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Immune checkpoints restrain the immune system following its activation and their
inhibition unleashes anti-tumor immune responses. Immune checkpoint inhibitors
revolutionized the treatment of several cancer types, including melanoma, and immune
checkpoint blockade with anti-PD-1 and anti-CTLA-4 antibodies is becoming a frontline
therapy in metastatic melanoma. Notably, up to 60% of metastatic melanoma patients
develop metastases in the brain. Brain metastases (BrM) are also very common in
patients with lung and breast cancer, and occur in ∼20–40% of patients across different
cancer types. Metastases in the brain are associated with poor prognosis due to the lack
of efficient therapies. In the past, patients with BrM used to be excluded from immune-
based clinical trials due to the assumption that such therapies may not work in the
context of “immune-specialized” environment in the brain, or may cause harm. However,
recent trials in patients with BrM demonstrated safety and intracranial activity of anti-
PD-1 and anti-CTLA-4 therapy. We here discuss how immune checkpoint therapy
works in BrM, with focus on T cells and the cross-talk between BrM, the immune
system, and tumors growing outside the brain. We discuss major open questions in our
understanding of what is required for an effective immune checkpoint inhibitor therapy
in BrM.
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INTRODUCTION

Brain metastases (BrM) are the most frequent intracranial tumors, representing an unmet clinical
need with poor prognosis. They develop in 20–40% of metastatic cancer patients and mostly
originate from lung cancer, breast cancer and melanoma (Gerrard and Franks, 2004; DeAngelis,
2008; Valiente et al., 2018; Doron et al., 2019). Until recently, treatment options have been
restricted to radiotherapy and surgery, and the median overall survival (OS) after combination
of these therapies is below 1 year (Puzanov et al., 2013; Ajithkumar et al., 2015). Patients with
BrM are frequently excluded from clinical trials (Ajithkumar et al., 2015). Consequently, BrM
are understudied at the clinical and preclinical level, and the treatment options for BrM are
commonly lagging behind.

Programmed Death 1 (PD-1) and Cytotoxic T-lymphocyte Associated Protein 4 (CTLA-4)
are immune-inhibitory receptors (immune checkpoints) expressed mainly on T cells, and their
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inhibition with function-blocking antibodies has been shown
to enhance anti-tumor T cell responses (Walker and Sansom,
2011; Kamphorst and Ahmed, 2013). Antibodies targeting CTLA-
4 (Ipilimumab) and PD-1 (Nivolumab, Pembrolizumab) have
shown a great promise for the treatment of different cancers.
Moreover, there is now substantial evidence for the efficacy of
both anti-CTLA-4 and anti-PD-1 therapy in BrM. A handful of
retrospective and prospective clinical studies indicated activity
of ipilimumab in melanoma BrM with 16–25% intracranial
response rate, but also suggested that only a subgroup of patients
is likely to benefit (Margolin et al., 2012; Puzanov et al., 2013;
Ajithkumar et al., 2015). Pembrolizumab and nivolumab showed
∼21% response rate in BrM in melanoma patients (Goldberg
et al., 2016; Gonzalez-Cao et al., 2017; Long et al., 2017;
Parakh et al., 2017). Intracranial activity was also observed in
patients with non-small-cell lung cancer (NSCLC), reporting
33% objective response rate (Goldberg et al., 2016) and 47%
disease control (Bidoli et al., 2016), respectively, as well as in
renal cell carcinoma with a response rate of 18.7% in the central
nervous system (CNS; De Giorgi et al., 2019). Two very recent
clinical trials in drug-treatment naïve patients with melanoma
BrM [ABC trial (Long et al., 2017) and CheckMate 204 trial
(Tawbi et al., 2017)] reported a 46 and 52% intracranial response
rate respectively following combined anti-PD-1 plus anti-CTLA-
4 therapy. The ABC trial also demonstrated superior intracranial
activity of combined PD-1 plus CTLA-4 blockade as compared to
the PD-1 blockade alone. In summary this demonstrates clinical
efficacy of immune checkpoint inhibitors in the brain in the
context of metastatic disease.

