preferentially phosphorylate S116 site (Araujo et al.,
1993; Estellés et al., 1996; Kubes et al., 1998). Phosphorylated
PEA15 accelerates nuclear extracellular signal-related kinases
1/2 (ERK1/2) translocation that activates astroglial proliferation
and up-regulation of glial fibrillary acidic protein (GFAP)
expression, which are hallmarks of reactive astrogliosis
(Liu et al., 2004; Krueger et al., 2005; Meini et al., 2008;
Kim and Kang, 2018). Recently, we have reported that the
reduced PEA15 expression and its S116 phosphorylation are
involved in astroglial apoptosis, while its S104 phosphorylation
is up-regulated in reactive CA1 astrocytes following SE
(Park and Kang, 2018). Interestingly, protein kinases
for PEA15 phosphorylations also reciprocally influence
PARP1 activity. For example, PKC inhibits PARP1 (Hegedus
et al., 2008), while ERK1/2 activates PARP1 (Kauppinen et al.,

2006; Cohen-Armon et al., 2007; Mizuguchi et al., 2011).
CaMKII also affects PARP1 enzyme activity (Midorikawa et al.,
2006; Goebel, 2009), and PARP1 increases AKT activity (Gerace
et al., 2012). Furthermore, both PARP1 and PEA15 regulates
nuclear factor-κB (NF-κB) activity (Hassa et al., 2003; Genovese
et al., 2005; Stilmann et al., 2009; Wakita et al., 2016), which
is is also involved in reactive astrogliosis (Morga et al., 2009).
Therefore, it is noteworthy to explore the roles of various
kinases in activities of PARP1, PEA15 and NF-κB during
reactive astrogliosis or astroglial apoptosis following SE, which
remain elusive.

Here, we demonstrate that bisindolylmaleimide (BIM, a
PKC inhibitor), 3-chloroacetyl-indole (3CAI, an AKT inhibitor)
and U0126 (an ERK1/2 inhibitor), but not KN-93 (a CaMKII
inhibitor), attenuated CA1 reactive astrogliosis accompanied by
reducing PARP1 activity following SE, respectively. However,
3CAI and U0126 deteriorated SE-induced dentate astroglial loss
concomitant with the diminished PARP1 activity. BIM and 3CAI
attenuated SE-induced PEA15-S104 and -S116 phosphorylations
in CA1 astrocytes, respectively. U0126 and KN-93 did not affect
PEA15 phosphorylations in CA1 astrocytes. BIM, 3CAI and
U0126 also abrogated SE-induced NF-κB-S311 phosphorylation
in CA1 astrocytes. In contrast, 3CAI and U0126 enhanced
NF-κB-S468 phosphorylation in dentate astrocytes.
Furthermore, PJ-34 (a PARP1 inhibitor) aggravated dentate
astroglial loss following SE. 3CAI deteriorated dentate astroglial
loss and led to CA1 astroglial apoptosis, which was ameliorated
by SC79 (an AKT activator). These findings suggest that PKC,
AKT and ERK1/2 may distinctly regulate activities of PARP1,
PEA15 and NF-κB in regional specific astroglial apoptosis and
reactive astrogliosis following SE.

MATERIALS AND METHODS

Experimental Animals and Chemicals
All animal experimental procedures and protocols were
approved by the Institutional Animal Care and Use Committee
of the Hallym University (Chuncheon, South Korea). Adult male
Sprague–Dawley (SD) rats weighting 250–280 g, were purchased
from Daehan Biolink (South Korea). Rats were housed under
controlled environmental conditions (23–25 ◦C, 12 h light/dark
cycle) with free access to water and standard laboratory food.
All reagents were obtained from Sigma-Aldrich (USA) unless
otherwise noted.

