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The stria vascularis (SV) generates the endocochlear potential (EP) in the inner ear
and is necessary for proper hair cell mechanotransduction and hearing. While channels
belonging to SV cell types are known to play crucial roles in EP generation, relatively little
is known about gene regulatory networks that underlie the ability of the SV to generate
and maintain the EP. Using single cell and single nucleus RNA-sequencing, we identify
and validate known and rare cell populations in the SV. Furthermore, we establish a basis
for understanding molecular mechanisms underlying SV function by identifying potential
gene regulatory networks as well as druggable gene targets. Finally, we associate known
deafness genes with adult SV cell types. This work establishes a basis for dissecting the
genetic mechanisms underlying the role of the SV in hearing and will serve as a basis
for designing therapeutic approaches to hearing loss related to SV dysfunction.
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INTRODUCTION

Ionic homeostasis in the endolymph-containing compartment of the cochlea, the scala media, is a
critical factor in enabling proper hair cell mechanotransduction and hearing (Wangemann, 2002,
2006; Hibino et al., 2010). The endolymph is the atypical potassium rich extracellular fluid of the
cochlear duct. This high potassium concentration results in a+80 millivolt (mV) positive potential
known as the endocochlear potential (EP) (Wangemann, 2002; Patuzzi, 2011). The stria vascularis
(SV), a non- sensory epithelial tissue in the lateral wall of the cochlea, generates and maintains this
high potassium concentration and the EP.

The SV is a complex, heterogenous tissue consisting of several cell types that work together
to generate and maintain the EP. Cell types identified as critical to this role thus far include
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FIGURE 1 | Stria vascularis cellular heterogeneity and organization. (A) Schematic of the stria vascularis (SV) and its relationship to structures in the cochlea. The SV
is composed of three layers of cells and is responsible for generating the +80 mV endocochlear potential (EP) and the high potassium concentration in the
endolymph-containing scala media. The relationship between the marginal, intermediate and basal cells are demonstrated with the marginal cells extending
basolateral projections to interdigitate with intermediate cells, which have bidirectional cellular projections that interdigitate with both marginal and basal cells. In
addition to these cell types, other cell types, including spindle cells (yellow), endothelial cells, pericytes, and macrophages (not shown) are present in the SV.
(B) Cross-section of the SV in a postnatal day 30 (P30) mouse immunostained with anti-SLC12A2 (marginal cells, red), anti-KCNJ10 (intermediate cells, green), and
DAPI (4′,6-diamidino-2-phenylindole) for nuclei. Notice the interdigitation of cellular processes from both intermediate and marginal cells. Scale bar is 20 µm.

marginal cells, intermediate cells and basal cells (Wangemann,
2002; Gow, 2004; Wangemann et al., 2004; Marcus et al., 2013).
The marginal cells (MCs) face the endolymph and extend
basolateral projections that interdigitate with the intermediate
cells (ICs) which have projections that run in both directions
toward marginal cells apically and basal cells at the basolateral
end (Figure 1A). Basal cells (BCs) are connected to each
other by tight junctions (like the MCs) to prevent leakage
of ions (Kitajiri S.I. et al., 2004). At least two of these cell
types, marginal and intermediate cells appear to have densely
interdigitating processes (Figure 1B) intimating at the close
functional interaction between these cell types in the SV (Steel
and Barkway, 1989; Nakazawa et al., 1995). In addition, other cell
types in the SV include spindle cells, macrophages, pericytes and
endothelial cells (Neng et al., 2013; Ito et al., 2014; Shi, 2016).

Knowledge regarding the role of the three main cell types
(MCs, ICs, BCs) in the generation and maintenance of the EP is
based on previous work by others. Mutations in genes expressed
by marginal, intermediate and basal cells in the SV are known
to cause deafness and dysfunction in EP generation. In marginal
cells, mutations in Kcnq1, Kcne1 and Barttin (Bsnd) result in
a loss or reduction of EP and deafness (Rickheit et al., 2008;
Chang et al., 2015; Faridi et al., 2019). Kcnq1/Kcne1 encode the
voltage-gated potassium channel Kv7.1 and play a crucial role in

secreting potassium and maintaining the EP. Conditional Kcnq1
null mice exhibit collapsed Reissner’s membrane, loss of EP, and
are deaf (Chang et al., 2015). Barttin (Bsnd) is a beta subunit
of chloride channel ClC-K, mutations in which cause deafness
and Bartter syndrome IV in humans. Conditional null mice of
barttin in the inner ear exhibit hearing loss with reduced EP
(Rickheit et al., 2008; Riazuddin et al., 2009). In intermediate
cells, Kcnj10 encodes Kir4.1, an inwardly rectifying potassium
channel, which is necessary for the generation of the EP. Loss
or mutations in Kcnj10 have been shown to cause hearing loss
in humans and mice, accompanied by an absence of EP and loss
of endolymphatic potassium (Wangemann et al., 2004; Marcus
et al., 2013; Chen and Zhao, 2014). Finally, basal cells play a role in
barrier formation and prevent ion leakage from the SV. Claudin
11 (Cldn11), a tight junction protein expressed in SV basal cells,
is critical to this function as demonstrated by deafness and low
EP in Cldn11 null mice (Gow, 2004; Kitajiri S. et al., 2004).

Despite continuing interest in SV cell types, an understanding
of cellular heterogeneity, including a comprehensive under-
standing of SV cell type-specific transcriptional profiles,
is incomplete. While several in vivo, in vitro, and in silico
studies have identified key roles for particular strial cell types
in EP generation, including MCs, ICs, and BCs (Takeuchi et al.,
2000; Kitajiri S. et al., 2004; Nin et al., 2008; Mori et al., 2009;
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Hibino et al., 2010; Chen and Zhao, 2014; Yoshida et al., 2015;
Nin et al., 2017), the mechanisms by which the various cell types
work together to accomplish EP generation as well as other
strial functions remains largely undefined (Ohlemiller, 2009).
Furthermore, the gene regulatory networks that provide the basis
for these EP-generating mechanisms remain largely undefined.
Recently, both single cell and single nucleus approaches have
been utilized to define transcriptional profiles of cells from
organs and tissues with significant cellular heterogeneity
(Zeng et al., 2016; Wu et al., 2019). Given the presence of a
heterogeneous group of cell types with significant cell size and
shape heterogeneity, we set out to define the transcriptional
profiles of the three major cell types implicated in EP generation
by utilizing single cell RNA-Seq (scRNA-Seq) and single nucleus
RNA-Seq (snRNA-Seq) in the adult SV. In doing so, we seek to
define transcriptional heterogeneity between SV cell types and
define gene regulatory networks in the unperturbed wild type
adult SV that can serve as a basis for investigating mechanisms
responsible for SV functions.

MATERIALS AND METHODS

A table of key resources is provided in the Supplementary
Table S1.

Animals
Inbred CBA/J males and females were purchased from JAX
(Stock No. 000656). Breeding pairs were set up to obtain P30
mice for single cell and single nucleus RNA seq experiments,
immunohistochemistry and single molecule RNA FISH.

Cell/Nucleus Isolation
Stria Vascularis Dissection
Adult mice were sacrificed and inner ears were dissected. The
lateral wall of the cochlea was microdissected from the bony wall
of the cochlea. Localizing the pigmented strip in the cochlear
lateral wall, the SV was microdissected from the spiral ligament
using fine forceps. Microdissection of the SV from 2 cochlea
were accomplished in less than 4 min. Multiple lab personnel
experienced with the microdissections were utilized to minimize
dissection time. Samples were collected at the same time of day
across individual mice and batches. For each collection, less than
1 h was spent prior to single cell or single nucleus capture on
the 10x Genomics Chromium platform. A total of 10 mice and
12 mice were used for single cell and single nucleus RNA-seq
experiments, respectively.

Single Cell Suspension
Inner ears from a total of ∼25 P30 mice were removed and SV
from the cochleae were collected into 200 µl DMEM F-12 media.
The tissue was lysed in 0.5 mg/ml trypsin at 37◦C for 7 min. The
media was carefully removed and replaced with 5% FBS to stop
the lysis. The tissue was triturated and filtered through a 20 µm
filter (pluriSelect Life Science, El Cajon, CA, United States). The
filtered cells were let to sit on ice for 35 min. Hundred and
fifty microliter of the supernatant was removed and cell pellet

was suspended in the remaining 50 µl. Cells were counted on a
Luna automated cell counter (Logos Biosystems, Annandale, VA,
United States) and a cell density of 1 × 106 cells/ml was used to
load onto the 10X genomics chip.

Single Nucleus Suspension
Published single nucleus suspension protocol from 10x genomics
was used to isolate the nuclei. Briefly, SV from ∼10 P30 animals
were isolated and collected in 3 ml DMEM F-12 media. Following
collection, the media was replaced with 3 ml chilled lysis buffer
(10 mM Tris-HCl, 10 mM NaCl, 3 mM MgCl2,0.005% Nonidet
P40 in Nuclease free water) and the tissue were lysed at 4◦C
for 25 min. The lysis buffer was then replaced with 1.5 ml
DMEM F-12 media. The tissues were triturated and filtered
through a 20 µm filter (pluriSelect Life Science, El Cajon, CA,
United States). The filtrate was centrifuged at 500rcf for 5 min
at 4◦C. The supernatant was removed, and the cell pellet was
resuspended in 1ml nuclei wash and resuspension buffer (1xPBS
with 1% BSA and 0.2U/µl RNase Inhibitor). The cells were
filtered through a 10 µm filter (pluriSelect Life Science, El
Cajon, CA, United States) and centrifuged at 500rcf for 5 min
at 4◦C. The supernatant was removed, and pellet resuspended
in 50 µl of nuclei wash and resuspension buffer. Nuclei were
counted in a Luna cell counter (Logos Biosystems, Annandale,
VA, United States) and a nuclear density of 1 × 106 cells/ml was
used to load onto the 10X genomics chip.