It is now well accepted that the brain is an immune-specialized
rather than immune-privileged environment. Importantly, the
CNS contains several immunologically distinct compartments;
while grafts implanted into the brain parenchyma or cortex
display prolonged survival, those implanted into ventricles
are readily rejected (Murphy and Sturm, 1923; Medawar,
1948; Thomas et al., 2008). The aim of this review is to
discuss how immune responses in the context of immune
checkpoint blockade and some other immunotherapies occur
in BrM. We will focus on tumors located within the brain
parenchyma – a brain compartment that seems to be the most
restrictive/specialized in terms of immune reactions, and on T
cells as critical mediators of antigen-specific immune responses.
We will also discuss how the presence of extracerebral cancer
lesions affects tumors located within the brain.

IMMUNE CROSSTALK BETWEEN BRAIN
TUMORS AND THE PERIPHERY

It has been observed almost 100 years ago that mouse sarcoma
tumors, which would typically be rejected when transplanted
under the skin in rats, grew efficiently within rat brain
parenchyma (Shirai, 1921). The same was true for skin grafts
transplanted into the brain; however, skin grafts in the brain
were rejected if animals spontaneously rejected a graft of the
same tissue growing in the skin (Medawar, 1948). Interestingly,
several preclinical glioma models that grow aggressively in the

brain, are spontaneously rejected when growing under the skin
(Kida et al., 1983; Paul et al., 2000; Su et al., 2000; Barth and
Kaur, 2009; Volovitz et al., 2011). Such spontaneous rejection
of subcutaneous (s.c.) tumors is sufficient to induce rejection
of intracranial tumors (Volovitz et al., 2011). Volovitz et al.
(2011) termed the phenomenon where tumor that in one
location is immune-resistant and in another location generates
protective immunity “split immunity.” Importantly, the spread
of immunological information in this context is unidirectional:
while the immunity generated by s.c. tumors spreads to
the intracranial tumors, intracranial tumors are incapable of
spreading immunity to s.c. tumors (Volovitz et al., 2011).

The situation is somewhat different in the context of
BrM which originate from extracranial tumors that are
immunologically compatible with their host; simultaneous or
prior subcutaneous growth of immunologically compatible
melanoma tumors per se namely doesn’t impact intracranial
growth of the same tumor (Lu et al., 2003; Taggart et al., 2018).
Interestingly, however, the presence of extracranial tumor does
have an effect on BrM in the context of immune-based therapies.
Our lab recently demonstrated that immune checkpoint blockade
with combined anti-PD-1 plus anti-CTLA-4 therapy inhibits
B16 and Ret melanoma growth in the brain only if the mice
are simultaneously bearing tumors of the same type under the
skin, while the therapy failed in mice with intracranial tumors
only (Taggart et al., 2018). The presence of extracranial tumor
significantly increased the numbers of circulating effector CD8+
T cells in treated mice, implying that mounting of systemic
anti-tumor immune responses underlies intracranial therapeutic
efficacy. The PD-1 immune checkpoint plays a role primarily
within the tumor microenvironment, where it inhibits T cell
responses by binding to one of its ligands (Wei et al., 2018). As
blood vessels are less permeable in intracranial than extracranial
tumors (Lockman et al., 2010; Matthias et al., 2016), it is possible
that anti-PD-1 blocking antibodies cannot reach intracranial
tumors sufficiently to release T cells from PD-1 blockade, and
therefore, efficient anti-tumor immune responses in the brain
may rely on the release of tumor antigen-specific T cells from PD-
1 inhibition within the extracranial tumor. The CTLA-4 immune
checkpoint is upregulated on T cells following T cell receptor
(TCR) engagement of antigen-bound major histocompatibility
complex (MHC) on antigen presenting cells (APCs) during T cell
priming in secondary lymphoid organs. CTLA-4 dampens TCR
signaling through competition with the costimulatory molecule
CD28 for binding to CD80 and CD86 on APCs (Wei et al.,
2018). As discussed below, tumor antigens originating from the
intracranial tumor may reach tumor-draining LNs insufficiently
to induce substantial T cell priming, and therefore, efficient
generation of anti-tumor immune responses against tumors
in the brain may rely on T cell priming and the release of
tumor antigen-specific T cells from CTLA-4 blockade within the
extracranial tumor-draining LNs.