Intracerebroventricular Drug Infusion
Under Isoflurane anesthesia (1%–2% in O2 and N2O), animals
were stereotaxically implanted a brain infusion kit 1 (Alzet,
Cupertino, CA, USA) into the lateral ventricle (1 mm
posterior; 1.5 mm lateral; −3.5 mm depth; flat skull position
with bregma as reference). Thereafter, an infusion kit was
connected to an osmotic pump (1007D, Alzet, Cupertino, CA,
USA) containing: (1) vehicle; (2) bisindolylmaleimide (BIM,
a PKC inhibitor, 25 µM); (3) 3-chloroacetyl-indole (3CAI,
an AKT inhibitor, 25 µM); (4) U0126 (an ERK1/2 inhibitor,
25 µM); (5) KN-93 (a CaMKII inhibitor, 25 µM, Santa Cruz,
CA, USA); (6) PJ-34 (PARP inhibitor VIII, 3 µM, Merck,
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Germany); and (7) SC79 (an AKT activator, 25 µM). In
a pilot study and our previous studies (Kim et al., 2014;
Kim and Kang, 2018; Park and Kang, 2018), each compound
treatment did not show behavioral and neurological defects in
animals and did not affect seizure threshold in response to
pilocarpine. Three days after surgery, animals were used for
SE induction.

SE Induction
SE was induced by a single dose (30 mg/kg) of pilocarpine in rats
pretreated (24 h before pilocarpine injection) with 127 mg/kg
lithium chloride, as previously described (Kim et al., 2014;
Kim and Kang, 2018; Park and Kang, 2018). Before pilocarpine
injection, animals were given atropine methylbromide (5 mg/kg
i.p.) to block the peripheral effect of pilocarpine. Two hours
after SE, animals received diazepam (10 mg/kg, i.p.) to
terminate SE. As controls, rats were treated with saline instead
of pilocarpine.

Tissue Processing
Three days after SE, animals were deeply anesthetized with
urethane anesthesia (1.5 g/kg, i.p.) and immediately cardiac-
perfused with phosphate-buffered saline (PBS, pH 7.4) followed
by 4% paraformaldehyde in 0.1 M phosphate buffer (PB, pH 7.4).
After perfusion, brains were quickly removed and post-fixed in
the 4% paraformaldehyde and cryoprotected by 30% sucrose
overnight. Thereafter, the tissues were sectionedwith a cryostat at
30 µm and consecutive sections were collected in six-well plates
containing PBS.

TUNEL Staining
According to the manufacturer’s protocol, TUNEL staining
was performed using TUNEL apoptosis detection kit (Upstate,
Lake Placid, NY, USA). Following the TUNEL reaction, double
fluorescent staining was performed (see below).

Immunofluorescent Study
Sections were incubated in a mixture of appropriate primary
antibodies (Table 1) in PBS containing 0.3% Triton X-100
overnight at room temperature. For triple immunofluorescent
study, we usedM.O.M. kit (Vector, USA, #BMK-2202) according
to the manufacturer’s protocol. After washing three times for
10 min with PBS, the sections were also incubated in a mixture
of AMCA- (or FITC-) and Cy3-conjugated secondary antisera
(or streptavidin, 1:250, Amersham, USA) for 2 h at room
temperature. For negative control, the hippocampal tissues were
incubated with pre-immune serum instead of primary antibody.
All images were captured using an Axio Imager M2 microscope
and AxioVision Rel. 4.8 software (Carl Zeiss Korea, Seoul,
South Korea).

Statistical Analysis
For quantitative analysis of fluorescent intensity, sections
(15 sections per each animal) were viewed through a microscope
connected via CCD camera (Carl Zeiss Korea). Thereafter,
fluorescent intensity measurements were represented as the
number of a 256-gray scale using AxioVision Rel. 4.8 software
(Carl Zeiss Korea). Intensity values were corrected by subtracting

TABLE 1 | Primary antibodies used in the present study.

