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Neuromuscular and neurodegenerative diseases are mostly modeled using genetically
modified animals such as mice. However, animal models do not recapitulate all the
phenotypes that are specific to human disease. This is mainly due to the genetic,
anatomical and physiological difference in the neuromuscular systems of animals and
humans. The emergence of direct and indirect human somatic cell reprogramming
technologies may overcome this limitation because they enable the use of disease
and patient-specific cellular models as enhanced platforms for drug discovery and
autologous cell-based therapy. Induced pluripotent stem cells (iPSCs) and urine-
derived stem cells (USCs) are increasingly employed to recapitulate the pathophysiology
of various human diseases. Recent cell-based modeling approaches utilize highly
complex differentiation systems that faithfully mimic human tissue- and organ-level
dysfunctions. In this review, we discuss promising cellular models, such as USC- and
iPSC-based approaches, that are currently being used to model human neuromuscular
and neurodegenerative diseases.

Keywords: urine-derived stem cells (USCs), induced pluripotent stem cells (iPSCs), disease modeling, direct-
reprogramming, precision medicine

INTRODUCTION

Understanding the mechanisms underlying the pathology of human disease is essential for drug
development. Studies on fundamental principles of human disease and testing of therapeutic
modalities are commonly conducted in mouse models (Partridge, 2013). The use of animal models
to mimic human diseases presents challenges arising from genetic and physiological differences
between humans and animals, in pathologic mechanisms and therapeutic effect. However, due to
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the lack of biologically-relevant human disease models,
animal models represent the only available approach, which
could recapitulate, a physiological and anatomical condition
in vivo. In contrast, cellular models of human disease, which
recapitulate the pathophysiology of various neuromuscular
and neurodegenerative diseases, bring us closer to achieving
personalized therapy for the individual patient.

It is still being debated as to which cells can be used
for cell-based studies. For example, primary myoblasts are
usually employed for the study of Duchenne muscular dystrophy
(DMD). DMD is a devastating muscle disorder caused by
frameshift mutations in the DMD gene. The responsible gene
(DMD) encodes the subsarcolemmal protein, dystrophin. In
DMD, various frameshift mutations in DMD prevent the full
translation of dystrophin. Primary myoblasts express enough
levels of dystrophin mRNA but do not express dystrophin
protein. This renders them a suitable surrogate for DMD,
but collecting myoblasts requires invasive muscle biopsy.
Dystrophin mRNA has also been detected in lymphocytes and
fibroblasts, as shown by nested real-time polymerase chain
reaction (RT-PCR). However, dystrophin protein is not detected
in these cells because of illegitimate dystrophin transcripts
present at a very low level. Fibroblasts can be converted to
myotubes by virally-mediated MyoD1 transduction. Although
the transduced cells express dystrophin mRNA and protein,
achieving enough expression at the protein level remains
challenging. In our previous study, we overcame this issue
by designing an in vitro assay based on MyoD1-converted
fibroblasts isolated using fluorescence-activated cell sorting
(FACS) to determine patient eligibility before clinical trials
(Saito et al., 2010).

In the neuromuscular diseases, it is challenging to generate
a disease model that faithfully represent the patient’s pathology,
and there are situations in which enough efficacy and safety
cannot be confirmed in clinical trials. This is in contradiction
to the results in animal models. Human-induced pluripotent
stem cells (iPSCs) are an attractive platform for overcoming
these limitations. Therefore, patient-specific iPSCs can provide
unlimited disease-relevant cells in a personalized manner. This
serves as an essential resource for cell types previously considered
rare or inaccessible, including skeletal and cardiac myocytes,
neurons, and glia. However, there are some limitations about
genome instability and epigenetic memory associated with
the reprogramming of iPSC, integrity of iPSC derivatives,
inherent biological and technical variability between iPSC lines
and differentiated cells, and modeling of diseases that are
epigenetically influenced by environmental factors or largely
sporadic in etiology. Disease modeling using somatic stem cells
have also been conducted as a way to solve epigenetic and
environmental factors.

