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The axon initial segment (AIS) is the site of action potential (AP) initiation in most
neurons and is thus a critical site in the regulation of neuronal excitability. Normal
function within the discrete AIS compartment requires intricate molecular machinery
to ensure the proper concentration and organization of voltage-gated and ligand-
gated ion channels; in humans, dysfunction at the AIS due to channel mutations
is commonly associated with epileptic disorders. In this review, we will examine the
molecular mechanisms underlying the formation of the only synapses found at the
AIS: synapses containing γ-aminobutyric type A receptors (GABAARs). GABAARs are
heteropentamers assembled from 19 possible subunits and are the primary mediators
of fast synaptic inhibition in the brain. Although the total GABAAR population is incredibly
heterogeneous, only one specific GABAAR subtype—the α2-containing receptor—is
enriched at the AIS. These AIS synapses are innervated by GABAergic chandelier cells,
and this inhibitory signaling is thought to contribute to the tight control of AP firing.
Here, we will summarize the progress made in understanding the regulation of GABAAR
synapse formation, concentrating on post-translational modifications of subunits and
on interactions with intracellular proteins. We will then discuss subtype-specific synapse
formation, with a focus on synapses found at the AIS, and how these synapses influence
neuronal excitation.
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INTRODUCTION

The firing of glutamatergic pyramidal cells is tightly controlled by inhibitory interneurons
(INs). By precisely directing pyramidal cell activity, INs are able to regulate network activity,
generate oscillations, and even terminate pathological hyperexcitability (Fritschy, 2008; Roux
and Buzsáki, 2015). On a molecular level, INs regulate pyramidal cell firing through GABAergic
neurotransmission: releasing the neurotransmitter γ-aminobutyric acid (GABA) onto inhibitory
postsynaptic specializations containing GABA type A receptors (GABAARs) on pyramidal neuron
dendrites, soma, and axon initial segments (AISs). Thus, the construction and maintenance of
GABAergic synapses are essential for normal inhibitory neurotransmission and brain function.
However, relatively little is known about inhibitory synaptogenesis compared to glutamatergic
synapses. To complicate the picture, there are many GABAAR subtypes composed of different
subunits, which confer distinct physiological properties on the receptors. In addition, different
GABAAR subtypes are selectively stabilized at different types of synapses; the AIS, for example,
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contains primarily one kind of GABAAR. Thus, the type of
receptor present at a given synapse determines the type of
inhibition that takes place. Again, little is known about how
neurons direct different types of GABAARs to different synapses.
The following review will briefly summarize what is known
about the formation and trafficking of GABAAR subtypes and
the construction of inhibitory synapses overall and specifically
at the AIS.

GABAA RECEPTOR STRUCTURE AND
FUNCTION

In the adult mammalian central nervous system, most fast,
synaptic inhibitory neurotransmission is mediated by GABAARs,
a group of heteropentameric, ligand-gated anion channels
(Connolly and Wafford, 2004). When the neurotransmitter
GABA binds to the receptor, the intrinsic ion pore opens and
allows permeable ions to pass through (Bormann et al., 1987).
GABAARs are primarily permeable to chloride (Cl−) anions
(Fatima-Shad and Barry, 1993), and in the mature brain—where
the Cl− reversal potential is more negative than the resting
membrane potential—the opening of the GABAAR channel
allows Cl− ions to flow down their electrochemical gradient
into the neuron, lowering the neuron’s membrane potential
and producing a hyperpolarizing response that reduces the
probability of action potential (AP) firing (Busch and Sakmann,
1990; Blaesse et al., 2009).

Structurally, GABAARs are diverse. The receptors are
assembled from 19 different known subunits: α(1–6), β(1–3),
γ(1–3), δ, ε, θ, π, and ρ(1–3; Olsen and Sieghart, 2008),
putting the number of possible subunit combinations in the
thousands; however, only certain subtypes are expressed in the
brain. For synaptic GABAARs, which this review will focus on,
the typical stoichiometric ratio is as follows: 2α:2β:1γ (Wisden
et al., 1992; Baumann et al., 2003). GABAAR subunits possess
a similar amino acid sequence and protein structure, with each
subunit composed of an extracellular N-terminal domain, four
transmembrane domains (TM1–4), an intracellular loop domain
(ICD) between TM3 and TM4, and an extracellular C-terminal
domain (Schofield et al., 1987; Miller and Aricescu, 2014). The
ICD is important for regulating GABAAR activity, as it is the
site of phosphorylation and protein-protein interactions that
alter receptor trafficking and plasma membrane (PM) expression
(Moss et al., 1992; Nymann-Andersen et al., 2002; O’Toole
and Jenkins, 2011). In addition, the ICD is the site of greatest
sequence variability between subunits, making it an attractive
candidate for a locus of subtype-specific GABAAR regulation
(Arancibia-Cárcamo and Kittler, 2009). It seems likely that
such differential regulation occurs, as different types of synaptic
GABAARs are restricted to certain synapses. For instance, within
pyramidal neurons in the cortex and hippocampus, GABAARs
that contain the α1 subunit tend to be found at synapses in the
soma and dendrites, while α2-containing GABAARs are enriched
at synapses on the AIS (Nusser et al., 1996).