Antigen Host Manufacturer Dilution used
(catalog number)

GFAP Mouse Millipore (#MAB3402) 1:500
NF-κB RelA p65-S311 Rabbit Abcam (ab194926) 1:50
NF-κB RelA p65-S468 Rabbit Abcam (ab31473) 1:50
PAR Mouse Enzo (ALX-804–220) 1:100
PARP1 Rabbit Abcam (ab32138) 1:100

Mouse Trevigen (4338-MC-50) 1:100
PEA15-S104 Rabbit Antibodies-online 1:200

(ABIN744683)
PEA15-S116 Rabbit Antibodies-online 1:200

(ABIN744698)

the average values of background noise obtained from five image
inputs. The optical density was then standardized by setting
the threshold levels. In addition, two different investigators
performed TUNEL-positive cell counts. All data obtained from
the quantitative measurements were tested for the normality and
equality of variance. Thereafter, data were analyzed by one-way
analysis of variance (ANOVA) coupled with Bonferroni’s post
hoc test for multiple comparisons. Values are presented as
mean ± standard error of the mean (SEM). Differences were
considered as significant for p< 0.05.

RESULTS

Effects of Kinase Inhibitors on Astroglial
PARP1 Activity Following SE
First, we validated the characteristics of various kinase inhibitors
in regional specific astroglial responses to SE. As compared to
control animals, SE led to the increases in PARP1 expression
and PAR level in CA1 astrocytes (p < 0.05 vs. control;
one-way ANOVA, n = 7, respectively; Figures 1A,B). As
compared to vehicle, BIM (a PKC inhibitor) attenuated the
increased PARP1 expression and PAR level in CA1 astrocytes
following SE (p < 0.05 vs. vehicle, one-way ANOVA,
n = 7, respectively; Figures 1A,B). 3CAI (an AKT inhibitor)
diminished PARP1 expression and PAR level in CA1 astrocytes
more than BIM (p< 0.05 vs. vehicle and BIM, one-way ANOVA,
n = 7, respectively; Figures 1A,B). U0126 (an ERK1/2 inhibitor)
reduced PAR level without altering PARP1 expression in
CA1 astrocytes (p < 0.05 vs. vehicle; one-way ANOVA, n = 7;
Figures 1A,B). However, KN-93 (a CaMKII inhibitor) did
not affect the increased PARP1 expression and PAR level in
CA1 astrocytes following SE (Figures 1A,B).

Consistent with our previous studies (Kang et al., 2006; Kim
et al., 2008, 2017), SE led to massive loss of dentate astrocytes,
accompanied by reducing PARP1 expression and PAR level
(p < 0.05 vs. vehicle, one-way ANOVA, n = 7, respectively;
Figures 1A,C). U0126 and 3CAI deteriorated dentate astroglial
loss concomitant with decreasing PARP1 expression (p< 0.05 vs.
vehicle, one-way ANOVA, n = 7, respectively; Figures 1A,C),
while BIM and KN-93 did not affect SE-induced dentate
astroglial loss without altering PARP1 expression and PAR
level. These findings indicate that PKC, AKT and ERK1/2,
but not CaMKII, may regulate PARP1-mediated CA1 reactive
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FIGURE 1 | Effect of Status epilepticus (SE) on Poly(ADP-ribose)
polymerase-1 (PARP1) expression and PAR level in the hippocampus. SE
increases PARP1 expression and PAR level CA1 astrocytes, which are
abrogated by BIM and 3CAI. U0126 attenuates the enhanced PAR level
without changing PARP1 expression following SE. In contrast, SE diminishes
PARP1 expression and PAR level in dentate astrocytes, which are
deteriorated by 3CAI and U0126. (A) Representative triple immunofluorescent
images for glial fibrillary acidic protein (GFAP), PARP1 and PAR following SE.
Bar = 100 µm. Abbreviations: CA1, CA1 pyramidal cell layer; SR, stratum
radiatum; SLM, stratum lacunosum-moleculare; ML, molecular layer; GCL,
dentate granule cell layer. (B,C) Quantification of the fluorescent intensities of
PARP1 and PAR in CA1 astrocytes (B) and dentate astrocytes (C). Error bars
indicate standard error of the mean (SEM) (∗,#p < 0.05 vs. control- and
vehicle-treated animals, respectively; n = 7, respectively).

astrogliosis and that AKT and ERK1/2 may be also relevant to
SE-induced dentate astroglial loss.

