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Parkinson’s disease is characterized by motor and nonmotor symptoms that gradually
appear as a consequence of the selective loss of dopaminergic neurons in the substantia
nigra pars compacta. Currently, no treatment can slow Parkinson’s disease progression.
Inasmuch, there is a need to develop animal models that can be used to understand the
pathophysiological mechanisms underlying dopaminergic neuron death. The initial goal
of this study was to determine if canine adenovirus type 2 (CAV-2) vectors are effective
gene transfer tools in the monkey brain. A second objective was to explore the possibility
of developing a large nonhuman primate that expresses one of the most common
genetic mutations causing Parkinson’s disease. Our studies demonstrate the neuronal
tropism, retrograde transport, biodistribution, and efficacy of CAV-2 vectors expressing
GFP and leucine-rich repeat kinase 2 (LRRK2G2019S) in the Macaca fascicularis brain. Our
data also suggest that following optimization CAV-2-mediated LRRK2G2019S expression
could help us model the neurodegenerative processes of this genetic subtype of
Parkinson’s disease in monkeys.

Keywords: M. fascicularis, CAV-2, viral vectors, GFP, LRRK2, Parkinson’s disease, nonhuman primate, CNS

INTRODUCTION

Parkinson’s disease is a complex neurodegenerative disorder clinically characterized by a triad of
motor symptoms, including tremor, rigidity, and bradykinesia (Poewe et al., 2017). Approximately
9 million individuals are directly affected by Parkinson’s disease, making it the second most
prevalent neurodegenerative disease among the elderly. The etiology and pathogenic mechanisms
of Parkinson’s disease remain poorly understood with only a small proportion having an
identifiable monogenic cause (with an overall prevalence lower than 5%; Poewe et al., 2017).
Among the genetic causes, autosomal dominant mutations in PARK8, the gene coding for
leucine-rich repeat kinase 2 (LRRK2), are the most common cause of familial Parkinson’s disease
(Paisán-Ruíz et al., 2004; Zimprich et al., 2004). LRRK2 is a 285 kDa multifunctional protein that
contains several predicted domains including a serine/threonine kinase domain, a GTPase domain
and putative protein-protein interaction domains (Gloeckner et al., 2006; Smith et al., 2006; Guo
et al., 2007; Ito et al., 2007; Li et al., 2007). LRRK2 is expressed in brain areas receiving dopaminergic
innervation, such as the striatum, hippocampus, cortex, and cerebellum, while lower levels have
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been reported in neurons of the substantia nigra (SN) and
ventral tegmental area (Taymans and Baekelandt, 2014). In
neurons, LRRK2 plays a role in neurogenesis, axonal outgrowth,
mitochondrial function, autophagy, and synaptic function (Shin
et al., 2008; Matta et al., 2012; Wang et al., 2012; MacLeod et al.,
2013; Sepulveda et al., 2013; Godena et al., 2014; Law et al.,
2014; Sweet et al., 2015). At least six mutations in LRRK2 are
pathogenic. A glycine to serine change at amino acid 2019
(LRRK2G2019S) accounts for ∼7% of familial cases and ∼2% of
sporadic, late-onset, cases (Gasser et al., 2011). LRRK2G2019S is
thought to have modestly increased kinase activity, which, by an
unknown mechanism, induces neuronal and non-neuronal cell
loss (Mortiboys et al., 2015).