The subunit composition of a given GABAAR not only
influences receptor localization, but also determines the
physiological properties of that receptor (see Table 1 for

TABLE 1 | The distribution and synaptic roles of γ-aminobutyric acid type A
receptor (GABAAR) α subunits.

Subunit Brain distribution Subcellular
localization

Synaptic role

α1 60% of all
GABAARs Widely
expressed

Synaptic in
somatodendritic
compartments

Phasic
inhibition

α2 15–20% of
GABAARs Cerebral
cortex (layers 1–4),
hippocampus,
striatum

Primarily synaptic;
enriched in
perisomatic regions
and at the AIS of
cortical and
hippocampal
pyramidal neurons

Phasic
inhibition

α3 10%–15% of
GABAARs Cerebral
cortex (layers 5–6),
amyddala,
thalamus

Primarily synaptic;
found in some AIS

Phasic
inhibition

α4 <5% of GABAAR
Dentate gyrus,
thalamuss

Extrasynaptic Tonic inhibition

α5 <5% of GABAARs
Hippocampus

Extrasynaptic Tonic inhibition

α6 <5% of GABAARs
Cerebellum

Primarily
extrasynaptic

Tonic inhibition

summary). In addition, the specific α subunit composition
of GABAARs determines receptor kinetics. α1-GABAARs
mediate an inhibitory current with a longer decay time than
α2-GABAARs (Goldstein et al., 2002). Thus, GABAAR subtypes
mediate specific kinds of inhibition; restricting GABAAR
subtypes to different spatial domains allows INs to control
pyramidal neuron firing in a precise but dynamic manner.

GABAA RECEPTOR OLIGOMERIZATION
AND TRAFFICKING

GABAAR subunits are assembled into receptors in the
endoplasmic reticulum (ER; Kittler et al., 2002). Oligomerization
is controlled by the subunits’ N-terminal domains, with
assistance from resident ER chaperone proteins to ensure
appropriate protein assembly and folding (Connolly et al.,
1996; Moss and Smart, 2001). Only those receptors that are
conformationally mature are permitted to exit the ER and
continue along the GABAAR lifecycle; receptors that are
found to be incomplete or composed of inappropriate subunit
combinations are retained in the ER and degraded (Gorrie et al.,
1997; Saliba et al., 2007).

Conformationally mature GABAARs travel from the ER
to the Golgi apparatus, where receptors are segregated into
vesicles and transported to the PM (Vithlani et al., 2011).
This forward trafficking delivers GABAARs to and insert
them into the PM, primarily in extrasynaptic areas (Bogdanov
et al., 2006). GABAAR surface expression is also regulated
by receptor internalization via clathrin-mediated endocytosis
(Lorenz-Guertin and Jacob, 2018). The clathrin adaptor protein
(AP)-2 binds GABAAR subunits—the ICD of the GABAAR
β1–3 and γ2 subunits both contain AP2 binding motifs—and
clathrin, anchoring receptors in endocytotic pits.
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INHIBITORY SYNAPSE CONSTRUCTION

GABAARs are inserted into the PM at extrasynaptic locations
(Bogdanov et al., 2006). At the surface, GABAARs are highly
dynamic and diffuse laterally within the PM, where they
continually move between the synaptic and extrasynaptic
space (Thomas et al., 2005). Recent single-particle trafficking
experiments show that both synaptic (α1–3-containing) and
extrasynaptic (α4–6-containing) receptors can access the
inhibitory synapse; however, when within the synaptic domain,
the diffusion rate of synaptic GABAARs was reduced relative
to extrasynaptic receptors, suggesting that GABAARs with
‘‘synaptic’’ subunit compositions are selectively stabilized at
synapses (Hannan et al., 2019).