In this review, we discuss the current status of cellular
modeling of neuromuscular and neurodegenerative diseases,
and how such models can contribute towards developing
precision therapies for patients with these diseases. In addition,
we review a new approach to disease modeling based on
urine-derived stem cells (USCs) that is used as a model for
neuromuscular disease.

STEM CELLS USED FOR MODELING
DISEASE

Stem cells are a valuable research tool for basic, pre-clinical,
and clinical studies. Stem cells are defined by two essential
characteristics; one is the ability to divide indefinitely and self-
replicate, and the other is the ability to differentiate into mature
cells under appropriate conditions and specific signals (Malaver-
Ortega et al., 2012). According to differentiation potential,
stem cells are classified as follows; totipotent, pluripotent,
multipotent, oligopotent, and unipotent (Malaver-Ortega et al.,
2012). Totipotent and pluripotent cells, which can differentiate
into three embryonic lineages and change to any cell type,
correspond to embryonic stem cells. Pluripotent stem cells can be
obtained from adult somatic cells by incorporating pluripotent
transcription factors into the cell’s genome. These cells are
called iPSCs that have been fully reprogrammed to achieve
an induced pluripotent state. Somatic stem cells, multipotent
cells that can differentiate into a limited number of mature
cell types, can be found among the tissues such as the brain,
skeletal muscle, skin, bone marrow, blood, adipose tissue, and
liver. These cells have the role of repairing damaged tissue
and obtaining tissue homeostasis when tissue damage occurs.
One type of somatic stem cell is a mesenchymal stem cell
(MSC) that can differentiate into various mesodermal cells
such as osteoblasts, chondrocytes, muscle cells, and adipocytes
(Nombela-Arrieta et al., 2011). MSCs are an example of
multipotent stem cells that are characterized by adherence to
plastic surfaces with a wide range of proliferative potentials
in vitro and in vivo. Lymphoid and myeloid cells are called
oligopotent stem cells, and skeletal muscle satellite cells are
examples of unipotent cells involved in muscle regeneration.
These stem cells are used in cellular modeling of neuromuscular
diseases, especially iPSCs are extensively applied. The generation
of disease model cells with somatic cells has technical difficulties,
and the number of reports on this approach is limited
(Grath and Dai, 2019).

MODELING OF MUSCLE AND NEURONAL
DISEASES USING iPSCs

Human iPSCs are an attractive platform for overcoming the
limitations of animal models in disease modeling and drug
discovery. In 2006, a study from Japan showed that murine
adult fibroblasts could be successfully reprogrammed by the
introduction of four transcription genes including Oct3/4,
Sox2, Klf4, and c-Myc via retroviral vectors (Takahashi and
Yamanaka, 2006). In 2007, differentiated human somatic cells
were reprogrammed to enter a pluripotent state allowing for the
creation of patient and disease-specific stem cells (Takahashi
et al., 2007). iPSCs have the capacity for self-renewal and
differentiation and can also be directly generated from skin
fibroblasts and blood cells of the patients as well as from
other somatic cell sources. However, recently developed
approaches employ lymphocytes, squamous cells, and
urine-derived cells, which can be obtained in a less invasive

Frontiers in Molecular Neuroscience | www.frontiersin.org 2 December 2019 | Volume 12 | Article 297

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Sato et al. Modeling Neuromuscular and Neurodegenerative Diseases

manner. iPSCs can differentiate into almost any cell type
including skeletal and cardiac myocytes, neurons, and glias.
Because these cell lines are patient-specific, they are expected
to recapitulate disease-specific phenotypes and elucidate
the molecular mechanisms that drive neuromuscular and
neurodegenerative diseases.

Obtaining tissues from patients with muscle and neuronal
diseases is difficult because muscle biopsy is invasive, and
brain biopsy is almost impractical, and involve risks such as
pain, bleeding, infection, anesthesia-related complications, and
seizures. Therefore, numerous studies are developing methods to
derive myogenic and neuronal cells from iPSCs.