10x Chromium Genomics Platform
Single cell or nuclei captures were performed following
manufacturer’s recommendations on a 10x Genomics Controller
device (Pleasanton, CA, United States). The targeted number
of captured cells or nuclei ranged from 6,000 to 7,000 per run.
Library preparation was performed according the instructions
in the 10x Genomics Chromium Single Cell 3’ Chip Kit
V2. Libraries were sequenced on a HiSeq 1500 or Nextseq
500 instrument (Illumina, San Diego, CA, United States)
and reads were subsequently processed using 10x Genomics
CellRanger analytical pipeline using default settings and 10x
Genomics downloadable mm10 genome. Dataset aggregation
was performed using the cellranger aggr function normalizing
for total number of confidently mapped reads across libraries.
For scRNA-Seq datasets, 132,866 mean reads per cell and
1,111 median genes per cell were obtained. For the snRNA-
Seq dataset, 23,887 mean reads per cell and 727 genes per
cell were obtained.

PCA and t-SNE Analysis
Selection of Genes for Clustering Analysis
Identification of the highly variable genes was performed in
Seurat utilizing the MeanVarPlot function using the default
settings with the aim to identify the top ∼ 2000 variable genes
(Satija et al., 2015). Briefly, to control for the relationship
between variability and average expression, average expression
and dispersion is calculated for each gene, placing the genes
into bins, and then a z-score for dispersion within the bins
is calculated. These genes are utilized in the downstream
analysis for clustering.
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Clustering of Single Cells
Clustering analysis of single-cell data was performed with Seurat
using a graph-based clustering approach (Satija et al., 2015).
Briefly, the Jackstraw function using the default settings was used
to calculate significant principal components (p < 0.0001) and
these principal components were utilized to calculate k-nearest
neighbors (KNN) graph based on the euclidean distance in PCA
space. The edge weights are refined between any two cells based
on the shared overlap in their local neighborhoods (Jaccard
distance). Cells are then clustered according to a smart local
moving algorithm (SLM), which iteratively clusters cell groupings
together with the goal to optimize the standard modularity
function (Blondel et al., 2008; Waltman and van Eck, 2013)1.
Resolution in the FindClusters function was set to 0.8. High
modularity networks have dense connections between the nodes
within a given module but sparse connections between nodes
in different modules. Clusters were then visualized using a
t-distributed stochastic neighbor embedding (t-SNE) plot.

Doublet Detection and Elimination
To detect and eliminate doublets that may affect clustering
analysis we used an R package called DoubletDecon described
previously (DePasquale et al., 2018) that iteratively detects
doublets in single-cell RNASeq data. An expression matrix of read
counts, the top 50 marker genes for each cluster, and a list of
cells with cluster identities are used to create “medoids” for each
cluster which are averages of cell-type specific gene expression.
It then compares the similarity of expression for each cluster
medoid to every other medoid resulting in a binary correlation
matrix. If two cluster medoids meet or exceed the similarity
threshold they receive a “1” in the binary matrix, referred to
as “blacklist clusters,” and if they do not they receive a “0” in
the binary matrix. Synthetic doublets are generated using cells
from each pairwise comparison of dissimilar cluster medoids.
Synthetic doublets, cells, and blacklist cluster gene expression
profiles are deconvoluted and each cell is iteratively compared to
both synthetic doublet profiles and blacklist clusters. If a cell is
more similar in expression to synthetic doublets it is classified as
a putative doublet. Putative doublets are re-clustered, and Welch’s
t-test is used to determine uniquely expressed genes. If any
cells express one unique gene when compared to the blacklisted
clusters they are rescued and classified as a singlet. The singlet list
was used to subset our single-cell data, and the Seurat pipeline
was re-run on the new doublet eliminated data.

Differential Gene Expression Analysis
Differential expression analysis was performed in Seurat utilizing
the FindAllMarkers function with the default settings except
that the “min.pct” and “thresh.use” parameters were utilized to
identify broadly expressed (min.pct = 0.8, thresh.use = 0.01)
and subpopulation-specific (min.pct = 0.5, thresh.use = 0.25)
expression profiles. The parameter “min.pct” sets a minimum
fraction of cells that the gene must be detected in all clusters.
The parameter “thresh.use” limits testing to genes which show, on
average, at least X-fold difference (log-scale) between groups of

1https://satijalab.org/seurat/v3.1/pbmc3k_tutorial.html

cells. The default test for differential gene expression is “bimod,”
a likelihood-ratio test (McDavid et al., 2013). Differentially
expressed genes were then displayed on violin plots based on
unbiased clustering described above.

Heatmap or Grid Violin Plot Construction
of Selected Data
Heatmaps or grid violin plots were constructed using custom
python scripts and utilized to display gene expression across
SV cell types identified in both scRNA-Seq and snRNA-Seq
datasets. Briefly, construction of heatmaps or grid violin plots
was performed in the following fashion: (1) Raw counts
data was processed within Seurat as previously described.
(2) Normalized counts were scaled into range [0,1] by using
min-max scaling method on each gene. (3) Heatmaps or violin
plots were constructed by python/seaborn using the scaled
data counts. Detailed code can be found in python scripts in
Supplementary Material.

Downstream Computational Analysis
Gene Regulatory Network Inference
Two independent methods of gene regulatory network inference,
Weighted gene co-expression network analysis (WGCNA)
(Langfelder and Horvath, 2008) and single cell regulatory
network inference and clustering (SCENIC) (Aibar et al., 2017)
were utilized. Briefly, WGCNA constructs a gene co-expression
matrix, uses hierarchical clustering in combination with the
Pearson correlation coefficient to cluster genes into groups
of closely co-expressed genes termed modules, and then uses
singular value decomposition (SVD) to determine similarity
between gene modules. Hierarchical clustering of modules
is displayed as topological overlap matrix (TOM) plots and
similarity between gene modules are displayed as adjacency plots.
Briefly, SCENIC identifies potential gene regulatory networks
by performing the following steps: (1) modules consisting of
transcription factors and candidate target genes are determined
on the basis of co-expression utilizing GENIE3, (2) regulons are
constructing by filtering modules for candidate genes that are
enriched for their transcription factor binding motifs utilizing
RcisTarget, (3) the activity of each regulon within each cell is
determined, (4) the regulon activity matrix is constructed utilizing
these regulon activity scores and can be used to cluster cells on the
basis of shared regulatory networks. In this way, SCENIC may
identify cell types and cell states on the basis of shared activity of
a regulatory subnetwork.

Deafness Gene Screen of Stria Vascularis
Transcriptomes From scRNA-Seq and sn-RNA-Seq
Datasets
In order to screen our datasets for known deafness genes, we
constructed a database of known human and mouse deafness
genes from the following sources: (1) Hereditary Hearing Loss
page2 (Van Camp and Smith, n.d.) and (2) Hereditary hearing loss
and deafness overview (Shearer et al., 1993; Azaiez et al., 2018).

2https://hereditaryhearingloss.org/
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Gene Ontology and Gene-Set Enrichment Analysis
Gene ontology analyses and gene enrichment analyses were
performed using Enrichr3 as previously described (Chen et al.,
2013; Kuleshov et al., 2016; Pazhouhandeh et al., 2017). Enrichr
is an integrated web-based application that includes updated
gene-set libraries, alternative approaches to ranking enriched
terms, and a variety of interactive visualization approaches to
display the enrichment results. Enrichr employs three approaches
to compute enrichment as previously described (Jagannathan
et al., 2017). The combined score approach where enrichment
was calculated from the combination of the p-value computed
using the Fisher exact test and the z-score was utilized. Top gene
ontology (GO) terms were chosen by utilizing the combined score
approach as described.

Identification of Potentially Druggable Gene Targets
To identify druggable targets within our scRNA-Seq data of the
SV, genes from P30 cell-type specific SCENIC regulons were input
into Pharos4 (Nguyen et al., 2017) using their “batch search”
function. Pharos is a database created by the “Illuminating the
Druggable Genome” program to give users access to protein
targets and the availability of drugs or small molecules for each.
Pharos categorizes each protein with a “target developmental
level” according to how much is known on its “druggability.”
Targets that are well studied are deemed “Tclin” if they can be
targeted with FDA approved drugs that have a known mechanism
of action on the target, “Tchem” if there are known small-
molecule ligands that bind the target, or “Tbio” if the target has
a known gene ontology or phenotype but no available drugs or
small molecules. Targets that are currently unstudied are labeled
“Tdark.” To focus on the most clinically relevant targets, we
filtered for only Tclin and Tchem developmental levels in our
search. Tclin and Tchem targets from each cell-type specific
regulon were plotted using the FeaturePlot function in Seurat to
identify the most specific targets within regulons of the SV.

Fluorescent in situ Hybridization
(smFISH) Using RNAscope Probes
In situ hybridizations were performed using the following
RNAscope probes (Supplementary Table S1). RNAscope probes
were obtained from Advanced Cell Diagnostics (Newark, CA,
United States) and used with sections of cochleae from CBA/J
wild type mice at P30. Adult cochleae were dissected from the
head and fixed overnight at 44◦C in 4% PFA in 1x PBS. Fixed
adult mouse inner ears were decalcified in 150 mM EDTA for
5–7 days, transferred to 30% sucrose, and then embedded and
frozen in SCEM tissue embedding medium (Section-Lab Co,
Ltd.). Adhesive film (Section-Lab Co, Ltd.; Hiroshima, Japan) was
fastened to the cut surface of the sample in order to support the
section and cut slowly with a blade to obtain thin midmodiolar
sections. The adhesive film with section attached was submerged
in 100% EtOH for 60 s, then transferred to distilled water. The
adhesive film consists of a thin plastic film and an adhesive and it
prevents specimen shrinkage and detachment. This methodology

3http://amp.pharm.mssm.edu/Enrichr/
4https://pharos.nih.gov

allows for high quality anatomic preservation of the specimen.
Frozen tissues were sectioned (10 µm thickness) with a CM3050S
cryostat microtome (Leica, Vienna, Austria). Sections were
mounted with SCMM mounting media (Section-Lab Co, Ltd.,
Hiroshima, Japan) and imaged using a 1.4 N.A. objective. Probe
information is detailed in Supplementary Table S1.