In line with our study focusing on immune checkpoint
blockade (Taggart et al., 2018), another study in melanoma has
shown inhibition of brain colonization by melanoma cell line
once subcutaneous tumors of the same type have been rejected
following intra-tumoral administration of IFNβ-expressing
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insect cells, but not when a different s.c. tumor type was rejected
(Lu et al., 2003). This study also reported that a failure to reject
s.c. tumors following treatment occurred in a small percentage
of mice, and this correlated with efficient establishment of
BrM. Another example of a cross-talk between extracranial
and intracranial tumors in the context of immunotherapy was
reported in a breast cancer model; a rejection of orthotopic EMT6
breast carcinoma tumors through peri-tumoral administration
of CpG oligodeoxynucleotides (ODN) prevented intracranial
growth of the same cell line (Xiong et al., 2008). Taken
together, these data suggest that while there is a barrier to
the immune-based rejection of tumors growing in the brain
as the only tumor site, a prior development of effective
immunity against extracranial tumor sharing the same tumor
antigens unleashes effective immune attack on BrM. In line with
that, a strong concordance between systemic and intracranial
responses to pembrolizumab has been reported in melanoma and
NSCLC patients with BrM following the initial treatment period
(Goldberg et al., 2016).

WHAT RESTRICTS IMMUNE
RESPONSES AGAINST TUMORS IN THE
BRAIN?

Cervical LNs (cLNs) are intracranial tumor-draining LNs,
as this is where the antigens originating from intracranial
tumors are predominantly found and where T cell proliferation
is induced following intracranial tumor growth (Calzascia
et al., 2005; Thomas et al., 2008). Characteristics of tumor-
draining LNs may critically influence immune responses. Thomas
et al. (2008) compared tumor antigen drainage following
implantation of the same number of cancer cells into the
ventricles, under the skin, and into the brain parenchyma in
a small (0.3 uL) or a large volume (5 uL) – the latter being
observed to result in an overflow of cancer cells into the
ventricles. Intraparenchymal cancer cell injection in a small
volume resulted in a significantly stronger accumulation of
tumor antigens in parotid and deep cLNs as compared to the
other modes of cancer cell injection. The stronger drainage
of antigens to the cLNs correlated with a significantly higher
number of myeloid derived suppressor cells and decreased
number of CD8+ T cells in brain tumors, indicating tipping
toward tumor tolerance. This is in line with previous reports
showing that cLNs influence the development of delayed type
hypersensitivity to injected peptides, contributing to tolerance
for antigens delivered by nasal route (Wolvers et al., 1999). It
has been therefore suggested that cLNs may be more potent
inducers of tumor tolerance than other LNs (Harling-Berg
et al., 1999; Wolvers et al., 1999; Thomas et al., 2008). In the
context of immunotherapy, it is possible that the presence of
extracranial tumor overcomes the cLN-induced tumor tolerance
by stimulating tumor-specific T cell priming in LNs at locations
that better support the development of anti-tumor immune
responses (Figure 1).

Several other factors may play an important role in restricting
immune responses against sole tumors in the brain. Lymphatic

vessels were recently rediscovered at the dura (Aspelund et al.,
2015; Louveau et al., 2015b); in contrast, the brain parenchyma
lacks classical lymphatic vessels. Soluble antigens from the
cerebrospinal fluid (CSF) and brain parenchyma are thought to
efficiently drain to the cLNs and different drainage routes have
been proposed (Carare et al., 2008; Louveau et al., 2015a, 2017;
Engelhardt et al., 2017). While there is substantial evidence that
APCs from the CSF also efficiently migrate to the cLNs, migration
of APCs from within brain parenchyma to the regional LNs
is still a matter of debate (Carare et al., 2008; Louveau et al.,
2015a, 2017; Engelhardt et al., 2017). Thus, the (in)ability of APCs
to efficiently reach cLNs may impact immune responses in the
brain. The abundance of dendritic cells in brain tumors has been
also reported to be lower than in s.c. tumors of the same type
(Okada et al., 2004). Moreover, characteristics of APCs may differ
between intracranial and extracranial tumors.