How are these receptors stabilized in the inhibitory synapse?
Research to date suggests that protein-protein interactions play
an essential role in this process: structural proteins present
at the inhibitory synapse bind to GABAARs, reducing their
lateral diffusion rate and effectively anchoring them at the
synapse (Hannan et al., 2019). Though the composition of
the multimolecular protein complexes present at the inhibitory
synapse remains relatively unknown, a number of proteins that
reside at the inhibitory synapse and appear to regulate GABAAR
clustering have been identified.

GEPHYRIN

One of the first inhibitory synaptic proteins described was
gephyrin (GPN), which is still considered to be an integral
structural component of the inhibitory postsynaptic domain
(Tyagarajan and Fritschy, 2014). The most common splice
variant of GPN is composed of three domains: an N-terminal G
domain, a linker C domain, and a C-terminal E domain (Feng
et al., 1998; Schwarz et al., 2001). The E and G domains of
GPN self-aggregate, leading to the hypothesized formation of
hexameric macromolecular GPN complexes that could serve as
a lattice to stabilize receptors at the synapse (Saiyed et al., 2007).
GPNwas first identified as a binding partner of glycine receptors,
which mediate inhibition in the spine (Prior et al., 1992).
Constitutive knock-out of GPN in the mouse leads to a complete
loss of glycine receptor clusters in the periphery, resulting in
early postnatal death (Feng et al., 1998). However, it was also
found that GPN knock-out mice show a dramatic reduction
in the presence of GABAARs at brain synapses, providing the
first evidence that GPN is also crucial for inhibitory synapse
formation in the central nervous system (Kneussel et al., 1999;
Fischer et al., 2000).

More recent experiments have shown that GPN co-localizes
with GABAARs containing α1–3 subunits at synapses (Sassoè-
Pognetto et al., 2000). Isothermal titration calorimetry
experiments performed with the GPN E domain and the
ICDs of GABAAR α1–3 subunits have demonstrated that
GPN interacts directly with the ICD of GABAAR α subunits
at an amino acid stretch between ICD residues 360–375
(Hines et al., 2018). The amino acid sequence in this region
is not well conserved between α subunit subtypes, thus it
follows that GPN binds α1–3 with differing affinities: the

α1 and α3 ICDs formed tight complexes with the GPN E
domain, while the α2 ICD formed a comparatively weaker
complex (Hines et al., 2018). These data suggest a GABAAR
subtype-specific affinity for GPN, dependent on the amino acid
composition of the 360–375 ICD motif of the α subunit and
raise the possibility that GPN, or other proteins that bind the
360–375 motif, can selectively stabilize GABAAR subtypes at
certain synapses.

COLLYBISTIN

A more recently identified inhibitory synapse protein is
collybistin (CB), a guanine nucleotide exchange factor (Reid
et al., 1999). Most functional CB isoforms are composed of three
domains: a catalytic double homology domain, a PM-binding
pleckstrin homology domain, and an N-terminal Src homology
(SH)-3 domain (Harvey et al., 2004). CB was first identified
as a GPN interacting protein (Kins et al., 2000). Indeed, the
GPN E domain directly binds CB’s double homology domain,
and co-expression of CB with GPN in heterologous cells causes
the translocation of GPN clusters to the PM (Kins et al., 2000;
Grosskreutz et al., 2001). CB knock-out mice show a loss of GPN
clustering at inhibitory synapses in certain brain regions, such as
the hippocampus, suggesting that CB plays a role in postsynaptic
GPN clustering at a subset of inhibitory synapses (Papadopoulos
et al., 2007, 2008).

Recent evidence showed that CB also directly interacts with
certain GABAAR subtypes. Yeast tri-hybrid screens revealed that
the GABAAR α2 subunit interacts with the CB SH3 domain,
and in fact the GPN/CB interaction is strengthened by the
addition of α2, suggesting that these three proteins can act
synergistically (Saiepour et al., 2010). In vitro isothermal titration
calorimetry showed that the CB SH3 domain preferentially
binds the α2 ICD, over either the α1 or α3 ICD, at residues
360–375, suggesting that this ICD motif is integral to GABAAR
subtype-specific protein-protein interactions (Hines et al., 2018).
Supporting this hypothesis, knocking the α2 360–375 motif into
the α1 subunit in mice leads to increased immunoprecipitation
of endogenous CB with the chimeric α1 subunit (Nathanson
et al., 2019). This same study also showed an increase in the
pull-down of GPN with mutant α1, demonstrating a possible
synergistic interaction between CB/GPN/α2 ICD that is overall
strengthened when the interaction between two partner proteins
is enhanced (Nathanson et al., 2019). The overarching question
becomes: does this α2 ICD motif and its preferential protein
interactions play a role in subtype-specific synapse formation
in the brain, particularly in the construction of α2-enriched
synapses at the AIS?