Immunohistochemistry
For immunohistochemistry of cochlear sections, fixed adult
mouse inner ears were prepared as previously described.
Fluorescence immunohistochemistry for known SV cell-type
markers was performed as follows. Mid-modiolar sections were
washed in PBS then permeabilized and blocked for 1 h at
room temperature in PBS with 0.2% Triton X-100 (PBS-T)
with 10% fetal bovine serum (Catalog # A3840001, Thermo
Fisher Scientific, Waltham, MA, United States). Samples were
then incubated in the appropriate primary antibodies in PBS-T
with 10% fetal bovine serum, followed by three rinses in PBS-
T and labeling with AlexaFluor-conjugated secondary antibodies
(1:250, Life Technologies) in PBS-T for 1 h at room temperature.
Where indicated, 4,6-diamidino-2-phenylindole (1:10,000, Life
Technologies) was included with the secondary antibodies to
detect nuclei. Organs were rinse in PBS three times and mounted
in SlowFade (Invitrogen). Specimens were imaged using a Zeiss
LSM710 confocal microscope. Sections were mounted with
SCEM mounting medium (Section-Lab Co, Ltd., Hiroshima,
Japan). Primary antibodies used included rabbit anti-KCNJ10
(Alomone Labs, Cat# APC-035, polyclonal, dilution 1:200),
rabbit anti-CLDN11 (Life Technologies, Cat# 364500, polyclonal,
dilution 1:200), goat anti-SLC12A2 (Santa Cruz Biotech, Cat# sc-
21545, polyclonal, dilution 1:200), goat anti-KCNQ1 (Santa Cruz
Biotech, Cat# sc-10646, polyclonal, dilution 1:200), Phalloidin
AlexaFluor 647 (Invitrogen, Cat# A22287, dilution 1:250).

Statistical Analysis
Statistical analysis for single-cell RNA-Seq is described in the
detailed methods.

Data and Software Availability
All data generated in these studies have been deposited in the
Gene Expression Omnibus (GEO) database (GEO Accession
ID: GSE136196) and can be found on GEO5. We are also in
the process of uploading the data into the gene Expression
Analysis Resource (gEAR), a website for visualization and
comparative analysis of multi-omic data, with an emphasis on
hearing research6.

RESULTS

Defining Cellular Heterogeneity Within
the Adult Stria Vascularis (SV)
The SV is composed of a heterogeneous group of cell types
that work together to generate the endocochlear potential.

5https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE136196
6https://umgear.org
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Defining these cell types and their respective transcriptional
profiles in the adult mammalian SV is a critical first step toward
understanding the genetic mechanisms that produce the EP.
Cell isolation for single cell and single nucleus approaches must
be optimized for the tissues they are targeting. In particular,
cellular heterogeneity within a tissue can be manifested, not just
by cell type heterogeneity, but also heterogeneity in size and
shape, potentially necessitating different techniques to gain a
comprehensive perspective on a given tissue. As can be seen
in the representative image of the SV in Figure 1B, marginal
cells (red), with cell nuclei eccentrically located closer to the
endolymph (apical-medial), interdigitate with intermediate cells
(green) with cell nuclei arranged so that processes extend to
both the apical-medial and basolateral surfaces of the SV. The
basal cells, which line the basolateral surface of the SV, appear
to be relatively flat cells. The marginal, basal, and spindle cells
appear to have relatively flat-appearing nuclei, while those of
the intermediate cells appear more oblong in shape. For the
SV, in order to address the challenge of transcriptional profiling
a tissue composed of heterogeneous cell types with significant
heterogeneity in cell size and shape, we utilized two methods of
transcriptional profiling, single cell RNA-Seq (scRNA-Seq) and
single nucleus RNA-Seq (snRNA-Seq).

An overview of the comparison between scRNA-Seq and
snRNA-Seq techniques in the adult SV is provided in the
Supplementary Data and Methods and Supplementary
Table S2. Details of dataset aggregation for single cell captures
using CellRanger is provided in the Supplementary Data and
Methods. Briefly, distribution of cells across all clusters was
analyzed and found to be equally distributed across all clusters
based on cell capture date (Supplementary Figure S1). For these
reasons, the dataset was treated as a single dataset. No other batch
correction methods were used prior to analyzing these datasets.
Both datasets were analyzed for dissociation-induced effects
and clustering of cells was found to be minimally impacted
by dissociation-induced gene expression (Supplementary
Figure S2). Details on analysis of dissociation-induced effects
have been previously detailed by others (Van Den Brink et al.,
2017; Baryawno et al., 2019) and are discussed briefly in
Supplementary Data and Methods. Due to the interdigitation of
processes of the marginal and intermediate cells, it is possible that
detection of ambient RNA, defined as the mRNA pool released
in the cell suspensions likely by stressed or apoptotic cells (Yang
et al., 2019), may affect clustering in scRNA-Seq (Supplementary
Figure S3 and Supplementary Data and Methods).

Stria Vascularis (SV) Cell Types Exhibit Clear
Transcriptional Differences
Unbiased clustering of adult SV single cells and nuclei was
performed independently. After unbiased clustering of cells
by shared gene expression, known cell type-specific markers
were utilized to identify these agnostically determined cell
clusters. Based on these markers, marginal cell, intermediate
cell, basal cell, spindle/root cell, macrophages, and immune
and hematopoietic cell clusters were identified within the adult
SV scRNA-Seq and snRNA-Seq datasets (Figure 2A). Here,
we will focus the analyses on the marginal, intermediate, basal,

and spindle/root cell clusters. Feature plots of both scRNA-
Seq and snRNA-Seq datasets demonstrate the correlation of
known gene expression for marginal cells (Kcne1, Kcnq1)
(Wangemann, 2002), intermediate cells (Cd44, Met) (Shibata
et al., 2016; Rohacek et al., 2017), basal cells (Cldn11, Tjp1)
(Gow, 2004; Lee et al., 2017; Liu et al., 2017), and spindle/root
cells (Slc26a4) between the two datasets (Figures 2B,D) (Nishio
et al., 2016). Violin plots demonstrate relative expression
of these known SV cell type-specific genes across the four
main cell types (Figures 2C,E). Confirmatory smFISH and
immunohistochemistry demonstrates expression of these known
markers for marginal cells (Kcne1, Kcnq1), intermediate cells
(Cd44, Met), basal cells (CLDN11, ZO-1), and spindle/root cells
(Slc26a4) (Figure 2F). Co-expression of Kcne1 and Kcnq1 RNA
to marginal cells of the adult SV can be seen, particularly in close
proximity to marginal cell nuclei (Figure 2F). Cd44 and Met RNA
is co-expressed in intermediate cell nuclei (Figure 2F). CLDN11
and ZO-1 (the protein product of the Tjp1 gene) are co-expressed
in basal cells (Figure 2F). The confirmation of cell type clusters
with known gene expression across both datasets strengthens the
validity of the unbiased clustering as well as the capability of both
approaches to assess transcriptome profiles in the SV.

Novel Cell Type-Specific Genes Are Identified by
scRNA-Seq and snRNA-Seq of the Adult Stria
Vascularis (SV)
Based on the transcriptional profiles, novel cell type-specific
genes were identified and validated in adult SV. Feature plots
demonstrate expression of selected novel candidate genes in
marginal cells (Abcg1, Heyl), intermediate cells (Nrp2, Kcnj13),
basal cells (Sox8, Nr2f2), and spindle/root cells (P2rx2, Kcnj16)
in both scRNA-Seq and snRNA-Seq datasets, respectively
(Figures 3A,C). Violin plots demonstrate the relative expression
of these novel SV cell type-specific genes across the 4 main
cell types (Figures 3B,D). The violin plots highlight aspects of
shared gene expression between marginal cells and spindle cells
amongst the selected candidate genes. This trend of shared gene
expression was observed between marginal and spindle cells in
terms of shared groups of genes (Supplementary Figure S4).
Representative images depict co-expression of candidate gene
RNA by smFISH in marginal cells (Abcg1, Heyl), intermediate
cells (Nrp2, Kcnj13), basal cells (Sox8, Nr2f2) and spindle/root
cells (P2rx2, Kcnj16) (Figures 3E,F). None of these gene
transcripts have been previously identified in the mammalian
SV. A discussion of the novel genes identified in this study
is provided (Supplementary Data and Methods). Quantitation
of novel cell type-specific transcript expression demonstrated
transcript expression of these candidate genes in their respective
cell type-specific nuclei (Supplementary Figure 5A).