In the context of immune checkpoint blockade, the access
of therapeutic antibodies to tumors in the brain is another
consideration. Although the blood-tumor barrier in the brain
can be leaky to a variable degree (Lockman et al., 2010; Matthias
et al., 2016), it is unclear to what extent immune checkpoint
inhibitors enter tumors in the brain directly and how this
compares to the extracranial tumor sites. It is possible that
therapeutic antibodies are carried into the brain on T cells, as
recently shown for anti-PD-1 antibody in extracranial tumors
(Arlauckas et al., 2017; Figure 1B).

Another consideration is that metastatic tumors in the
brain are genetically and phenotypically different from the
primary tumors they originate from, including differences in
the expression of immunomodulatory genes (Brastianos et al.,
2015; Rippaus et al., 2016), which is likely to influence the
immune responses.

Immune checkpoints are key to controlling effector T
cell function and consequently anti-tumor immunity. Thus,
differences in immune checkpoint expression between BrM and
extracranial sites could contribute to differences in therapeutic
responses. Clinically, most relevant immune checkpoints are
PD-1 and its ligand PD-L1, as well as CTLA-4. A handful
of studies investigated expression of these molecules in BrM.
PD-1 positive immune cells were found in 3.1–68% of BrM
samples, thus showing a large discrepancy in results, with
one study reporting the highest PD-1 expression in melanoma
BrM (Berghoff et al., 2015, 2016b; Harter et al., 2015). PD-L1
positive immune cells were found in 25–28% of BrM specimens
(Berghoff et al., 2016b; Mansfield et al., 2016; Teglasi et al., 2017).
There was a wide discrepancy between studies investigating PD-
L1 expression on tumor cells, reporting a presence of PD-L1
positive tumor cells in 21.9–75% of BrM specimens (Berghoff
et al., 2015, 2016a,b; Harter et al., 2015; Kluger et al., 2015;
Mansfield et al., 2016; Ogiya et al., 2017; Takamori et al.,
2017, 2018; Teglasi et al., 2017; Zhou et al., 2018). With
exception of one study (Berghoff et al., 2016b), the majority of
studies showed good agreement between the amount of tumor
cells expressing PD-L1 in matched primary tumors and BrM
(Ogiya et al., 2017; Takamori et al., 2017; Teglasi et al., 2017).
Similar comparison could not been found for PD-1 or CTLA-
4. Thus, while several mechanisms have been identified that
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FIGURE 1 | Factors affecting the efficacy of immunotherapy in the brain and the role of the extracranial disease. Immune microenvironment in intracranial tumors in
the context of immunotherapies is depicted in the absence (A) and presence (B) of extracranial tumor, including infiltration of T cells, expression of T cell entry
receptors ICAM-1 and VCAM-1 on blood vessels, and the access of therapeutic antibodies. Furthermore, the figure illustrates factors that differ between intracranial
and extracranial tumor, as well as their respective draining lymph nodes (LNs), and are potentially involved in limiting the ability of intracranial tumor to mount effective
systemic anti-tumor immune responses. This includes differences in the numbers of antigen presenting cells (APCs), lower efficiency of migration of APCs from the
intracranial tumor to the cervical LNs (cLNs; dotted black line) as compared to the APC migration from the extracranial (subcutaneous) tumor to the inguinal LNs
(iLNs; full line), an increased presence of myeloid derived suppressor cells (MDCSs) in intracranial as compared to the extracranial tumor, potential differences in
tumor antigen expression at intracranial versus extracranial site, and lack of penetration of therapeutic antibodies into intracranial tumor in the absence of extracranial
tumor. A potential transport of therapeutic antibodies on extracranial tumor-activated T cells into the brain following immune checkpoint inhibitor therapy is also
depicted.

potentially contribute to the attenuated ability of BrM to induce
anti-tumor responses (Figure 1), the evidence for differential
expression of immune checkpoints in BrM and primary tumors
is currently missing.

HOW DOES THE IMMUNITY SPREAD
FROM EXTRACRANIAL TO
INTRACRANIAL CANCER LESIONS?