Several LRRK2G2019S rodent models have been generated with
the goal of better understanding the molecular pathogenesis
of Parkinson’s disease. These models include knock-out (KO;
Andres-Mateos et al., 2009; Lin et al., 2009; Tong et al., 2010,
2012; Hinkle et al., 2012; Ness et al., 2013) or knock-in (KI; Tong
et al., 2009; Yue et al., 2015), bacterial artificial chromosome
(BAC)-mediated transgenesis (Li et al., 2009, 2010; Melrose
et al., 2010; Winner et al., 2011; Bichler et al., 2013; Lee et al.,
2015; Sweet et al., 2015), non-BAC transgenics (Chen et al.,
2012; Chou et al., 2014; Walker et al., 2014), and those with
temporally-controlled or inducible LRRK2 expression (Lin et al.,
2009; Lee et al., 2010; Dusonchet et al., 2011; Zhou et al.,
2011; Walker et al., 2014; Tsika et al., 2015). The data from
LRRK2KOmice suggest that LRRK2 plays little, if any, role in the
development or maintenance of murine dopaminergic neurons
(Li et al., 2010; Melrose et al., 2010). In addition, KI LRRK2G2019S

mice have minimal reduction in dopamine (DA) release, axonal
pathology, and/or evidence of neurodegeneration (Li et al., 2010;
Melrose et al., 2010). The reasons why rodents do not exhibit
substantial pathology are still uncertain, but not unusual—many
rodent models poorly recapitulate human neurodegenerative
diseases. In the case of BAC and KI mice, LRRK2 is expressed
during development and therefore compensatory mechanisms
may prevent the loss of DA neurons (Dawson et al., 2010) and
the appearance of motor symptoms. Thus, alternative models
are needed to reproduce the progressive degeneration of nigral
neurons associated with the LRRK2G2019S.

A handful of studies using vector-mediated delivery of
LRRK2G2019S to the rodent brain reported a modest loss of
dopaminergic cells without changes in motor performance (Lee
et al., 2010; Dusonchet et al., 2011). These studies used herpes
simplex virus (HSV) or human adenovirus 5 (HAdV-C5) vectors,
but did not target SN neurons and/or allow long-term transgene
expression (Dai et al., 1995; Silva et al., 2010; Lentz et al., 2012).
For gene transfer to neurons in the CNS, canine adenovirus type
2 (CAV-2) vectors are particularly interesting: in rodents, dogs,
and prosimians, the vectors preferentially transduce neurons
and are efficiently transported from the injection site to efferent
regions (Soudais et al., 2001; Cubizolle et al., 2013; Junyent and
Kremer, 2015; Mestre-Francés et al., 2018). Helper-dependent
(HD) CAV-2 vectors, which are devoid of all viral coding
sequences, also lead to long-term expression in the CNS (del Rio
et al., 2019). In the case of LRRK2 expression, the∼8 kb cDNA is
challenging to express from some viral vectors. Of note though,

HD CAV-2 vectors are an ideal option because they can harbor
an expression cassette as large as 30 kb (Soudais et al., 2004).
We previously showed that injections of HD-LRRK2G2019S,
an HD CAV-2 vector containing a leucine-rich repeat kinase
2G2019S expression cassette, in the striatum of the gray mouse
lemur (Microcebus murinus) induces Parkinson’s disease-like
histological lesions and motor symptoms (Mestre-Francés et al.,
2018; Lasbleiz et al., 2019). As a prelude to the development
of a monkey with Parkinson’s disease, CAV-2 vector efficacy
studies in large brains need to be documented. Here, our
study using CAV-2 vectors expressing GFP and LRRK2G2019S

demonstrate the neuronal tropism, retrograde transport, efficient
biodistribution, and efficacy following injections in monkey
striatum and the SN.

MATERIALS AND METHODS

Animals
Experimental protocols were carried out under a project license
according to the European Communities Council Directive of
24/11/1986 (86/609/EEC) regarding the care and use of animals
for experimental procedures and under the guidance of the Ethics
Committee for Animal Experimentation of the University of
Navarra. Twenty, 4–5-year-old, male, 3–5 kg,M. fasciculariswere
included in the study. Animals were housed in a facility under
standard conditions of air exchange (16 l/min), humidity (50%),
and light/night cycles, and were fed fresh fruit and commercial
pellets, with free access to water.