There are two different approaches that are commonly
used to differentiate iPSCs into myogenic precursor cells
(Kodaka et al., 2017). One approach involves overexpressing
myogenic transcription factors, MyoD1 and Pax7, in iPSCs
using integrated vectors such as lentiviruses (Maffioletti
et al., 2015). This approach is highly efficient, but vector
integration can lead to genotoxicity. Another method
involves mimicking key signaling events such as dual
modulation of the Wnt and bone morphogenetic protein
signaling pathways to induce myogenesis in iPSCs (Chal
et al., 2016). This direct reprogramming approach requires
a month to generate robust myogenesis but avoids the
need for genetic modification or cell sorting, thereby
enabling abundant production of myogenic promoters for
therapeutic applications.

Although optimized methods of iPSC differentiation
induction have been developed (Revilla et al., 2016), the protocol
for neuronal differentiation induction varies greatly depending
on the desired cell type. Neuronal differentiation, development,
and maturation are modeled on the progression of chemical
signaling that occurs in vivo. The appropriate composition,
concentration, and timing of the growth factor signals induce
the differentiation of the target neuron. Furthermore, in order to
convert to fully differentiated cells with sufficient differentiation
efficiency, it is necessary to consider the environment suitable
for the development and maturation of the target neuron (Engel
et al., 2016). Evaluation using a disease-specific marker has
been reported to have a differentiation efficiency of around 90%
in cholinergic neurons (Crompton et al., 2013) and astrocytes
(Krencik et al., 2011; Serio et al., 2013).

Using current protocols, iPSCs can be differentiated into
cells with phenotypes resembling those of dopaminergic,
glutamatergic, GABAergic, andmotor neurons, those of medium
spiny neurons of the striatum, and those of glial progenitors
(Ross and Akimov, 2014). iPSCs are used to study various
neuromuscular and neurodegenerative diseases such as spinal
muscular atrophy (SMA; Sareen et al., 2012), amyotrophic lateral
sclerosis (ALS; Egawa et al., 2012), Huntington’s (Kaye and
Finkbeiner, 2013), Parkinson’s disease (PD; Devine et al., 2011),
and Alzheimer’s disease (AD; Ooi et al., 2013).

In the study of the effects of a single genetic abnormality,
it is necessary to consider the genetic background and disease-
related mutations that are thoroughly permeated in the iPSCs
used. Since disease-specific iPSCs exhibit a disease phenotype,
their genetic background might be considered to be permissible

in the phenotype. But in the genome-edited wild-type iPSCs, if a
genetic background is not taken into account, the disease state is
not accurately reflected (Musunuru et al., 2018). Genomic editing
techniques such as CRISPR/Cas9 are currently used to minimize
these variations due to genetic background. That is, use genome
editing techniques to correct genetic abnormalities in patient-
derived cells or introduce putative genetic abnormalities into
cells derived from healthy individuals. By creating two patterns of
isogenic cell pairs and comparing their phenotypes, it is thought
that the underlying pathological mechanisms can be understood
in more detail (Bassett, 2017).

Although iPSCs are excellent for cellular modeling in
neuromuscular and neurodegenerative diseases, some limitations
still remain and hinder the use of iPSC-based assays. First,
collecting somatic cells for iPSC preparationmay require invasive
procedures. For example, the harvesting of patient-derived
fibroblasts requires a skin biopsy, which is not ideal for young
patients. Inducing iPSC differentiation into specific cells can
be time-consuming, and may require special techniques and
equipments. Differentiation efficiency of iPSCs derived from
a single patient can vary among clones. Additionally, these
iPSCs are heterogeneous which complicates reproducibility of
directed differentiation and analyses such as high-throughput
screening. Future studies will increase iPSC homogeneity
which will improve differentiation efficiency. Methods used to
differentiate iPSC into neuronal cells often require long-term
culture during which the cells develop mature functional
properties. iPSCs may require 1–2 months to differentiate
into dopamine neurons, often achieving only 10–20% on the
tyrosine hydroxylase index, which is used as an indicator of
dopaminergic neurons (Playne and Connor, 2017). Cerebellar
Purkinje cells are challenging to culture in vitro because of
their large size, complex morphology, unique firing properties,
and extended period of maturation (over 150 days; Watson
et al., 2015). Patient-derived iPSCs used to model neurologic
diseases need to be developed with greater efficiency than one
provided by currently available methods. Additionally, several
studies have shown that iPSC-derived neurons recapitulate
only early-, but not late-onset, phenotypes of neurologic
diseases (Nguyen et al., 2011; Patterson et al., 2012). This is
primarily due to the fetal nature and immature phenotype
of iPSC-derived neurons (Ho et al., 2016). The process of
iPSC reprogramming, which involves an embryo-like pluripotent
state, results in the loss of specific age-related characteristics
(Lapasset et al., 2011). Environmental and aging-related factors
also present a significant risk in late-onset neuromuscular and
neurodegenerative diseases. Therefore, it is essential to establish
cellular models corresponding to the fundamental features of
these diseases.