A limited number of studies that investigated the role of
extracranial tumor in immunotherapies in BrM determined that
T cells are critical for the spread of therapeutic efficacy to the
brain. Taggart et al. (2018) demonstrated that CD8+, but not
CD4+ T cells are required for inhibition of intracranial B16
melanoma tumors following immune checkpoint blockade in
mice bearing simultaneous tumors under the skin (Taggart et al.,
2018). In addition, NK cells were critical for intracranial efficacy.
In contrast, intracranial rejection of K-1735M2 melanoma
tumors following IFNβ-mediated rejection of subcutaneous
tumors required both CD4+ and CD8+ T cells (Lu et al.,
2003). Thus, while there may be variations between therapeutic
modalities and models, T cells seem to be consistently and
unsurprisingly required for the spread of immunity to brain
tumors. In the presence of subcutaneous B16 melanoma tumors,
immune checkpoint blockade leads to a systemic expansion

of CD8+ effector T cells and their enhanced trafficking to
intracranial tumors (Taggart et al., 2018), thereby spreading anti-
tumor immunity into the brain (Figure 1).

TRAFFICKING OF T CELLS TO BRAIN
METASTASES

Efficient trafficking of T cells to tumors is critical for the efficacy
of immunotherapies. Trafficking of T cells to primary brain
tumors has been extensively reviewed elsewhere (Ratnam et al.,
2019). We will here focus on metastatic brain tumors and
specifics of T cell homing in a metastatic setting.

Only a few studies investigated trafficking of endogenous T
cells to metastatic brain tumors. Calzascia et al. (2005) used
M57 fibrosarcoma model which induces spontaneous antitumor
immune response. They demonstrated that growth of M57
tumors at different locations induces site-specific expression
of adhesion molecules on antigen-specific T cells within
respective tumor-draining LNs. Intracranial tumors induced
T cell proliferation only in cervical and lumbar LNs, and
proliferating T cells upregulated α4β1 integrin, also known as
Very late antigen 4 (VLA4), P and E-selectins, and downregulated
αEβ7. This expression pattern of adhesion molecules differed
from the one induced on T cells by s.c. and intraperitoneal
(i.p.) tumor growth within inguinal (iLNs) and mesenteric LNs
(mLNs). T cells primed within cLNs homed 2.5-times more
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efficiently to brain tumors as compared to the iLN-primed T cells,
and their homing was α4-dependent, suggesting that site-specific
homing phenotype is imprinted on T cells in a tumor location-
dependent manner (Calzascia et al., 2005). In further work, the
same group demonstrated that during the subsequent effector
phase, αEβ7 is upregulated specifically on T cells within brain
tumors, but not in s.c. tumors, and promotes T cell retention
within the brain (Masson et al., 2007).

In the context of adoptive T cell therapy, T cell polarization has
been shown to influence the efficiency of T cell trafficking to brain
tumors, due to polarization-specific expression of cell surface
adhesion molecules. In vitro polarized, ovalbumin-specific (OT-
I) Type I cytotoxic T lymphocytes (Tc1) were shown to express
higher levels of VLA-4 than Tc2 lymphocytes. This resulted
in a significantly enhanced trafficking of adoptively transferred
Tc1 versus Tc2 cells to intracranial ovalbumin-expressing M05
melanoma tumors in VLA-4-dependent manner (Sasaki et al.,
2007). Homing of Tc1 cells to intracranial tumors was further
enhanced by intra-tumoral injection of IFNα-overexpressing
dendritic cells in a CXCL10-dependent manner (Nishimura
et al., 2006). Similar polarization-dependent trafficking has been
reported for CD4+ T cells. Hoepner et al. (2013) demonstrated
superior homing of adoptively transferred antigen-specific CD4+
Th1 as compared to Th2 cells to intracranial MC57-GP
fibrosarcoma and EG-7 lymphoma tumors.

In line with the observations that extracranial tumor
potentiates intracranial efficacy of immunotherapies, the impact
of extracranial tumor on T cell homing to brain tumors in
the context of immunotherapies and spontaneous antitumor
immune responses has also been demonstrated. In our recent
study, the presence of s.c. B16 melanoma tumor in addition to
the intracranial tumor was required for efficient trafficking of
CD8+ T cells to brain tumors following combined PD-1 plus
CTLA-4 blockade (Taggart et al., 2018). This is in line with a
study using weakly immunogenic lymphoma model, reporting
strong increase in CD8+ T cell infiltration into intracranial
tumors following concurrent subcutaneous injection of cancer
cells, leading to prolonged survival (Thomas et al., 2008). In
this study the effect of s.c. cancer cell injection was dose-
dependent. Similarly, in a model with concurrent subcutaneous
and intracranial EMT6 breast carcinoma tumors, rejection of
s.c. tumors through peri-tumoral administration of CpG ODN
potentiated the infiltration of CD4+, CD8+ T cells and NK
cells into established intracranial tumors (Xiong et al., 2008).
In the presence of s.c. B16 melanoma tumors, combined PD-
1 plus CTLA-4 blockade resulted in drastic upregulation of T
cell entry receptors vascular cell adhesion molecule 1 (VCAM-1)
and intercellular adhesion molecule 1 (ICAM-1) on blood vessels
within intracranial tumors, which might have contributed to the
enhanced T cell infiltration (Taggart et al., 2018).