Effects of Kinase Inhibitors on Astroglial
PEA15 Phosphorylations Following SE
PEA15 expression and its phosphorylations are involved in
astroglial response to SE (Park and Kang, 2018). Therefore, we
evaluated the effects of kinase inhibitors on PEA15-S104
and -S116 phosphorylations in astrocytes following SE.
In control animals, PEA15-S104 immunoreactivity was
predominantly observed in CA1 astrocytes (Figure 2A).
PEA15-S104 phosphorylation was up-regulated in reactive
CA1 astrocytes (p < 0.05 vs. control animals, one-way ANOVA,
n = 7; Figures 2A,B). BIM down-regulated PEA15-S104

FIGURE 2 | Alterations in PEA15-S104 phosphorylation in the hippocampus
following SE. SE enhances PEA15-S104 phosphorylation in CA1 astrocytes,
which is reversed by BIM, but not 3CAI, U0126 and KN-93. SE does not
influence PEA15-S104 phosphorylation in dentate astrocytes, which is
unaffected by BIM, 3CAI, U0126 and KN-93. (A) Representative
immunofluorescent images for GFAP and PEA15-S104 phosphorylation
following SE. Bar = 100 µm. Abbreviations: CA1, CA1 pyramidal cell layer;
SR, stratum radiatum; SLM, stratum lacunosum-moleculare; ML, molecular
layer; GCL, dentate granule cell layer. (B,C) Quantification of the fluorescent
intensities of PEA15-S104 phosphorylation in CA1 astrocytes (B) and dentate
astrocytes (C). Error bars indicate SEM (∗,#p < 0.05 vs. control- and
vehicle-treated animals, respectively; n = 7, respectively).

phosphorylation level in reactive CA1 astrocytes (p < 0.05 vs.
vehicle, one-way ANOVA, n = 7; Figures 2A,B). 3CAI,
U0126 and KN-93 did not affect PEA15-S104 phosphorylation
in reactive CA1 astrocytes. As compared to control animals,
PEA15-S104 phosphorylation level was unaltered in dentate
astrocytes following SE (Figures 2A,C). BIM, 3CAI, U0126 and
KN-93 did not influence PEA15-S104 phosphorylation level in
dentate astrocytes (Figures 2A,C). These findings indicate that
PKC-mediated PEA15-S104 phosphorylation may be relevant to
CA1 reactive astrogliosis, while PEA15-S104 phosphorylation
may not be involved in degeneration of dentate astrocytes
following SE.

In control animals, PEA15-S116 immunoreactivity was
detected in CA1 astrocytes and dentate astrocytes. In contrast
to S104 phosphorylation, PEA15-S116 phosphorylation was
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FIGURE 3 | Changes in PEA15-S116 phosphorylation in the hippocampus
following SE. SE elevates PEA15-S116 phosphorylation in CA1 astrocytes,
which is attenuated by 3CAI, but not BIM, U0126 and KN-93. SE decreases
PEA15-S116 phosphorylation in dentate astrocytes, which is unaffected by
BIM, 3CAI, U0126 and KN-93. (A) Representative immunofluorescent images
for GFAP and PEA15-S116 phosphorylation following SE. Bar = 100 µm.
Abbreviations: CA1, CA1 pyramidal cell layer; SR, stratum radiatum; SLM,
stratum lacunosum-moleculare; ML, molecular layer; GCL, dentate granule
cell layer. (B,C) Quantification of the fluorescent intensities of PEA15-S116
phosphorylation in CA1 astrocytes (B) and dentate astrocytes (C). Error bars
indicate SEM (∗,#p < 0.05 vs. control- and vehicle-treated animals,
respectively; n = 7, respectively).

unaltered in CA1 astrocytes following SE (Figures 3A,B).
3CAI reduced PEA15-S116 phosphorylation in reactive
CA1 astrocytes (p < 0.05 vs. vehicle, one-way ANOVA,
n = 7; Figures 3A,B), while BIM, U0126 and KN-93 did not
influence PEA15-S116 phosphorylation following SE. Unlike
CA1 astrocytes, PEA15-S116 phosphorylation was reduced
in dentate astrocytes following SE (p < 0.05 vs. control
animals, one-way ANOVA, n = 7; Figures 3A,C). BIM, 3CAI,
U0126 and KN-93 did not affect the reduction in PEA15-S116
phosphorylation in dentate astrocytes following SE. Considering
CaMKII- and AKT-mediated PEA15-S116 phosphorylation
(Araujo et al., 1993; Estellés et al., 1996; Kubes et al., 1998),
these findings indicate that AKT, but not CaMKII, may play
a role in the maintenance of PEA15-S116 phosphorylation in
CA1 reactive astrogliosis following SE.