Defining Potential Gene Regulatory
Networks in SV Marginal, Intermediate
and Basal Cells
Focusing on strial marginal, intermediate and basal cells, we
sought to identify cell type-specific gene regulatory networks that
might serve as a basis for investigating mechanisms related to
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FIGURE 2 | Stria vascularis (SV) cell types show clear transcriptional differences at the single cell and single nucleus level. (A) Unbiased clustering was performed on
both single cell RNA-Seq (scRNA-Seq) and single nucleus RNA-Seq (snRNA-Seq) datasets from the P30 mouse SV. Known cell type-specific markers were utilized
to identify these agnostically determined cell clusters. Based on these known markers, clusters consisting of marginal cells, intermediate cells, basal cells,
spindle/root cells, and immune cell types, including macrophages, B cells, and neutrophils, were identified. tSNE plot of P30 mouse SV scRNA-Seq dataset
demonstrates clustering of SV cell types (LEFT panel). tSNE plot of P30 mouse SV snRNA-Seq dataset demonstrates clustering of SV cell types with similar
identification of cell type-specific clusters (RIGHT panel). (B) Feature plots for P30 SV scRNA-Seq data demonstrate expression of known markers for 4 main SV cell
types: marginal cells (Kcne1, Kcnq1), intermediate cells (Cd44, Met), basal cells (Cldn11, Tjp1), and spindle/root cells (Slc26a4). 4 main cell types are highlighted on
the inset tSNE plot of the scRNA-Seq dataset. Maximum expression (normalized counts) is noted in the black outlined gray box for each gene in the lower left corner
of each feature plot. (C) Grid violin plot of scRNA-Seq dataset demonstrates expression of known marker genes amongst SV cell types. Normalized counts were
scaled to a range of 0–1 using min-max scaling. (D) Feature plots for P30 SV snRNA-Seq data demonstrate expression of known markers for 4 main SV cell types:
marginal cells (Kcne1, Kcnq1), intermediate cells (Cd44, Met), basal cells (Cldn11, Tjp1), and spindle/root cells (Slc26a4). 4 main cell types are highlighted on the
inset tSNE plot of the snRNA-Seq dataset. Maximum expression (normalized counts) is noted in the black outlined gray box for each gene in the lower left corner of
each feature plot. (E), Grid violin plot of snRNA-Seq dataset demonstrates expression of known marker genes amongst SV cell types. Normalized counts were
scaled to a range of 0–1 using min-max scaling. (F) Validation of known gene expression was performed using single molecule fluorescent in situ hybridization
(smFISH) and fluorescence immunohistochemistry. Known marginal cell-specific transcripts (Kcne1, Kcnq1) and intermediate cell-specific transcripts (Cd44, Met) are
co-localized by smFISH. Yellow dashed lines outline the SV marginal cell layer showing Kcnq1 transcript expression in marginal cells with DAPI to label nuclei. Yellow
dashed lines outline the SV intermediate cell layer in the image with DAPI only. CLDN11 and ZO-1 (protein product of Tjp1) are localized to the basal cell layer with
anti-CD44 and anti-KCNJ10 immunostaining to label the adjacent intermediate cell layer for contrast, respectively. Finally, Slc26a4 transcripts are localized to the
spindle/root cells by smFISH. Yellow dashed lines in the image to the right with only the DAPI labeling demarcate the SV and spindle cells (SpC) and root cells (RC) in
the spiral prominence (SP) are identified. DAPI (4′,6-diamidino-2-phenylindole). All scale bars 10 µm.

strial function and eventually on strial dysfunction in human
disorders. To identify these potential gene regulatory networks in
the adult mouse, two methods (WGCNA, SCENIC) of unbiased
gene regulatory network identification were utilized as described
previously. WGCNA identifies modules of co-expressed genes
without making a link between transcription factors and co-
expressed genes. In doing so, WGCNA casts a wider net as it
relates to co-expression analysis, potentially identifying indirectly
linked genes in a regulatory network. Conversely, SCENIC
identifies regulons composed of co-expressed transcription
factors and their downstream targets as determined by motif
enrichment. This approach identifies transcription factors with
potentially directly linked genes in a regulatory network.

WGCNA Identifies Cell Type-Specific Gene
Regulatory Networks in the Adult Stria Vascularis
Topological overlap (TOM) plots for scRNA-Seq and snRNA-
Seq datasets from the adult SV demonstrate clustering of
gene modules identified in WGCNA (Figure 4A). The more
red a box is, the higher the Pearson correlation coefficient is
between modules. The adjacency plots take this adjacency matrix
and display highly correlated gene modules (Figure 4B and
Supplementary Figures S6, S7). Cell type-specific modules for
marginal, intermediate and basal cells were reprojected onto the
feature plots for each dataset (Figure 4C). The top gene ontology
(GO) biological process, cellular component and molecular
function are summarized in Supplementary Figure S8.
Supplementary Tables containing all GO terms (biological
process, cellular component, and molecular function) with
adjusted p-values and the associated combined score are provided
for the WGCNA modules grouped by cell type-specificity to
the three major SV cell types (marginal, intermediate, and basal
cells) are provided in the Supplementary Tables S3–S5.

GO biological process analysis revealed a significant
enrichment for genes involved in positive regulation of
potassium ion transport (GO:1903288) in SV marginal cells and
regulation of potassium ion transport by positive regulation of
transcription from RNA polymerase II promoter (GO:0097301)

for SV intermediate cells. Additionally, GO biological process
analysis revealed a significant enrichment in genes involved in
protein stabilization (GO:0050821), neutrophil degranulation
(GO:0043312), and positive regulation of rhodopsin gene
expression (GO:0045872) in SV marginal, intermediate, and
basal cells, respectively. GO molecular function analysis
revealed a significant enrichment for genes involved in calcium-
transporting ATPase activity (GO:0005388) and translation
factor activity, RNA binding (GO:0008135) in SV marginal
and intermediate cells, respectively. GO molecular function
analysis did not reveal a significantly enriched process in SV
basal cells. GO cellular component analysis revealed a significant
enrichment for genes involved in G-protein coupled receptor
complex (GO:0097648), interleukin-28 receptor complex
(GO:0032002), and platelet alpha granule lumen (GO:0031093)
for SV marginal, intermediate, and basal cells, respectively.
Overall, these analyses affirm the importance of ion homeostasis
amongst marginal and intermediate cells and suggest functions
related to the immune system (neutrophil degranulation,
interleukin-28 receptor complex).

SCENIC Identifies Cell Type-Specific Gene
Regulatory Networks in the Adult Stria Vascularis
TSNE plots demonstrate a comparison between principal
component analysis (PCA)-based clustering within Seurat and
regulon-based clustering within SCENIC for both scRNA-Seq in
the upper panel (Figure 5A) and snRNA-Seq in the lower panel
(Figure 5B). Regulon-based clustering within SCENIC identifies
similar clusters to those seen within Seurat based on PCA. Display
of regulon activity matrix for both scRNA-Seq and snRNA-Seq
datasets demonstrates cell type-specific regulons prominently
within marginal, intermediate and basal cells in pink, green and
blue, respectively (Figure 5C). The top gene ontology (GO)
biological process, cellular component and molecular function
are summarized in Supplementary Figure S6. Supplementary
Tables containing all GO terms (biological process, cellular
component, and molecular function) with adjusted p-values and
the associated combined score are provided for the SCENIC
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FIGURE 3 | Single cell and single nucleus transcriptome profiles reveal common novel cell type-specific genes in the adult stria vascularis. (A) Feature plots for P30
SV scRNA-Seq data demonstrate expression of novel markers for 4 main SV cell types: marginal cells (Abcg1, Heyl), intermediate cells (Nrp2, Kcnj13), basal cells
(Sox8, Nr2f2), and spindle/root cells (P2rx2, Kcnj16). Maximum expression (normalized counts) is noted in the black outlined gray box for each gene in the lower left
corner of each feature plot. Spindle/root cell clusters are delineated by red circles. (B) Grid violin plot of scRNA-Seq dataset demonstrates expression of novel
marker genes amongst SV cell types. Normalized counts were scaled to a range of 0–1 using min-max scaling. (C) Feature plots for P30 SV snRNA-Seq data
demonstrate expression of novel markers for 4 main SV cell types: marginal cells (Abcg1, Heyl), intermediate cells (Nrp2, Kcnj13), basal cells (Sox8, Nr2f2), and
spindle/root cells (P2rx2, Kcnj16). Maximum expression (normalized counts) is noted in the black outlined gray box for each gene in the lower left corner of each
feature plot. Spindle/root cell clusters are delineated by red circles. (D) Grid violin plot of snRNA-Seq dataset demonstrates expression of novel marker genes
amongst SV cell types. Normalized counts were scaled to a range of 0 to 1 using min-max scaling. (E) Validation of known gene expression was performed using
single molecule fluorescent in situ hybridization (smFISH). Novel marginal cell-specific transcript (Abcg1, Heyl) expression in red is demonstrated in and around the
marginal cell nuclei on the apical surface of the marginal cells. Novel intermediate cell-specific transcript (Nrp2, Kcnj13) expression in red is co-expressed with
Kcnj10 and Cd44 transcripts in green, respectively. Novel basal cell-specific transcript (Sox8, Nr2f2) expression in red is localized to the basal cell layer. Yellow
dashed lines in the images with only the DAPI labeling for nuclei demarcate the respective cell layers (marginal, intermediate and basal cell layers). (F) Novel
spindle/root cell-specific transcripts, P2rx2 (in red) and Kcnj16 (in green) are co-expressed with Slc26a4 transcripts to spindle and root cells (left panel). The same
image without the Slc26a4 (blue) channel (center panel) and without DAPI (right panel) are shown. Note the slightly different distributions in P2rx2 (red) versus Kcnj16
(green) transcripts amongst spindle and root cells, respectively. Yellow dashed lines demarcate the SV, spindle cells (SpC) and root cells (RC) in the spiral prominence
(SP). DAPI (4′,6-diamidino-2-phenylindole). All scale bars 10 µm.

regulons grouped by cell type-specificity to the three major SV
cell types (marginal, intermediate, and basal cells) are provided
in the Supplementary Tables S6–S8.

GO biological process analysis for all SV cells reveals a
significant enrichment for genes involved in the regulation of
transcription from RNA polymerase II promoter (GO:0006357).
GO molecular function analysis revealed a significant enrichment
for genes involved in protein kinase activity (GO:0019901)
and calcium channel regulator activity (GO:0005246) in SV
marginal cells, for genes involved in RNA polymerase II
regulatory region sequence-specific DNA binding (GO:0000977)
and proton-transporting ATPase activity, rotational mechanism
(GO:0046961) in SV intermediate cells, and for genes involved in
RNA binding (GO:0003723) and phosphatidylinositol phosphate
kinase activity (GO:0016307) in SV basal cells. GO cellular
component analysis reveals a significant enrichment for genes
related to mitochondrion (GO:0005739) and ruffle membrane
(GO:0032587) in marginal cells, lysosome (GO:0005764) and
late endosome (GO:0005770) in intermediate cells, and focal
adhesion (GO:0005925) and actin cytoskeleton (GO:0015629) in
SV basal cells. In addition to regulation of ion homeostasis and
pH, these analyses provide some insight into additional functions
and processes in which SV cell types play a role.