T CELLS IN HUMAN BRAIN
METASTASES

Metastatic brain tumors are infiltrated by T cells to a variable
degree not only in preclinical models, but also in patients.

A number of studies investigated the presence of tumor
infiltrating lymphocytes (TIL) in BrM. Immunohistochemical
analysis of BrM in a mixed entity cohort of 252 patients
revealed three different patterns of infiltration by CD3+ and
CD8+ T cells (stromal, peritumoral, diffuse), with highest
levels observed in renal cell carcinoma (Harter et al., 2015).
In a different cohort, CD3+ T cells were present in 115/116
BrM specimens, while CD8+ T cells were present in 112/116
specimens. The highest density of both cell types was found
in melanoma BrM, followed by renal cell cancer and lung
cancer BrM (Berghoff et al., 2016a). A study focusing on
breast cancer (84 cases) reported an infiltration of BrM by
CD4+ and CD8+ T cells in 96 and 98% of cases, respectively.
TILs were more abundant in the stroma than in the tumor
compartment (Duchnowska et al., 2016). In a cohort of 32 small
cell lung cancer (SCLC) BrM specimens, a dense accumulation
of CD3+, CD8+, and CD45RO+ T cells in the perivascular
area was observed, while FOXP3+ TILs were more abundant
within the tumor area and less within the perivascular area
(Berghoff et al., 2016b).

Comparative analyses of TIL infiltration at different sites
consistently demonstrated a lower presence of TILs in BrM as
compared to the primary tumors or extracerebral metastases.
A study in metastatic melanoma reported lower abundance of
TILs in brain and skin metastases as compared to metastases
in the LNs, soft tissue and other extracranial visceral sites
(Kluger et al., 2015). A significantly lower abundance of TILs
was also reported for BrM originating from lung cancer as
compared to the primary lung cancer (Mansfield et al., 2016;
Zhou et al., 2018). In breast cancer patients, fewer intratumoral
and stromal CD4+ and CD8+ TILs were observed in BrM
as compared to the primary tumor (Sobottka et al., 2016;
Ogiya et al., 2017) or to metastatic cancer lesions at other sites
(Cimino-Mathews et al., 2013).

There is an increasing evidence for the correlation between
TIL infiltration in BrM and patient outcomes. In a mixed
entity cohort of cancer patients, high amounts of TILs
negatively correlated with BrM size (Harter et al., 2015) and
the density of CD3+, CD8+, and CD45RO+ TILs showed a
positive correlation with favorable median OS times (Berghoff
et al., 2016a). In SCLC BrM, the presence of CD45RO+
TILs alone correlated with a significantly longer median
survival time compared to patients without the presence of
CD45RO+ TILs (Berghoff et al., 2016b). Low versus high
stromal CD8+ TIL numbers in BrM were also associated
with a significantly shorter OS in lung cancer (Zhou et al.,
2018). In breast cancer patients with BrM, the OS was
shorter in patients with low TILs as compared to those with
high TILs. Moreover, OS following the initial BrM diagnosis
was significantly shorter in patients with low TIL counts in
BrM specifically in the triple negative breast cancer subgroup
(Ogiya et al., 2017).

Unlike TIL infiltration, the association of immune checkpoint
expression with patient outcomes is less clear. Three of the studies
reported that increased PD-L1 levels on immune (Mansfield
et al., 2016) and tumor cells (Kluger et al., 2015), and increased
PD-1 levels on tumor cells (Duchnowska et al., 2016) were
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associated with increased OS. This is in contrast to studies that
found no correlation between OS and PD-L1 or PD-1 expression
(Berghoff et al., 2015, 2016a; Harter et al., 2015; Teglasi et al.,
2017). In a small study PD-L1 expression on tumor cells was
even associated with a worse brain-specific disease free survival
(Takamori et al., 2018).