THE AXON INITIAL SEGMENT

At the interface between the somatodendritic and axonal
compartments lies the AIS. This discrete region is composed of
unique molecular machinery and maintains a barrier between
the somatodendritic and axonal environments, sustaining the
neuronal anatomical asymmetry necessary for the unidirectional
propagation of information (Leterrier, 2018). Morphologically,
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FIGURE 1 | The inhibitory postsynaptic specialization at the axon initial segment (AIS). A cartoon showing a putative model of the postsynaptic inhibitory synapse at
the AIS in a hippocampal pyramidal neuron. Ankyrin G and the β4/α2-spectrin tetramer associate to stabilize voltage-gated ion channels and link the periodic domain
to the actin and microtubule cytoskeleton. α2-GABAARs are enriched at inhibitory synapses at the AIS, where they are selectively stabilized by protein-protein
interactions at their intracellular loop domain (ICD). This review proposes that collybistin is a candidate for an AIS selective stabilizer, linking the α2-GABAAR to the
AIS plasma membrane (PM).

the AIS displays an electron-dense submembranous granular
layer composed of a high density of voltage-gated ion channels
and the highly organized, periodic protein scaffold that supports
them (Xu et al., 2013). A number of electrophysiological studies
established that the AIS is not only a barrier but is also the site
of AP generation, as belied by its high resident concentrations
of voltage-gated sodium and potassium channels, which are
essential for the propagation of APs (Araki and Otani, 1955;
Coombs et al., 1957; Fuortes et al., 1957).

Giant Ankyrin G is the key scaffolding protein and master
organizer at the AIS; it recruits other essential AIS components,
such as βIV-spectrin and voltage-gated ion channels, through
either direct or indirect interactions (Zhou et al., 1998; Jenkins
and Bennett, 2001; Han et al., 2017). Ankyrin G also interacts
with microtubules, anchoring the entire complex in place
(Leterrier et al., 2011). The AIS protein scaffold is dense and
super-stable, maintaining axonal integrity and serving as a
barrier to the entry of inappropriate somatodendritic proteins:
the expression and/or stabilization of proteins at the AIS is tightly
controlled (Albrecht et al., 2016; Huang and Rasband, 2016).

INHIBITION AT THE AXON INITIAL
SEGMENT

To current knowledge, the only ligand-gated ion channels
mediating neurotransmission at the AIS are GABAARs
(Leterrier, 2018). The AIS of certain cell types—pyramidal

cells of the forebrain, for instance—contain inhibitory synapses
that are exclusively innervated by one type of IN: the chandelier
cell (Somogyi et al., 1983; Wang et al., 2016). Given that the
AIS is the site of AP firing, any inhibitory signaling in this
domain has an outsize effect on neuronal excitability (Zhu
et al., 2004; Glickfeld et al., 2009). As previously discussed,
α2-GABAARs are specifically enriched at the AIS (Nusser
et al., 1996; Nyíri et al., 2001); since different GABAAR
subtypes have their own kinetics and mediate distinct types
of inhibition, it follows that the enrichment of a particular
GABAAR subtype in a restricted domain like the AIS would have
functional relevance.

To investigate the above hypothesis, mice in which residues
360–375 of the GABAAR α1 subunit have been knocked-in to
the α2 subunit (Gabra2–1 mice) were generated. This mutation
abolished α2’s preferential interaction with CB and led to loss of
α2+ synapses at the AIS. Strikingly, Gabra2–1 animals display
postnatal spontaneous seizures; these seizures are often lethal,
causing death around postnatal day 20 (Hines et al., 2018). These
data demonstrate that the localization of α2-GABAARs to the AIS
is essential to inhibitory control of pathological excitation.