Gene Regulatory Network Extent Appears Related to
the Number of Genes Detected per Cell or Nucleus
scRNA-Seq and snRNA-Seq datasets are subject to a phenomenon
called “dropout” or detection bias, where expression of a
gene may be observed in one cell but is not detected in
another cell of the same type (Kharchenko et al., 2014). This
phenomenon results from a combination of the low amounts
of mRNA in individual cells, inefficient mRNA capture, and
the stochastic nature of mRNA expression. Because of this,
scRNA-Seq and snRNA-Seq datasets exhibit a high degree
of sparsity resulting in the detection of a small fraction of
the transcriptome in a given cell. In comparing the effect
of detection bias in our scRNA-Seq and snRNA-Seq datasets,
we made several observations with respect to the ability to
identify potential gene regulatory networks (GRNs) and identify
clusters of cells.

In general, the number of genes detected per cell was
greater than the genes detected per nucleus (Figure 6A). When
examining genes detected amongst cell type-specific cells or
nuclei (marginal, intermediate, or basal cells), this observation
remained consistent (Figure 6A). In contrast, there was a
greater number of genes that demonstrated significant differential
expression among the three major cell types in the snRNA-Seq
dataset (Figure 6B). Examining the gene expression amongst
cell type-specific WGCNA modules (gene regulatory networks of
co-expressed genes not linked by transcription factors) revealed
a trend toward a greater number of genes detected in the
scRNA-Seq dataset (Figure 6C). An exception is that the number
of marginal cell-specific WGCNA module genes per cell are
lower than those detected in the nucleus data set. A technical
explanation for this may be that in WGCNA analysis, genes can
only be assigned to one module of co-expressed genes, which
may ignore the reality that certain genes may be shared in both
marginal and intermediate cells. A more detailed discussion of
the potential reasons behind this observation is provided in
the Supplementary Data and Methods. This observation of the
greater number of detected genes in the single cell dataset became
more definitive when examining gene expression amongst cell
type-specific SCENIC regulons (gene regulatory networks of
co-expressed genes linked by a common transcription factor)
(Figure 6D). As a whole, these data suggest that gene regulatory
network inference may be dependent on the number of genes
detected per cell or nucleus and that nuclei-based approaches
may allow for the detection of more differentially expressed genes
in certain contexts.

Validation of Selected Marginal Cell- and
Intermediate Cell-Specific SCENIC Regulons
In order to begin to identify critical gene regulatory networks,
we identified cell type-specific SCENIC regulons identified in
common between both the scRNA-Seq and snRNA-Seq datasets.
We then examined these common regulons and utilized the
regulon components identified in the single cell RNA-Seq dataset.
Based on these parameters, two cell type-specific regulons
were selected for further validation of the gene regulatory
network inference approach. The estrogen-related receptor beta
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FIGURE 4 | Gene regulatory network inference using weighted gene co-expression network analysis (WGCNA) reveals cell type-specific modules. (A) Topological
overlay map (TOM) plots demonstrate clustering of potential gene regulatory networks consisting of co-expressed genes termed modules arrayed along the
horizontal and vertical axis. The more red a box is, the higher the Pearson correlation coefficient is between the respective modules. TOM plots are shown for the
scRNA-Seq (LEFT) and snRNA-Seq (RIGHT) datasets. (B) Adjacency plots display highly correlated modules in the scRNA-Seq dataset (LEFT panel). The more red
a box is, the more similar the 2 intersecting modules are to each other. Note that in the snRNA-Seq dataset (RIGHT panel), the correlation between modules is
minimal. Using known cell type-specific marker genes, we focused on the cell type-specific modules identified in the scRNA-Seq dataset. (C) Cell type-specific
WGCNA modules were then projected onto the scRNA-Seq feature plot to demonstrate aggregate cell type-specificity of these WGCNA modules for the three major
cell types (marginal, intermediate, and basal cells). The more red a dot is in the feature plot, the greater the aggregate expression of the cell type-specific modules in
that given cell.
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FIGURE 5 | Gene regulatory network inference with SCENIC reveals cell type-specific SCENIC regulons in both scRNA-Seq and snRNA-Seq datasets. (A) Unbiased
clustering in Seurat (left panel) is similar to regulon-based clustering in SCENIC (right panel) for the scRNA-Seq dataset, resulting in the identification of the same cell
type-specific clusters. (B) Unbiased clustering in Seurat (left panel) is similar to regulon-based clustering in SCENIC (right panel) for the snRNA-Seq dataset, resulting
in the identification of the same cell type-specific clusters. (C) Regulon heatmaps display cell type-specific regulons identified from both the scRNA-Seq (left panel)
and snRNA-Seq (right panel) datasets. Cells grouped by cell type are displayed along the horizontal axis and regulons organized by hierarchical clustering are
displayed along the vertical axis. Esrrb (pink box) and Bmyc (green box) regulons are demarcated in both datasets (regulon labels to right of heatmap. Legend
demonstrating the binarized regulon activity score (scaled as 0 or 1) is shown to right of both heatmaps.
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FIGURE 6 | Cell type-specific gene expression comparison between scRNA-Seq and snRNA-Seq. (A) Violin plots to left in upper (scRNA-Seq) and lower
(snRNA-Seq) panels show the distribution of the number of genes per cell (upper panel) or nuclei (lower panel) along the vertical axis. In general, transcriptome
profiles from cells exhibited a greater number of genes per cell than transcriptome profiles from nuclei. This trend continued as expected when looking at cell
type-specific gene expression in marginal, intermediate, and basal cells in the panels to the right in both scRNA-Seq (upper panel) and snRNA-Seq (lower panel).
(B) Cell type-specific expression of differentially expressed genes (DEGs) was lower in the scRNA-Seq data compared to the snRNA-Seq data in marginal,
intermediate, and basal cells. nGene refers to number of differentially expression genes. (C) Gene counts for WGCNA cell type-specific modules did not demonstrate
a consistent relationship between scRNA-Seq and snRNA-Seq datasets. (D) Gene counts for SCENIC cell type-specific regulons in general demonstrated a higher
gene count per cell type in scRNA-Seq compared to snRNA-Seq. nGene (# of genes).
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(Esrrb) regulon, a marginal cell-specific regulon, and the brain
expressed myelocytomatosis oncogene (Bmyc), an intermediate
cell-specific regulon, were selected for further analysis. Mutations
in Esrrb result in autosomal recessive sensorineural hearing loss
(DFNB35) (Collin et al., 2008) and missense mutations have
recently been implicated in Meniere’s disease (Gallego-Martinez
et al., 2019). Bmyc has not previously been characterized as having
a role in inner ear pathology or hearing loss. Selected regulons
were screened for transcription factor targets with available
smFISH probes, resulting in a small subset of genes from these
regulons being selected.

Direct gene targets for Esrrb selected for validation with
smFISH were Abcg1, Heyl, and Atp13a5. The gene activity plot
shows the composite expression of the Esrrb regulon in SV
marginal cells (Figure 7A). Binding motifs for Esrrb in each of the
respective downstream targets (Abcg1, Heyl, Atp13a5) are shown
(Figure 7B). Feature plots demonstrating RNA expression for
Abcg1 and Heyl have been previously shown in Figures 3A,C.
Feature plots demonstrate RNA expression for Esrrb and
Atp13a5 in marginal cells (Figure 7C). smFISH demonstrates
co-expression of Esrrb with each downstream target protein in
SV marginal cells (Figure 7D). Using a custom MATLAB script
to perform semiautomated quantitation of smFISH transcripts
(see Supplementary Data and Methods), Abcg1, Atp13a5, and
Heyl transcripts were noted to be co-expressed in over 90% of
Esrrb-expressing nuclei (Supplementary Figure S5B).

Direct gene targets for Bmyc selected for validation with
smFISH were Cd44, Met, Pax3. The gene activity plot shows the
composite expression of the Bmyc regulon in SV intermediate
cells (Figure 8A). Binding motifs for Bmyc in each of the
respective downstream targets (Cd44, Met, Pax3) are shown
(Figure 8B). Feature plots demonstrating RNA expression
for Cd44 and Met in both scRNA-Seq and snRNA-Seq
datasets have been previously shown in Figures 2B,D. Feature
plots demonstrate RNA expression for Bmyc and Pax3 in
intermediate cells (Figure 8C). smFISH demonstrates Bmyc
co-expression with each downstream target protein in SV
intermediate cells (Figures 8D,E). Overall, the co-expression of
transcription factors with their downstream targets demonstrates
the strength of the SCENIC-based approach for gene regulatory
network inference as well as clustering. The identification of
regulons provides a starting point for targeted modulation
of gene activity within a regulon to elucidate the role of
the regulon in SV function. Cd44, Met, and Pax3 transcripts
were co-expressed in over 85% of Bmyc-expressing nuclei
(Supplementary Figure S5C).