In summary, TIL infiltration is frequently found in BrM in
patients, however, at a lower rate than in primary tumors and
extracerebral metastases. While TIL infiltration in BrM positively
correlates with patient outcomes, the role of immune checkpoint
expression in this context is less clear.

SEXUAL DIMORPHISM IN IMMUNE
CHECKPOINT INHIBITOR THERAPY

Sexual dimorphism of the immune system is well described, and
it is caused by hormonal, genetic, and environmental factors
(Mirandola et al., 2015; Klein and Flanagan, 2016; Capone
et al., 2018). There is evidence that sexual dimorphism also
influences the efficacy of immune checkpoint inhibitor therapy.
A recent retrospective study found greater benefit of anti-
CTLA-4 therapy in men as compared to women, while no
sex-specific differences were observed with anti-PD-1 treatment
(Botticelli et al., 2017). Another study reported that low numbers
of partially exhausted cytotoxic T lymphocytes correlated with
female sex, and in this group of patients a combined PD-1/CTLA-
4 blockade resulted in higher overall response rates as compared
to anti-PD-1 monotherapy, while no difference between the two
treatment regimens was observed in patients with high numbers
of partially exhausted cytotoxic T lymphocytes (Loo et al., 2017).
Moreover, a preclinical study in B16 melanoma-bearing mice
found that tumor growth following PD-L1 blockade was more
strongly reduced in female as compared to male animals in a
PD-1-independent manner, and this was linked to a stronger
reduction in Treg function (Lin et al., 2010). Notably, BrM
occur more commonly in males than females, regardless of
primary cancer type, age, or region of the world (Sun et al.,
2012). Moreover, women with BrM have a longer survival than
men. It is thought that sex disparity in the immune responses
and in astrocytic production of cytokines may be important
underlying factors for the observed differences in the frequency
of BrM between sexes.

CONCLUSION

Preclinical and clinical studies already revealed numerous
critical differences in the immunology of BrM as compared
to extracranial cancer lesions, and many more differences are
expected to be uncovered. This may require that strategies for
the improvement of efficacy of immune checkpoint blockade
are tailored according to these differences in order to achieve
optimal efficacy in the brain, in addition to extracranial
sites. As it has been suggested that priming of immune
responses in cLNs induces more potent tumor tolerance

than LNs at other sites (Harling-Berg et al., 1999; Wolvers
et al., 1999; Thomas et al., 2008), it will be important to
investigate differences in processes within LNs at individual
anatomical locations during immune checkpoint blockade.
Data from healthy brain and non-cancerous CNS disorders
suggest that APC migration and antigen drainage to the LNs
is less efficient in the brain as compared to extracranial
sites (Carare et al., 2008; Louveau et al., 2015a; Engelhardt
et al., 2017). Although it is unclear whether this also applies
to APCs in the context of brain malignancies, APCs may
be another important area for future investigations in the
context of immune checkpoint blockade in BrM, with a
potential to pinpoint strategies to enhance APC function and
migration. Distinct adhesion/homing receptor patterns found
on antigen-specific T cells at different anatomical locations
(Calzascia et al., 2005; Masson et al., 2007) imply there is
an opportunity to improve the efficacy of immune checkpoint
inhibitor therapy by enhancing organ-specific T cell trafficking
through engineering of T cells to express optimized homing
receptor patterns. While it has been shown that immune
checkpoint blockade enhances trafficking of T cells to brain
tumors (Taggart et al., 2018), it is unclear which molecules
and pathways are involved in this process and whether
they differ from extracranial sites. The mechanistic role of
other immune cells whose activation (NK cells) or infiltration
(microglia, macrophages) into intracranial tumors has been
shown to be increased following immune checkpoint blockade
(Taggart et al., 2018) also remains to be elucidated. Another
emerging area in cancer immunotherapy, which has not
yet been considered in the context of BrM, is the role of
sexual dimorphism (Capone et al., 2018). Addressing these
open questions in the specific context of BrM will hopefully
enable us to advance immunotherapies for metastatic tumors
located in the brain.
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