FIGURE 4 | Alterations in NF-κB-S311 phosphorylation in the hippocampus
following SE. SE increases NF-κB-S311 phosphorylation in CA1 astrocytes,
which is attenuated by BIM, 3CAI, and U0126, but not KN-93. SE does not
influence NF-κB-S311 phosphorylation in dentate astrocytes. In addition,
NF-κB-S311 phosphorylation is unaffected by BIM, 3CAI, U0126 and KN-93.
(A) Representative immunofluorescent images for GFAP and PEA15-S116
phosphorylation following SE. Bar = 100 µm. Abbreviations: CA1,
CA1 pyramidal cell layer; SR, stratum radiatum; SLM, stratum
lacunosum-moleculare; ML, molecular layer; GCL, dentate granule cell layer.
(B,C) Quantification of the fluorescent intensities of
NF-κB-S311 phosphorylation in CA1 astrocytes (B) and dentate astrocytes
(C). Error bars indicate SEM (∗,#p < 0.05 vs. control- and vehicle-treated
animals, respectively; n = 7, respectively).

Effects of Kinase Inhibitors on Astroglial
NF-κB Phosphorylations Following SE
Since p65 RelA NF-κB (referred as NF-κB below)
phosphorylation is also involved in reactive astrogliosis
(Morga et al., 2009), we investigated the effects on protein
kinase inhibitors on NF-κB-S311 and -S468 phosphorylations
that modulate its optimal activity (Viatour et al., 2005).
Consistent with our previous studies (Kim et al., 2013),
NF-κB-S311 phosphorylation was observed in a few
CA1 astrocytes (Figure 4A). Following SE, NF-κB-
S311 phosphorylation was increased in CA1 astrocytes
(p < 0.05 vs. control animals, one-way ANOVA, n = 7;
Figures 4A,B). BIM, 3CAI and U0126, but not KN-93,
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FIGURE 5 | Effect of SE on NF-κB-S468 phosphorylation in the
hippocampus. SE increases NF-κB-S468 phosphorylation in CA1 astrocytes,
which is unaffected by BIM, 3CAI, U0126 and KN-93. SE also elevates
NF-κB-S468 phosphorylation in dentate astrocytes, which is enhanced by
3CAI and U0126. (A) Representative immunofluorescent images for GFAP
and NF-κB-S468 phosphorylation following SE. Bar = 100 µm. Abbreviations:
CA1, CA1 pyramidal cell layer; SR, stratum radiatum; SLM, stratum
lacunosum-moleculare; ML, molecular layer; GCL, dentate granule cell layer.
(B,C) Quantification of the fluorescent intensities of
NF-κB-S468 phosphorylation in CA1 astrocytes (B) and dentate astrocytes
(C). Error bars indicate SEM (∗,#p < 0.05 vs. control- and vehicle-treated
animals, respectively; n = 7, respectively).

attenuated the increased NF-κB-S311 phosphorylation in
CA1 astrocytes (p < 0.05 vs. vehicle, one-way ANOVA,
n = 7, respectively; Figures 4A,B). As compared to control
animals, NF-κB-S311 phosphorylation was unaltered in dentate
astrocytes following SE (Figures 4A,C). BIM, 3CAI, U0126 and
KN-93 did not influence NF-κB-S311 phosphorylation level in
dentate astrocytes (Figures 4A,C). These findings suggest that
PARP1 activation and NF-κB-S311 phosphorylation may play
an important role in CA1 reactive astrogliosis.