DIRECT CONVERSION OF SOMATIC
CELLS INTO NEURONS AND MUSCLE
CELLS

Previous studies have examined whether one differentiated
cell type can be directly converted into another desired cell
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type by genetic manipulation without passing through an
intermediate or pluripotent state. Such direct differentiation of
mature somatic cells into other cell types was first reported
by Lassar and co-workers who showed that introducing
the MyoD1 transcription factor can convert fibroblasts into
skeletal muscle cells (Davis et al., 1987; Tapscott et al., 1988).
Thereafter, Xie et al. (2004) differentiated mature B lymphocytes
into macrophages, Zhou et al. (2008) transdifferentiated
exocrine cells into pancreatic endocrine cells, Ieda et al.
(2010) converted fibroblasts into functional cardiomyocytes.
Currently, direct cell conversion is not limited to cell types
originating from the same germ layer. Human fibroblasts and
hepatocytes can also be converted into functional neurons
using transcription factors and/or microRNAs. Such direct
cell conversion generates targeted cell types more rapidly
than do iPSC-based techniques. However, methods to verify
cellular identity, uniform phenotype, functionality, and safety
throughout the process of transformation have not yet
been established.

Several studies have shown that brain neurons and
cardiomyocytes converted directly from somatic cells preserve
the cellular ageing markers and possibly even the state of
maturation (Qian et al., 2012; Mertens et al., 2015; Huh
et al., 2016). Specifically, Tang et al. (2017) have shown that
motor neurons, generated by direct reprogramming from
fibroblasts can maintain the characteristics of aging donors
including extensive DNA damage, loss of heterochromatin and
nuclear tissue, and increased SA-β-Gal activity. Preservation
of these characteristics has not been observed in iPSC-based
models. Furthermore, Liu et al. (2016) demonstrated that direct
reprogramming of motor neurons from fibroblasts maintain
the biological age of ALS patients, showing degenerative
morphology, hypoactivity, and reduced survival. These
studies indicate that somatic cells converted directly into
neurons without undergoing the intermediate pluripotent
state may retain the age-related biochemical phenotype
of the donor. As mentioned above, in neurodegenerative
diseases, ageing and environmental factors influence the
onset and progression of the disease state. Therefore,
maintenance of the age-related phenotype is essential in the
modeling of these diseases. Overall, these findings suggest
that neurons obtained directly from converted somatic
cells may be more appropriate than iPSCs for modeling of
neurological diseases.

USING URINE-DERIVED STEM CELLS TO
MODEL NEUROMUSCULAR AND
NEURODEGENERATIVE DISEASES

Cells used in in vitro disease research should be obtained from
patients of all ages, genders, and genetic origin by procedures that
are non-invasive, low-cost, and straightforward to implement
(Zhang et al., 2008). Obtaining cells from urine presents a
non-invasive approach, and urine is a readily available and nearly
unlimited source of biological samples. In recent years, cells with
stem-like characteristics have been identified in urine samples

and have been recognized as useful materials in disease modeling
(Falzarano and Ferlini, 2019).