Pharos Analysis Identifies Druggable Gene Targets in
Cell Type-Specific Regulons
With regards to modulation of gene activity within a regulon,
Pharos, a database of druggable gene targets, provides an
opportunity to identify FDA-approved drugs and small molecules
that could potentially be utilized to modulate gene expression7.
Analysis with Pharos identified FDA-approved drugs with known
activities against cell type-specific regulon targets. The analysis

7https://pharos.nih.gov/

was focused on Tclin targets, which are genes whose expression
can be altered by a known mechanism of action of an FDA-
approved drug. As an example of this approach, the previously
described Esrrb and Bmyc regulons were utilized to construct
a network diagram of their direct druggable targets. Direct
druggable target genes of the Esrrb and Bmyc regulons are shown
(Figures 9A,B, respectively). For the purposes of simplifying
the display, activators included receptor agonists, enzyme
activators, and ion channel openers. Inhibitors included receptor
antagonists, receptor inverse agonists, enzyme inhibitors, and ion
channel blockers. These drugs represent potential mechanisms by
which strial function might be modulated. Drugs for Adrb2 and
Maoa genes are provided in Supplementary Figure S9.

For example, in the Esrrb regulon, studies suggest that
estrogen (estradiol) may have a role in hearing protection
(Wijayaratne and McDonnell, 2001; Milon et al., 2018;
Williamson et al., 2019). Milon et al. (2018) have suggested
the possibility of utilizing estrogen signaling pathway effectors
for hearing protection. In the Bmyc regulon, both metformin
and acetazolamide have been associated with attenuation of
hearing loss in certain settings (Sepahdari et al., 2016; Wester
et al., 2018; Chen et al., 2019; Muri et al., 2019). Metformin,
which inhibits Ndufb2, may reduce the incidence of sudden
sensorineural hearing loss amongst diabetic patients (Chen et al.,
2019; Muri et al., 2019). While the effects of acetazolamide in
treating hearing loss associated with Meniere’s disease appear
to be temporary (Hoa et al., 2015; Crowson et al., 2016), recent
reports suggest some utility in sudden sensorineural hearing loss
associated with PDE5 inhibitors (Wester et al., 2018).

Deafness Gene Mapping Suggests a
Role for SV Cell Types in Human
Deafness
Finally, we screened the cellular transcriptomes from our scRNA-
Seq and snRNA-Seq datasets for genes associated with human
hearing loss. The database of deafness genes was constructed
from resources including the Hereditary Hearing Loss Homepage
as previously described (Shearer et al., 1993; Azaiez et al.,
2018). Heatmaps showing gene expression for known deafness
genes in the P30 SV are shown in Figure 10. Expression data
corresponding to P30 SV scRNA-Seq is shown in the left heatmap
(Figure 10A) and expression data corresponding to P30 SV
snRNA-Seq is show in the right heatmap (Figure 10B). Known
deafness genes are displayed along the vertical axis and SV cell
types are displayed horizontally with marginal cells in pink,
intermediate cells in green, basal cells in blue, and spindle
cells in yellow.

We identify a subset of deafness genes that are expressed in
adult SV cell types. Deafness genes expressed in marginal cells
include Lrp2, Esrrb, Hgf, Kcnq1, Kcne1, Ror1, and Eya4 (Wayne,
2001; Wangemann, 2002; Zhang et al., 2004; Collin et al., 2008;
König et al., 2008; Schultz et al., 2009; Khalifa et al., 2015;
Faridi et al., 2019). Deafness genes expressed in intermediate cells
include Met, Pde1c, and Pax3 (Tassabehji et al., 1993; Bondurand,
2000; Mujtaba et al., 2015; Wang et al., 2018). Col11a2 appears to
be specifically expressed in SV basal cells (McGuirt et al., 1999).
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FIGURE 7 | Validation of Esrrb regulon. (A) Gene set activity plot displays Esrrb regulon expression in scRNA-Seq dataset. The more red a dot is, the greater the
regulon activity in that given cell. (B) Esrrb binding motifs for Esrrb downstream targets (Abcg1, Atp13a5, Heyl). (C) Feature plots demonstrating expression of Esrrb
and Atp13a5 in the marginal cell cluster in the scRNA-Seq dataset. Maximum expression (normalized counts) is noted in the black outlined gray box for each gene in
the lower left corner of each feature plot. Histogram is depicted from 0 to maximum (Max) in terms of normalized counts. Feature plots for Abcg1 and Heyl have been
shown previously in Figure 3. (D) smFISH demonstrates co-expression of Abcg1, Atp13a5, and Heyl transcripts in red with Esrrb transcripts in green in marginal
cells on representative cross-sections of the P30 mouse SV. Panels to left depict Esrrb transcripts (green) and downstream target transcripts (red) with DAPI. Panels
to the right depict Esrrb transcripts (green) and downstream target transcripts (red) without DAPI. DAPI (4′,6-diamidino-2-phenylindole). All scale bars 20 µm.
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FIGURE 8 | Validation of Bmyc regulon. (A), Gene set activity plot displays Bmyc regulon expression in scRNA-Seq dataset. The more red a dot is, the greater the
regulon activity in that given cell. (B) Bmyc binding motifs for Bmyc downstream targets (Cd44, Met, Pax3). (C) Feature plots demonstrating expression of Bmyc and
Pax3 in the intermediate cell cluster of the scRNA-Seq dataset. Maximum expression (normalized counts) is noted in the black outlined gray box for each gene in the
lower left corner of each feature plot. Histogram is depicted from 0 to maximum (Max) in terms of normalized counts. Feature plots for Cd44 and Met have been
shown previously in Figure 2. (D) smFISH demonstrates co-expression of Cd44, Met, and Pax3 transcripts in red with Bmyc transcripts in green in intermediate
cells on representative cross-sections of the P30 mouse SV. Panels to left depict Bmyc transcripts (green) and downstream target transcripts (red) with DAPI. Panels
to the right depict Bmyc transcripts (green) and downstream target transcripts (red) without DAPI. DAPI (4’,6-diamidino-2-phenylindole). White arrows point to
examples of intermediate cells that exhibit both Bmyc and downstream target transcript expression. In the panels without DAPI, examples of cells that exhibit
co-expression of Bmyc (green) and downstream target transcripts (red) are encircled with dashed yellow lines. All scale bars 20 µm. (E) Enlarged images of example
cells from (D) are shown. White arrows in (E) point to encircled cells from (D).

In addition to Slc26a4, deafness genes expressed in spindle cells
include Ceacam16, Cldn14, and P2rx2 (Wilcox et al., 2001; Ben-
Yosef et al., 2003; Zheng et al., 2011; Faletra et al., 2014; Naz

et al., 2017; Zhu et al., 2017; Booth et al., 2018). More importantly,
these data demonstrate the possibility that some of these deafness
genes affect multiple SV cell types, as in the case of Mitf and
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FIGURE 9 | Analysis with Pharos reveals druggable gene targets in the Esrrb and Bmyc regulons. Pharmacologic drug classes are shown in lower left corner
including enzyme, G-protein coupled receptor (GPCR), ion channel, receptor, and kinase. FDA-approved drugs are classified as inhibitors (red), activators (green), or
unknown (gray). (A) Druggable gene targets in the Esrrb regulon. Analysis identified 13 druggable genes with 25 FDA-approved drugs. (B) Druggable gene targets in
the Bmyc regulon. Analysis identified 13 druggable genes with 68 FDA-approved drugs. Drugs for Adrb2 and Maoa genes are provided in Supplementary
Figure S9.

Sox10, which are expressed in both intermediate and marginal
cells (Bondurand, 2000). Both genes are known to be expressed
by neural crest cells (Potterf et al., 2001; Sommer, 2011; Locher

et al., 2015). Circumstantial evidence for the origin of strial
marginal cells from otic epithelium (Kikuchi and Hilding, 1966;
Sher, 1971; Kuijpers et al., 1991; Sagara et al., 1995; Birkenhäger
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FIGURE 10 | Deafness gene mapping of adult stria vascularis single cell and single nucleus transcriptomes associates SV cell types with deafness genes. Cell types
are arrayed along the horizontal axis and grouped according to cell types. Deafness genes are arrayed along the vertical axis. Deafness genes were grouped
according to how specific their expression seemed to be in a given cell type. Genes with less cell type-specific expression were placed lower in the list of genes.
(A) Expression level in normalized counts for each deafness gene (each row) across all cells in the adult SV scRNA-Seq dataset. (B) Expression level in normalized
counts for each deafness gene (each row) across all cells in the adult SV snRNA-Seq dataset.

et al., 2001) and strial intermediate cells from neural crest cells
(Steel and Barkway, 1989; Cable and Steel, 1991; Cable et al.,
1992; Tachibana, 1999, 2001) has been previously supported by
histochemical and immunohistochemical analyses. The role of
genes expressed by neural crest cells in cells not thought to be
of neural crest cell origin remains to be determined. Whether
other cell types in the SV derive from neural crest cells remains
to be determined by further lineage tracing experiments and
have not been shown in more recent lineage tracing experiments

(Shibata et al., 2016). The contribution of neurocristopathies to
hearing loss is a developing area of research (Hao et al., 2014;
Locher et al., 2015; Shibata et al., 2016; Ritter and Martin, 2019).
Another example of hearing loss where multiple cell types may
be affected includes Connexin 26 and 30 encoded by Gjb2 and
Gjb6, respectively, which appear to be expressed in intermediate
and basal cells and, to a lesser extent, marginal cells (Figure 10)
(Lang et al., 2007; Nickel and Forge, 2008; Liu et al., 2009;
Mei et al., 2017). These data reveal expression of a subset of
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human deafness genes in SV cell types and define potential
opportunities for further investigation into the function of these
genes in the SV.