Similar to NF-κB-S311 phosphorylation, NF-κB-
S468 positivity was increased in CA1 astrocytes following
SE (p < 0.05 vs. vehicle, one-way ANOVA, n = 7, respectively;
Figures 5A,B). However, BIM, 3CAI, U0126 and KN-93 did
not affect NF-κB-S468 phosphorylation in CA1 astrocytes

FIGURE 6 | Astroglial apoptosis in the hippocampus following SE. SE does
not induce apoptosis in CA1 astrocytes. 3CAI leads to CA1 astroglial
apoptosis following SE. However, SE result in apoptotic degeneration in
dentate astrocytes, which is deteriorated by 3CAI and PJ-34.
SC79 ameliorates dentate astroglial apoptosis following SE. (A)
Representative immunofluorescent images for GFAP and TUNEL following
SE. (B,C) Quantification of the percentage of TUNEL positive astrocytes in
CA1 astrocytes (B) and dentate astrocytes (C). Error bars indicate SEM
(∗, #p < 0.05 vs. control- and vehicle-treated animals, respectively;
n = 7, respectively).

(Figures 5A,B). SE also increased NF-κB-S468 phosphorylation
in dentate astrocytes. 3CAI and U0126 enhanced NF-κB-
S468 phosphorylation in these cells following SE (p < 0.05 vs.
vehicle, one-way ANOVA, n = 7, respectively; Figures 5A,C),
while BIM and KN-93 did not affect it. Therefore, our findings
indicate that NF-κB-S468 phosphorylation may be relevant to
dentate astroglial loss.

Effects of Kinase Inhibitors,
PARP1 Inhibitor and AKT Activator on
Astroglial Viability Following SE
Next, we evaluated the effects of kinase inhibitors on astroglial
viability in response to SE. TUNEL positive astrocytes were
rarely detected in CA1 astrocytes following SE (Figures 6A,B).
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3CAI increased the number of TUNEL positive astrocytes
in the CA1 region (p < 0.05 vs. vehicle, one-way ANOVA,
n = 7, respectively; Figures 6A,B), while BIM (Figures 6A,B),
U0126 and KN-93 (data not shown) did not affect it. To directly
elucidate the roles of PARP1 and AKT in astroglial viability, we
applied PJ-34 (a PARP1 inhibitor) and SC79 (an AKT activator).
Both PJ-34 and SC79 did not influence the number of TUNEL
positive astrocytes in the CA1 region (Figures 6A,B). In contrast
to CA1 astrocytes, SE significantly increased the number of
TUNEL positivity in dentate astrocytes (p < 0.05 vs. control
animals, one-way ANOVA, n = 7, respectively; Figures 6A,C).
3CAI, PJ-34 and U0126 (data not shown) elevated the number
of TUNEL positive astrocytes in this region (p< 0.05 vs. vehicle,
one-way ANOVA, n = 7, respectively; Figures 6A,C), while BIM
(Figures 6A,C) and KN-93 (data not shown) did not affect it.
However, SC79 effectively diminished the number of TUNEL-
positive dentate astrocytes following SE (p < 0.05 vs. vehicle,
one-way ANOVA, n = 7, respectively; Figures 6A,C). These
findings indicate that PARP1, ERK1/2 and AKTmay be involved
in astroglial viability in response to SE.

DISCUSSION

PARP1 plays a different role in reactive astrogliosis and astroglial
apoptosis following SE: PARP1 degradation/inhibition evokes
astroglial death, but its activation results in reactive astrogliosis
(Kim et al., 2014). Although DNA damage is a general cause of
PARP1 activation, DNA damage-independent PARP1 activation
has been also reported (Kauppinen et al., 2006; Spina-Purrello
et al., 2008). Therefore, it is likely that other regulatory signaling
molecules for PARP1 activation beyond DNA damage may be
involved in the distinct astroglial response to SE, albeit at a
lesser extent.