CHARACTERIZATION OF URINE-DERIVED
STEM CELLS

USCs are progenitor cells that can self-renew and differentiate
(Zhang et al., 2008). USCs can be induced to differentiate into
several cell types, including endothelial cells, uroepithelial cells,
smooth muscle cells, neural stem cells, and beta cells (Bharadwaj
et al., 2011). USCs are thought to originate specifically from
kidney glomerular parietal epithelial cells (PECs). USCs isolated
from the upper urinary tract and voided USCs are similar in
morphology, cell growth pattern, and differentiation potential
(Zhang et al., 2014). Furthermore, USCs from a woman who
received a kidney transplanted from a male donor contained
a Y chromosome and exhibited normal kidney cell markers
(PAX2 and PAX8; Bharadwaj et al., 2013). These findings
indicate that USCs originate from the kidney and/or the
upper urinary tract. USCs express specific genes, protein
markers (synaptopodin and podocin) and a high percentage
of CD146+/CD31− that expressed in glomerular wall cells and
podocytes (Bharadwaj et al., 2013). These markers are not
detected in other cells of the urinary system, such as urinary tract
epithelium and smooth muscle cells of the bladder and ureter
(Bharadwaj et al., 2013). PECs have been reported to self-renew
and regenerate podocytes and proximal tubule cells (Sagrinati
et al., 2006; Poulsom and Little, 2009; Miesen et al., 2017). These
facts strongly support that USCs are derived from PECs. USCs
show high expandability that is comparable to that of other
widely used stem cells such as bone marrow stem cells, blood
progenitor cells, keratinocyte progenitor cells, umbilical cord
stem cells, and adipose-derived stem cells (Terstegge et al., 2007;
Zhang et al., 2014; Abdelalim and Emara, 2015; Guan et al., 2015).
USCs express high levels of mesenchymal stem-cell markers,
such as CD44, CD73, CD29, CD105, CD166, CD90, and CD13
(He et al., 2016), and pluripotent stem cell markers including
POU5F1 or Oct 3/4, c-Myc, SSEA-1/4, and Klf-4 (Bharadwaj
et al., 2011). USCs are multipotent and can differentiate into cells
of mesodermal, endodermal and ectodermal lineage (Bharadwaj
et al., 2013). USCs also show a high proliferative ability that
is comparable to that of other commonly used stem cells such
as bone marrow stem cells (Zhang et al., 2014), umbilical cord
stem cells (Liu et al., 2018), and adipose-derived stem cells
(Kang et al., 2015).

Isolation of USCs is straightforward and reproducible. The
method for USC isolation has been described previously (Zhou
et al., 2012). In our previous study, we used an existing
protocol with some modifications (Takizawa et al., 2019); briefly,
our methods are described in Figure 1. Urine collection is a
straightforward, repeatable procedure that is non-invasive to
the patient. Additionally, reducing the costs associated with
cell culture presents considerable advantages. The isolation of
USCs requires simple centrifugation and standard culture plates
without particular substrates, which decreases isolating cost to
less than US$70 per sample (Pavathuparambil Abdul Manaph
et al., 2018). Conversely, iPSC reprogramming requires expertise
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FIGURE 1 | Method for isolation of urine-derived stem cells (USCs).

and various types of equipment, raising the cost to more than
US$120–200 per sample (Beers et al., 2015).

APPLICATION OF URINE-DERIVED STEM
CELLS IN NEUROMUSCULAR DISEASE

Few studies have evaluated the usefulness of USCs in disease
modeling and drug screening. The following summarizes the
reports on the generation of cellular models for muscle and
neurological diseases using USCs. One is to induce USCc
into iPSC and create a cellular model (urine-derived induced
pluripotent stem cells, UiPSCs), and another is to induce USC
into the target cell by direct reprogramming Supplementary
Table S1.