DISCUSSION

Dual methodologies were used to develop an atlas of adult
SV cell type transcriptional profiles, the most comprehensive
to date. Specifically, the use of dual RNA-Seq methodologies
(scRNA-Seq and snRNA-Seq) revealed similar adult SV cell type-
specific transcriptional profiles. Furthermore, we demonstrate
the utility of applying dual gene regulatory network inference
methodologies to both corroborate cell type heterogeneity as
well as define potentially critical gene regulatory networks. We
provide examples of how this resource can be harnessed to
identify and confirm cell type-specific gene regulatory networks,
identify druggable gene targets, and implicate SV cell types in
syndromic and non-syndromic hereditary deafness. We now
define the implications of these data for: (1) using and developing
mouse models to define the contribution of each SV cell type
to SV function and hearing at the level of gene expression,
(2) understanding ion homeostatic mechanisms broadly in the
inner ear, (3) contributing to efforts to develop targeted SV
gene therapy through the use of cell type-specific promoters,
(4) identifying druggable gene targets and the potential for
repurposing existing pharmacotherapies to treat inner ear
disease, and (5) use of these data to identify cell type-specific
contributions to disease.

Implications for Mouse Model
Development to Enhance Our
Understanding of Cell Type-Specific
Mechanisms Related to the Loss of EP
and Hearing Loss
In characterizing adult SV cellular heterogeneity using
transcriptional profiling, these data provide opportunities
to study adult SV cell type-specific mechanisms that contribute
to EP generation and whose dysfunction results in hearing
loss. Novel cell type-specific gene expression allows for the
identification of existing inducible cell type-specific Cre-
recombinase mouse models as well as the development of novel
inducible mouse models. These mouse models will be critical
to studying the effects of gene deletion in adult SV cell types,
enabling a separation from the effects of gene deletion in the SV
during inner ear development. Genetic mutations that affect the
SV result in hearing loss that is characterized by an initial loss
of EP followed by a delayed loss of hair cells (Liu et al., 2016;
Huebner et al., 2019). Interpretation of the results observed in
these existing mouse models is complicated by the developmental
effects of genes critical to EP generation (Liu et al., 2016; Huebner
et al., 2019). Conversely, mouse models of SV age-related hearing
loss are complicated by incompletely defined mechanisms
and time windows which make for challenging experimental
conditions (Ohlemiller, 2009). Thus, the exact timing and
mechanisms associated with a permanent loss of hair cells

that follow the loss of EP remain incompletely defined. Use of
inducible mouse models may enable insight into the timing of
these mechanisms as well as insight into possible mechanisms.
Understanding the critical time window for intervention as
well as potential targeted interventions that might slow, halt or
reverse the effects of EP loss will contribute to development of
therapeutic approaches to hearing loss due to SV dysfunction.

Implications for Understanding Ionic
Homeostasis in the Inner Ear
SV cell type-specific gene regulatory networks include genes
critical to EP generation and ion homeostasis and as a result
provide a window into inner ear ion homeostatic mechanisms.
Insight into these ion homeostatic mechanisms may be important
to understanding their functional contribution to hearing and
hearing loss (Nickel and Forge, 2008; Zdebik et al., 2009). These
gene regulatory networks within the unperturbed wild type adult
mouse SV establish a basis for identifying and interpreting
changes in these networks in disease settings including, but not
limited to, Meniere’s disease (Ishiyama et al., 2007; Collin et al.,
2008; Kariya et al., 2009), autoimmune inner ear disease (Calzada
et al., 2012), cisplatin-induced hearing loss (Breglio et al., 2017;
Rybak et al., 2019), and enlarged vestibular aqueduct syndrome
(Miyagawa et al., 2014; Ito et al., 2015).

While the consequences of dysfunctional ion homeostasis
to human hearing loss are incompletely understood, ion
homeostasis appears to be critical, as evident by the number of
deafness genes encoding ion channels and transporters, many
of which are expressed in the SV (Mittal et al., 2017). While
this study demonstrates expression of these ion channels in SV
cells in the cochlea, there are quite a few examples of marginal
cell-specific genes that are also expressed in the vestibular
portion of the inner ear (Wangemann, 1995; Chen and Nathans,
2007; Bartolami et al., 2011). The consequences of dysfunctional
ion homeostasis on vestibular function remain incompletely
characterized (Jones and Jones, 2014). Thus, insights gained
in understanding the mechanisms regulating ion homeostasis
in the SV will apply to other regions of the inner ear.
The co-occurrence of hearing loss and renal disease resulting
from mutations in channel and transporter genes suggests that
understanding ion homeostasis in the inner ear may have broader
implications to dysfunctional ion homeostasis and human disease
(Lang et al., 2007).

Implications for Targeting Gene Therapy
to SV Cell Types
Cell type-specific genes could be utilized to create viral vectors
with cell type-specific promoters for improved therapeutic
targeting to the SV. This idea is not without precedent as cell
type-specific promoters have been utilized in the brain, retina
and inner ear to target specific groups of cells (Praetorius
et al., 2010; Kim et al., 2013; Ingusci et al., 2019; McDougald
et al., 2019). Furthermore, some recent adoptive immunotherapy
trials using a cell type-specific promoter for melanoma already
suggest the possibility for this in relation to the SV (Johnson
et al., 2009; Seaman et al., 2012; Duinkerken et al., 2019).
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Specifically, these studies utilized adoptive immunotherapy
using T cell receptors (TCRs) targeting MART-1, a known
melanoma-associated antigen, which resulted in sensorineural
hearing loss that in some cases was ameliorated by local steroid
administration (Johnson et al., 2009). SV melanocytes arise from
neural crest cells that migrate into the SV during development
(Hilding and Ginzberg, 1977; Steel and Barkway, 1989; Cable and
Steel, 1991; Cable et al., 1992; Tachibana, 1999, 2001; Matsushima
et al., 2002; Shibata et al., 2016). SV melanocytes represent the
future intermediate cells (Steel and Barkway, 1989; Cable and
Steel, 1991; Cable et al., 1992; Shibata et al., 2016). These studies
suggest the possibility that vectors utilizing the gene that encodes
MART-1, Melan-A (Mlana), may be an effective promoter for
targeting gene therapy to SV intermediate cells.

Alternatively, gene therapy for non-syndromic sensorineural
hearing loss may entail targeting multiple cell types. For
example, we demonstrate the expression of Gjb2 and Gjb6, which
encode connexin 26 and connexin 30 proteins, respectively, in
SV intermediate, basal and to a lesser extent, marginal cells
(Figure 10) (Lang et al., 2007; Nickel and Forge, 2008; Liu
et al., 2009). Mutations in Gjb2 and Gjb6 followed by digenic
mutations in these genes are among the most common causes
of non-syndromic autosomal recessive sensorineural hearing loss
(SNHL) in many populations around the world (Lerer et al.,
2001; Del Castillo et al., 2002; Pallares-Ruiz et al., 2002; Stevenson
et al., 2003; Wu et al., 2003; Bolz et al., 2004; Frei et al., 2004;
Gualandi et al., 2004; Nickel and Forge, 2008; Batissoco et al.,
2009; Chan et al., 2010; Asma et al., 2011; Da Silva-Costa et al.,
2011; Mei et al., 2017). Mei et al. (2017) demonstrate that the
loss of Gjb2 and Gjb6 in the SV and lateral wall result in a loss
of EP and hearing loss while the loss of Gjb2 and Gjb6 in cochlear
supporting cells does not. These data identify the loss of these
genes in the SV as principal drivers of hearing loss in digenic Gjb2
and Gjb6 mutations. Use of SV promoters that may be capable of
targeting multiple SV cell types including Mitf or Sox10 could
be utilized in future therapeutic attempts (Figure 10) (Hao et al.,
2014; Walters and Zuo, 2015).

Implications for Pharmacologic
Targeting of SV Cell Types
Our analyses utilizing parallel gene regulatory network inference
methods (WGCNA and SCENIC) combined with a search
for druggable gene targets utilizing Pharos8 suggest a possible
translational approach to utilizing scRNA-Seq and snRNA-Seq
datasets (Langfelder and Horvath, 2008; Aibar et al., 2017;
Nguyen et al., 2017). Through this approach, we identify genes for
which FDA-approved drugs have a known effect. This agnostic
in silico approach can potentially be utilized to identify FDA-
approved medications that could be repurposed or repositioned
to treat diseases in the inner ear as has been done in other areas
of human disease including neurodegenerative diseases, cancer,
and autoimmune disease (Ferrero and Agarwal, 2018; Paranjpe
et al., 2019). This may be particularly useful in hearing and
balance disorders that are characterized by onset of symptoms
in adulthood (i.e., autoimmune inner ear disease, Meniere’s

8https://pharos.nih.gov/

disease). We acknowledge that there are many methods to
identify drugs for repurposing or repositioning, including in silico
methods, which have been reviewed elsewhere (Li et al., 2016;
Vanhaelen et al., 2017; Ferrero and Agarwal, 2018). However,
our analyses highlight the potential use of the data for drug
repurposing approaches.

Implications for Identifying Cell
Type-Specific Contributions to Disease
Finally, as we have alluded to previously, scRNA-Seq and snRNA-
Seq approaches could potentially be utilized to associate changes
in gene expression in human disease with cell types in a
given tissue (Skene and Grant, 2016). Skene and Grant (2016)
associated cell types with human disease by comparing human
disease expression datasets for Alzheimer’s disease, autism,
schizophrenia, and multiple sclerosis to single cell transcriptional
profiles from the mouse cortex and hippocampus. In a similar
fashion, single cell and single nucleus transcriptome profiles,
like the resource we have developed for the adult SV, might
be utilized to associate cell types to inner ear diseases. For
example, in Meniere’s disease, while no single gene has been
conclusively implicated in the disease, the association of gene
mutations with cell type-specific expression might provide some
clues to the involved cell type or types (Chiarella et al., 2015;
Lopez-Escamez et al., 2018). Mutations in both Kcne1 and Esrrb
have been identified in patients with Meniere’s disease (Lopes
et al., 2016; Dai et al., 2019; Gallego-Martinez et al., 2019). Our
data demonstrate expression of these genes in SV marginal cells
(Figure 10). It is possible that marginal cells might play a role in
the pathophysiology of this disease.