INHIBITORY SYNAPSE FORMATION AT
THE AXON INITIAL SEGMENT

Clearly then, inhibition at the AIS is integral to maintaining
the dynamic balance between inhibition and excitation.
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However, the manner in which GABAAR subtype-specific
axo-axonic synapses are constructed and maintained remains
unclear. Although α2-GABAARs are enriched at the AIS,
live imaging of α1- and α2-GABAARs coupled to quantum
dots showed that both subtypes can enter the AIS: the AIS
diffusion barrier does not seem to select for α2-GABAARs
(Muir and Kittler, 2014). However, these same studies
demonstrated that α2-GABAARs were less mobile at the
AIS than α1-GABAARs, indicating that while both subtypes can
access the AIS compartment, α2-GABAARs are somehow
preferentially anchored at there. Given that inhibitory
synapse formation in other neuronal compartments has
been shown to depend on protein-protein interactions, it stands
to reason that synapse formation at the AIS would follow
the same principles.

Indeed, GPN is expressed at the AIS, forming co-clusters
with α2-GABAARs (Panzanelli et al., 2011), although GPN’s
association with GABAARs at the AIS is relatively weaker
than its association with GABAARs at the soma and dendrites
(Gao and Heldt, 2016), suggesting that another protein
present in the AIS multimolecular scaffold could play a
more important role. CB is also present at AIS inhibitory
synapses in cortical and hippocampal neurons (Panzanelli
et al., 2011), and its specific interactions with α2-GABAARs
provide a putative model for inhibitory synapse formation at
the AIS: removing the 360–375 motif from the α2 subunit
ICD prevents the accumulation of α2-GABAARs at axo-axonic
synapses, suggesting that this motif, and the preferential protein
interactions it mediates—such as that with CB—is necessary
for GABAAR stabilization at the AIS (Hines et al., 2018).
Experiments performed in another mutant mouse, in which
residues 360–375 of the α2 subunit are knocked-in to the
α1 subunit (the Gabra1–2 mouse), increases the affinity of
the α1 subunit for CB and leads to an increase in α1-
GABAARs expression at axo-axonic synapses. These data show
that residues 360–375 of the α2 subunit are sufficient for
GABAAR stabilization at the AIS (Nathanson et al., 2019).
Given that CB has a relatively stronger association with the α2
360–375 motif and is present at the AIS, it stands to reason that
CB interactions selectively stabilize α2-GABAARs at inhibitory
AIS synapses.

Together, these data provide a potential model for axo-axonic
synapse formation: after GABAARs are inserted into the
extrasynaptic PM at the AIS those receptors that contain the
α2 ICD motif are able to bind intracellular scaffolding proteins,
such as CB, to form stable complexes that anchor the receptor
at axo-axonic synapses. Receptors that do not contain the
α2 ICD motif are not stabilized at synapses and diffuse back
into the extrasynaptic space (see Figure 1). Other proteins

in the AIS scaffold, especially Ankyrin G, might also play
a role in the selective stabilization of GABAARs at the AIS.
Future experiments utilizing the Gabra1–2 and Gabra2–1 mice
could provide more information about the importance of
these proteins in GABAAR stabilization. In addition, the above
model only describes the postsynaptic side of inhibitory synapse
formation. Additional mechanisms regulate the formation of
presynaptic chandelier cell boutons apposing the AIS. Most
recently, a transsynaptic mechanism was described: the cell
adhesion molecule L1CAM, localized to the AIS of neocortical
pyramidal neurons, was found to be necessary for the targeting
of chandelier cell boutons to the AIS (Tai et al., 2019). Although
the presynaptic interactor of L1CAM remains unidentified, such
transsynaptic interactions provide an intriguing path for future
research into synapse formation at the AIS.

CONCLUSIONS

Despite the progress made in understanding the formation of
inhibitory synapses, little is known about how neurons direct
GABAAR subtype-specific synapse formation. This subtype
specificity is important for the maintenance of neuronal
excitability. α2-GABAAR-enriched synapse formation at the
AIS is an especially intriguing case, as AIS inhibition is
essential for normal brain function. Better understanding
axo-axonic synapse formation will not only shed light on the
molecular mechanisms of subtype-specific inhibitory synapse
formation but may also provide new avenues of research into
treatment for neurological disorders like epilepsy, which result
from pathological hyperexcitability. It appears that protein-
protein interactions between the ICD of GABAAR subunits
and intracellular scaffolding proteins at inhibitory synapses
play an important role in this process. The make-up of
the inhibitory synaptic scaffold is variable depending on cell
type and subcellular domain, making such interactions good
candidates for synapse-specific GABAAR subtype enrichment.
Further research will need to be done to fully explore the
‘‘interactome’’ of each GABAAR subtype and the importance of
each interaction at themany different types of synapses present in
even one neuron.
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