URINE-DERIVED INDUCED PLURIPOTENT
STEM CELLS

Presently, human iPSCs can be generated from various donor
sources. Urine may represent an ideal source of cells for
generating iPSCs. After Zhou et al. (2012) generated iPSCs
from USCs, numerous studies revealed that iPSCs generated
from USCs might have several advantages over iPSCs generated
from other somatic cells. Induction of UiPSCs requires less
time than do iPSCs derived from fibroblasts, lymphocytes, and
keratinocytes (Zhou et al., 2012). Moreover, UiPSCs show a
high reprogramming efficiency of 0.1%–4% (Benda et al., 2013)
and generating efficiency of approximately 1.5% which is a
hundredfold higher than that of fibroblasts (0.01%; Ousterout
et al., 2015). It has been demonstrated that mesenchymal-
to-epithelial transition (MET) is an essential early step in
reprogramming fibroblasts to iPSCs, and a critical rate-limiting
step during conversion (Li et al., 2010; Samavarchi-Tehrani et al.,
2010). The USCs, which mainly originated from epithelial cells,
do not require MET. This fact may affect their differentiation
potential. Furthermore, iPSCs derived from fibroblasts may
possess epigenetic memory, which is easily differentiated into a
lineage related to the donor cell type, the mesoderm lineage (Kim

et al., 2010, 2011). However, this tendency has not been observed
in UiPSC (Shi et al., 2016).

UiPSCs have already been used in numerous studies on
disease modeling (Ji et al., 2017) such as those on Type 2 long
QT syndrome (Jouni et al., 2015), dilated cardiomyopathy (Lin
et al., 2016), multiple endocrine neoplasia type 1 syndrome (Guo
et al., 2017), hemophilia A (Jia et al., 2014), systemic lupus
erythematosus (Chen et al., 2013), Down syndrome (Lee et al.,
2017), SMA (Zhou et al., 2018), spinal cord injury (Liu et al.,
2017), and muscular dystrophy (Afzal and Strande, 2015).

DIRECT REPROGRAMMING OF
URINE-DERIVED STEM CELLS INTO
MYOGENIC LINEAGE

Several studies on skeletal muscle diseases indicate that USC
can be induced into myogenic lineage by direct reprogramming
via muscle transcription factor MyoD1. Falzarano et al. (2016)
demonstrated that USC derived from patients with DMD retain
the patient-specific DMD mutation and that USCs converted
via MyoD1 show no dystrophin expression. Falzarano et al.
(2016) additionally showed that truncated dystrophin is restored
by in-framing with antisense oligonucleotides against exon
44 of DMD. Kim et al. (2016) demonstrated that myogenic
reprogramming of urine cells derived from patients with DMD
and limb-girdle muscular dystrophy (LGMD) type 2 could
recapitulate the disease phenotype. They additionally showed
that USC genomes could be edited using CRISPR/Cas9.

Recently, we developed a novel MyoD1-converted, urine-
derived cell to in vitro model of the pathological processes
of muscle cells affected by DMD (Takizawa et al., 2019). In
that study, we showed that 3-deazaneplanocin A hydrochloride
(DZNep) promotes the differentiation of USCs into myotubes.
DZNep-treated USCs, differentiated via MyoD1, are excellent
in vitro models of muscle cells affected by DMD. Moreover,
this system, which is based on urine-derived cells obtained from
patients with DMD, can be successfully used to evaluate exon
skipping therapy using antisense oligonucleotide for DMD. This
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newly-established in vitro assay will be used in a wide range
of studies regardless of age, sex, and muscular disease type
of patients. Direct reprogramming of USCs could potentially
be used to study the pathophysiology of various diseases, and
to diagnose and develop novel therapies for patients with
these conditions.

DIRECT REPROGRAMMING OF
URINE-DERIVED STEM CELLS INTO
NEURONAL LINEAGE

Urine-derived cells can be differentiated into neural-lineage
cells by culture in neural induction medium supplemented with
basic fibroblast growth factor (Bharadwaj et al., 2013; Guan
et al., 2014; Zhang et al., 2016). However, few studies have
examined the direct differentiation of neuronal cells from urine-
derived cells. Wang et al. (2013) developed integration-free
and expandable human neural progenitor cells which can
self-renew and differentiate into multi-functional neuronal
subtypes and glial cells in vitro. Several groups reported
that approximately 40% of the induced cells express several
neural markers and show neurogenic extensions and processes
(Bharadwaj et al., 2013; Guan et al., 2014). USCs treated
with growth factors and cultured on laminin-treated plates
readily convert into immature neuronal cells (Guan et al.,
2014; Kim et al., 2018). Human urinary cells can be converted
into neural stem cells by a non-integration-free method
using small molecules, and it takes less time than through
iPSCs (Cheng et al., 2014). The induced neural progenitor
cells can then be converted into astrocytes, oligodendrocytes,
and neurons, and may play an essential role in identifying
and developing safe and effective therapies for patients with
neurodegenerative conditions.