While this is the most comprehensive cell atlas of the adult SV
to date, some limitations or caveats are worth mentioning. We
did not definitively identify clusters of pericytes or endothelial
cells in our dataset and chose to focus our analysis on the four
main groups of cells (marginal, intermediate, basal, and spindle
cells). Given the lower number of spindle and root cells, we did
not definitively distinguish spindle and root cells from each other.

We believe that the utility of these datasets as resources is
expansive. These datasets establish a baseline for comparison to
effects on the SV related to treatment and provide a resource for
identifying cell types associated with human inner ear disease.
We show examples of applications of these data, including
characterization of homeostatic gene regulatory networks,
druggable gene target analysis with Pharos to identify potential
repurposing of FDA-approved medications, and provide the most
focused screen of deafness gene expression in the SV. These data
will serve as a baseline for identifying key regulatory mechanisms
related to genetic and acquired hearing loss, as well as, for
responses to a variety of pharmacologic treatments.

DATA AVAILABILITY STATEMENT

The datasets generated for this study can be found in the
Gene Expression Omnibus (GEO) database (GEO Accession ID:
GSE136196) at the following link https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE136196.

Frontiers in Molecular Neuroscience | www.frontiersin.org 20 December 2019 | Volume 12 | Article 316

https://pharos.nih.gov/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE136196
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE136196
https://www.frontiersin.org/journals/molecular-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-neuroscience#articles


fnmol-12-00316 December 18, 2019 Time: 16:0 # 21

Korrapati et al. Adult Mouse Stria Vascularis scRNA-Seq

ETHICS STATEMENT

All animal experiments and procedures were performed
according to protocols approved by the Animal Care and Use
Committee of the National Institute of Neurological Diseases
and Stroke and the National Institute on Deafness and Other
Communication Disorders, National Institutes of Health.

AUTHOR CONTRIBUTIONS

SK, RO, and MH contributed to isolation of single cells and
single nuclei for single cell RNA-Seq (scRNA-Seq) and single
nucleus RNA-Seq (snRNA-Seq). DM and RM were responsible
for sequencing and alignment of scRNA-Seq and snRNA-Seq
datasets. SK, IT, MP, SG, and MH contributed to scRNA-Seq and
snRNA-Seq bioinformatic data analysis. SK, RO, and IT were
responsible for smFISH and immunohistochemistry. RS, CG, IT,
and RO were responsible for quantitative analysis of smFISH
labeling. SK, RO, IT, and MH contributed to writing and revising
the manuscript. All authors read and approved final manuscript.

FUNDING

This research was supported (in part) by the Intramural
Research Program of the NIH, NIDCD to MH (ZIA DC000088),
and RM (ZIC DC000086). This research was made possible
through the NIH Medical Research Scholars Program (MRSP),
a public–private partnership supported jointly by the NIH
and contributions to the Foundation for the NIH from the
Doris Duke Charitable Foundation (DDCF Grant #2014194),
the American Association for Dental Research, the Colgate-
Palmolive Company, Genentech, Elsevier, and other private
donors. The funders of the MRSP had no role in study design,
data collection and analysis, decision to publish, or preparation
of the manuscript.

ACKNOWLEDGMENTS

The authors would like to acknowledge Thomas B. Friedman,
Matthew W. Kelley, and Doris Wu who provided helpful
feedback and review of this manuscript. The authors
acknowledge Alan Hoofring for his illustrations. This study
utilized the high-performance computational capabilities
of the Biowulf Linux cluster at the National Institutes of
Health, Bethesda, MD, United States (https://hpc.nih.gov/).
This manuscript has been released as a pre-print at bioRxiv
(Korrapati et al., 2019).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fnmol.2019.
00316/full#supplementary-material

FIGURE S1 | Distribution of single cell captures for adult SV scRNA-Seq dataset.
Distribution of SV cell captures (S153 in pink, S161 in green, S171 in blue) are

equally distributed across all clusters in the scRNA-Seq dataset. S153, S161, and
S171 refer to batches collected on separate dates.

FIGURE S2 | Dissociation-induced gene expression in adult mouse SV
scRNA-Seq and snRNA-Seq dataset has minimal effect on clustering. (A) Boxplot
demonstrating quantification of averaged dissociation-induced gene expression
across all cells in the scRNA-Seq dataset (blue box) compared to expression
across all nuclei in the snRNA-Seq dataset (orange box). The average
dissociation-induced gene expression represents relative level of
dissociation-induced gene expression to nuclear loading controls in both single
cell and single nucleus datasets. This analysis demonstrates that the level of
dissociation-induced gene expression is similar between single cell and single
nucleus datasets. See Supplementary Data and Methods for methodology and
rationale. Difference in average expression is not statistically significant (p = 0.68).
(B) tSNE plots demonstrate clustering of cells and nuclei before and after removal
of dissociation artifact and show no difference in the number of clusters.

FIGURE S3 | snRNA-Seq resolves conflicting results in Kcnj10 expression
between scRNA-Seq and snRNA-Seq datasets in the adult mouse stria
vascularis. (A) Feature plot from scRNA-Seq dataset demonstrating widespread
Kcnj10 expression across cell type clusters. (B) Feature plot from snRNA-Seq
dataset demonstrating predominant expression of Kcnj10 in the intermediate cell
cluster as demarcated in Figure 2A. (C) smFISH demonstrates Kcnj10 transcripts
confined to intermediate cells labeled with anti-CD44 immunostaining. DAPI labels
nuclei. Scale bar 20 µm.

FIGURE S4 | Shared gene expression between marginal and spindle cells. (A)
Candidate genes identified in the scRNA-Seq dataset expressed by marginal (M)
and spindle/root (S/R) cells. (B) Candidate genes identified in the snRNA-Seq
dataset expressed by marginal (M) and spindle/root (S/R) cells. Intermediate cells
(I) and basal cells (B) are denoted by their respective labels. Violin plots are
displayed with normalized counts on the vertical axis and cell types arrayed along
the horizontal axis.

FIGURE S5 | smFISH quantification of novel cell type-specific genes and regulon
transcription factor with select downstream targets in SV cell types. Customized
MATLAB code was utilized to determine the expression of novel gene transcripts
in SV cell type nuclei and to determine the number of regulon transcription factor
transcript-positive nuclei that expressed each of the downstream gene transcripts.
(A) The percentage of cell type-specific nuclei labeled with candidate cell
type-specific smFISH probes was quantified. Fifty-two of 56 (93%) and 66 of 66
(100%) of marginal cell nuclei expressed Abcg1 and Heyl transcripts, respectively.
One hundred thirty seven of 161 (85%) and 170 of 176 (97%) of Kcnj10- and
Cd44-expressing intermediate cell nuclei expressed Nrp2 and Kcnj13 transcripts,
respectively. 107 of 145 (73%) and 118 of 185 (64%) of basal cell nuclei express
Sox8 (n = 145 cells) and Nr2f2 (n = 185 cells) transcripts, respectively. (B) The
percentage of Esrrb transcript-positive nuclei expressing each of the downstream
gene transcripts (Abcg1, Atp13a5, Heyl) is shown. Fifty-two of 56 (93%) Esrrb
transcript-positive nuclei expressed Abcg1. Fifty-nine of 59 (100%) Esrrb
transcript-positive nuclei expressed Atp13a5. Sixty-six of 66 (100%) Esrrb
transcript-positive nuclei expressed Heyl. (C) The percentage of Bmyc
transcript-positive nuclei expressing each of the downstream gene transcripts
(Cd44, Met, Pax3) is shown. Forty of 43 (93%) Bmyc transcript-positive nuclei
expressed Cd44. Thirty-six of 37 (97%) Bmyc transcript-positive
nuclei expressed Met. Thirty-three of 38 (87%) Bmyc transcript-positive nuclei
expressed Pax3.

FIGURE S6 | Enlarged image of adjacency plot for the scRNA-Seq dataset from
Figure 4B. The more red a box is, the more similar the 2 intersecting WGCNA
modules are to each other.

FIGURE S7 | Enlarged image of adjacency plot for the snRNA-Seq dataset from
Figure 4B. The more red a box is, the more similar the 2 intersecting WGCNA
modules are to each other.

FIGURE S8 | Top gene ontology (GO) terms identified by GO analysis with Enrichr
in cell type-specific WGCNA modules and cell type-specific SCENIC regulons. (A)
GO biological process, molecular function, and cellular component analysis of
WGCNA modules from both the scRNA-Seq and snRNA-Seq datasets reveal
gene set enrichment in marginal cells (red), intermediate cells (green), and basal
cells (blue). (B) GO biological process, molecular function, and cellular component
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analysis of SCENIC regulons from both the scRNA-Seq and snRNA-Seq datasets
reveal gene set enrichment in marginal cells (red), intermediate cells (green), and
basal cells (blue).

FIGURE S9 | Pharos-identified drugs with Adrb2 and Maoa gene activity. Drugs
are displayed along with their mechanism of action. Activators are in green and
inhibitors are in red.

TABLE S1 | Key resources.

TABLE S2 | Comparison of single-cell RNA-Seq (scRNA-Seq) and single-nucleus
RNA-Seq in the adult stria vascularis.

TABLE S3 | Gene Ontology (GO) Analysis of Marginal Cell-Specific WGCNA
Modules.

TABLE S4 | Gene Ontology (GO) Analysis of Intermediate Cell-Specific WGCNA
Modules.

TABLE S5 | Gene Ontology (GO) Analysis of Basal Cell-Specific WGCNA Modules.

TABLE S6 | Gene Ontology (GO) Analysis of Marginal Cell-Specific SCENIC
Regulons.

TABLE S7 | Gene Ontology (GO) Analysis of Intermediate Cell-Specific SCENIC
Regulons.

TABLE S8 | Gene Ontology (GO) Analysis of Basal Cell-Specific SCENIC
Regulons.

DATA AND METHODS | Comparative advantages between scRNA-seq and
snRNA-seq in the adult stria vascularis.
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