Consistent with our previous study (Kim et al., 2014), the
present data show that SE elevated PARP1 expression and
PAR level in CA1 reactive astrocytes, which are indicatives
of PARP1 activation. Since PARP1 regulates cell proliferation
and inflammatory responses via various transcription factors
such as NF-κB, activator protein-1 and cAMP-response element
binding protein (Ha et al., 2002; Hassa et al., 2003), our findings
indicate that PARP1 activation may play an important role
in CA1 reactive astrogliosis. On the other hand, pilocarpine
increases PARP1 expression in CA1 astrocytes of acute brain slice
model (Kim et al., 2014). Furthermore, the astroglial proliferation
induced by SE is predominantly observed in the CA1 region
at 1 week after SE (Kim and Kang, 2018). Taken together, it
is likely that PARP1 expression may be up-regulated in naïve
CA1 astrocytes rather than newly generated astrocytes.

The present study also reveals that BIM, 3CAI and U0126, but
not KN-93, effectively mitigated SE-induced PARP1 activation
in CA1 astrocytes. Indeed, PKC increases PARP1 activity
in various cell types (Henderson et al., 2017), although
PKC-mediated PARP1 phosphorylation protects from DNA
damage-induced necrotic cell death (Hegedus et al., 2008).
Furthermore, ERK1/2 activates PARP1 is independent of DNA
damage (Cohen-Armon et al., 2007), which is required for
maximal PARP1 activation (Kauppinen et al., 2006) AKT also

regulates PARP1 cleavage-mediated apoptosis (Chiarugi, 2002).
With respect to these previous studies, our findings suggest that
PKC, ERK1/2 and AKT, but not CaMKII, may modulate PARP1-
mediated CA1 reactive astrogliosis. In contrast, down-regulation
of PARP1 expression was observed in dentate astrocytes
following SE. U0126 and 3CAI aggravated dentate astroglial loss
concomitant with decreasing PARP1 expression. In addition,
SC79 effectively abrogated apoptosis of dentate astrocytes, while
PJ-34 deteriorated it. Thus, our findings indicate that AKT- and
ERK1/2-mediated PARP1 activation may play an important role
in the viability of dentate astrocytes following SE.

In the present study, BIM reduced PARP1 expression and
PAR synthesis level, but U0126 only reduced the PAR level
following SE. Although we could not exactly explain these
discrepancies in the present study, it is considerable that the
different mechanisms/efficacies of BIM and U0126 to inhibit
reactive astrogliosis would distinctly affect PARP1 expression
and PAR synthesis. This is because PKC regulates reactive
astrogliosis and astroglial proliferation (Stanimirovic et al., 1995;
Scarisbrick et al., 2012), while ERK1/2 activation is insufficient
to induce astroglial proliferation during the process of reactive
astrogliosis (Kim and Kang, 2018). Therefore, the differential
effects of BIM and U0126 on PARP1 expression and PAR
synthesis may result from the distinct underlying mechanisms of
BIM and U0126 for inhibiting reactive astrogliosis.

Recently, we have reported that the increased PKC-mediated
PEA15-S104 phosphorylation plays an important role in
reactive CA1 astrogliosis, while the reduced PEA15-S116
phosphorylation is relevant to apoptosis of dentate astrocytes
induced by SE, independent of neuronal damage (Park and
Kang, 2018). In the present study, PEA15-S104, but not -S116,
phosphorylation was up-regulated in reactive CA1 astrocytes
following SE, which was down-regulated by BIM. Since BIM
attenuated reactive CA1 astrogliosis induced by SE, it is likely that
PEA15-S104 phosphorylation may be involved in reactive
astrogliosis. However, 3CAI and U0126 mitigated reactive CA1
astrogliosis concomitant with reducing PARP1 activity, which
did not affect PEA15-S104 phosphorylation. Therefore, our
findings suggest that PARP1 activation may play a more
important role in reactive astrogliosis than PEA15-S104
phosphorylation. The present study also demonstrates that
SE diminished PEA15-S116 phosphorylation in dentate
astrocytes. BIM, 3CAI, U0126 and KN-93 did not influence
PEA15-S116 phosphorylation in dentate astrocytes. However,
3CAI led to CA1 astroglial apoptosis and deteriorated it in
dentate astrocytes following SE, which were abrogated by
SC79. Considering that PEA15 phosphorylations influence
cell viability and PEA15 stability by inhibiting apoptosis and
proteasomal degradation (Danziger et al., 1995; Kubes et al.,
1998; Trencia et al., 2003; Perfetti et al., 2007), our findings
suggest that AKT-mediated PEA15-S116 phosphorylation may
play a pro-survival role in astrocytes against apoptosis.