FUTURE ASPECTS OF USING
URINE-DERIVED STEM CELLS AS
CELLULAR MODELS OF HUMAN DISEASE

As discussed previously, USCs also present an advantageous
in vitro model to study disease mechanisms, identify new
biomarkers, evaluate therapeutic approaches, and screen drugs
(Figure 2). USCs can be obtained reliably and non-invasively
in a short period of time and cultured at low cost. This newly-
established in vitro assay can, therefore, be adapted for various
studies and platforms. Direct reprogramming is an efficient and
economical approach because it can be used to generate patient-
specific cell lineages without the presence of iPSC intermediates.
USCs could show superior differentiation, and can, therefore, be
used to delineate the mechanisms of common and rare genetic
diseases and to screen drugs for the treatment of these conditions.
However, the directed differentiation efficiency of USCs used
to produce the mature target-cell types, needs to be optimized.
Models recapitulating neurological diseases in vitro need to
possess not only the gene and protein expression of neuron-
surface markers but also characteristics of functional maturation
such as synapses and cellular homeostasis. Neurons obtained
directly from reprogrammed USCs must be evaluated via
genetic, biological, and electrophysiological assessment. Future
differentiation of neural cells from USCs will be inspired by the
previous studies on iPSC reprogramming and other somatic cells
direct reprogramming. USCs may play a complementary role in
developing methods for rapid and efficient creation of iPSCs,
and can be used to directly generate relevant cells for in vitro
disease models.

There is some essential and critical issue about USCs that
there is limited understanding about the biological characteristics
and the ability to differentiate into other cell lines of USC as

FIGURE 2 | Applications of USCs as cellular models of human diseases. Urine represents an ideal material, which could be obtained from patients of all ages and
genders by non-invasive and straightforward procedures. USCs- and induced pluripotent stem cells (iPSCs)-based disease modelings would be useful for basic and
applied research, which accelerate the development of personalized medicine.
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mentioned above. The neurons differentiated from USCs are
not enough to determine neuronal model cells by functional
evaluation, and cannot clarify the pathological mechanism.
However, as mentioned above, there is a lot of potentials for USC
to become a new platform, making it possible to supplement the
issues of iPSC technology and to approach pathophysiology from
a new aspect.

The USCs platform is still in the infancy stage and expected
that this technology will be further developed and adapted by
a wider research community. We believe that USCs will play
an essential role in the study of diseases and drug screening.
Future studies should develop more advanced USC-based
differentiation systems, which will faithfully recapitulate human
tissue-level and organ-level dysfunction (Rowe and Daley, 2019).

CONCLUSIONS

The difficulties present in obtaining brain and muscular tissue,
and lack of adequate preclinical models with high predictive
and translational power, pose limitations in the study of
neuromuscular diseases and also in developing effective drugs
for patients with these disorders. Currently, advances in human
iPSC-based technologies are clearly helping to overcome the
limitations. Additionally, USC-based modeling will provide
valuable information for establishing a diagnosis and providing
effective treatment options, although USCs have not been
extensively investigated in disease modeling. It should be a
critical question of whether the iPSCs and USCs will be
able to mimic the complexity of the human neuromuscular
system or not.

Application of iPSCs and USCs will be useful for
predicting drug response and assessing environmental

disease triggers in neuromuscular and neurodegenerative
diseases. The development of USCs- and iPSCs-based
technology provides a new platform in the field of
disease modeling and works in complementary ways, it is
expected to benefit research and clinical applications in
personalized medicine.
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