NF-κB phosphorylations transactivate several anti-apoptotic
and pro-survival genes (Chiarugi, 2002; Liu et al., 2012).
In addition, muscarinic receptor (receptor for pilocarpine)
modulates NF-κB translocations and its phosphorylations in
astrocytes (Guizzetti et al., 2003), which regulate reactive
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astrogliosis (Morga et al., 2009). In the present study, SE
increased NF-κB-S311 phosphorylation in CA1 astrocytes, which
was mitigated by BIM, 3CAI and U0126. These findings
indicate that PKC-, AKT- and ERK1/2-mediated signaling
pathways may regulate NF-κB-S311 phosphorylation during
reactive astrogliosis. The present data also reveal that SE
elevated NF-κB-S468 phosphorylation in CA1 astrocytes, which
was unaffected by BIM, 3CAI, U0126 and KN-93. Since the
phosphorylation of S468 site terminates NF-κB dependent
gene expression upon assisting in binding of an E3 ubiquitin
ligase complex to NF-κB, which modulates the removal of
chromatin-bound NF-κB at promoter sites of a subset of
NF-κB genes (Geng et al., 2009; Mao et al., 2009), it is likely that
the increased NF-κB-S468 phosphorylation in CA1 astrocytes
may be an adaptive response to inhibit reactive astrogliosis.
In dentate astrocytes, however, 3CAI and U0126 enhanced
the up-regulation of NF-κB-S468 phosphorylation induced
by SE. Both AKT and ERK1/2 inhibit glycogen synthase
kinase 3β (Cohen and Frame, 2001; Lin et al., 2011), which
diminishes NF-κB-S468 phosphorylation (Geng et al., 2009;
Mao et al., 2009). In addition, NF-κB inhibition triggers rapid
PAPR1 cleavage and subsequent apoptosis (Chiarugi, 2002).
Thus, our findings suggest that the NF-κB-S468 phosphorylation
may play a pro-apoptotic role in dentate astrocytes.

In the present study, various kinase inhibitors affected
activities of PARP1, PEA15 and NF-κB in astrocytes following
SE. Since PJ-34 decreases PARP1 and NF-κB expressions
independent of DNA damage (Spina-Purrello et al., 2008;
Wang et al., 2013), PARP1 expression is positively correlated
with NF-κB expression. Indeed, PARP1 directly binds and
interacts with NFκB in cellular level (Stanisavljevic et al., 2011),
which are regulated by various mechanisms: PARP1 inhibitors
reduce NF-κB activity by preventing the degradation of
IκB (Genovese et al., 2005; Stilmann et al., 2009). In
addition, PARP1-NF-κB interactions synergistically activate
transcriptional factors independent of enzymatic activity and
DNA-binding ability (Hassa et al., 2003). Therefore, it is
likely that PARP1 may interact with NF-κB to increase
NF-κB activity, which in turn may modulate NF-κB-dependent

gene expression. PEA15 is also involved in NF-κB-dependent
transcriptions (Wakita et al., 2016) and regulates PARP1 activity
via nuclear ERK1/2 translocation (Krueger et al., 2005; Spina-
Purrello et al., 2008). With respect to these reports, it is
presumable that PARP1-PEA15-NF-κB-mediated framework
would differently regulate the regional specific astroglial
responses following SE, although it was not directly confirmed
in the present study. Further studies are needed to elucidate
this hypothesis.

In conclusion, the present study demonstrates that PKC,
AKT and ERK1/2 differently regulated activities of PARP1,
PEA15 and NF-κB in CA1 astrocytes and dentate astrocytes.
Therefore, our findings suggest that the protein kinases may be
distinctly involved in regional specific astroglial responses to SE
through various signaling molecules, which would hypothesize
their networks to regulate astroglial responses to SE.
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