CAV-2 Vectors
CAV-GFP (Kremer et al., 2000), HD-GFP (Soudais et al.,
2004), and HD-LRRK2G2019S (Mestre-Francés et al., 2018) have
been previously described. CAV-GFP is a replication-defective
E1-deleted vector harboring a cytomegalovirus early promoter
(CMV), GFP, SV40 polyA cassette. HD-GFP is a HD CAV-2
vector expressing GFP. HD-LRRK2G2019S contains a Rous
sarcoma virus (RSV) promoter, a codon-optimized LRRK2G2019S

cDNA, followed by an internal ribosomal entry site (IRES),
GFP, and an SV40 polyA. This cassette was initially cloned
into pGut3 and then inserted into a pEJK25 via homologous
recombination to create pHD-LRRK2G2019S. HD-LRRK2G2019S

was amplified and purified similar to that used for HD-GFP with
minor modifications (Cubizolle et al., 2013). The HD-GFP stock
used during this study was 1.3 × 1012 pp/ml with an infectious
particle to a physical particle ratio of 1:10. The HD-LRRK2G2019S

stocks used during this study were 3–7 × 1011 pp/ml with an
infectious particle to a physical particle ratio of ∼1:25.

Injections
Four monkeys received CAV-GFP injections and were killed
1 month postinjection to assess safety and biodistribution of
the CAV-2 in the brain: two of these four monkeys received an
injection in the left putamen, and the other twomonkeys received
bilateral injections in the SN. In one of the latter monkeys, the
injections missed the target and therefore was not included in the
analyses. Eight monkeys received injections of HD-LRRK2G2019S:
four of the eight monkeys received an injection into the left
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putamen and were killed as planned 6 months postinjection;
and the remaining four monkeys received injections in the
SN. One monkey in the latter cohort died due to intracranial
hemorrhage at 15 days postinjection. Also, four monkeys
received injections of HD-GFP into the left SN. One monkey
died due to heart failure. The six remaining monkeys were
killed 12months postinjection. As the neuropathological changes
observed 6 months postinjection in the monkeys injected in
the putamen with the HD-LRRK2G2019S were sparse, a different
timepoint of 12 months postinjection was used for those
monkeys that received a nigral injection, to try to induce more
robust neuropathological changes. A cohort of four non-injected
(intact) animals were used as a control for histological analyses.

Surgery
Stereotaxic surgery was performed according to the coordinates
for stereotaxic injections based upon MRI guidance and
ventriculography. Before surgery, a brain MRI was performed
in each animal under light sedation with an intramuscular
injection of ketamine (10 mg/kg) and midazolam (0.5 mg/kg)
and. Initial coordinates for injection sites were ascertained using
the Osirix Medical Image Software (version 3.9.1). On the day
of surgery, the monkeys were anesthetized by intramuscular
injections of ketamine and midazolam at the same doses above
mentioned. Supplementary doses were given during surgery if
necessary. The animals were placed in the stereotaxic frame and
the vector delivery was performed following the convection-
enhanced delivery (CED) method using an infusion pump
(KDS200, LabNet Biotecnica, Madrid, Spain) at a rate of 1
µl/min the first 10 µl, 1.5 µl/min until 20 µl and 2 µl/min
until 30 µl. CAV-GFP and HD-LRRK2G201S were injected in
60 µl [1 × 1010 physical particles (pp)] of the corresponding
vector divided in two 30 µl injections in left putamen (target 1:
X = 10, Y = +1, Z = +1 and target 2: X = 12, Y = 4, Z = +3).
A volume of 10 µl with 1 × 1010 pp of the corresponding
vector was injected in each SN in CAV-GFP and left SN in
HD-LRRK2G2019S and HD-GFP groups (target: X = 4, Y = −8,
Z = −4). These volumes were used based on the relative size of
the structure being targeted and the advice and collective results
from the Bankiewicz lab (UCSF). Coordinates were derived from
Martin and Bowden (1996).

PET Scans With 11C- DTBZ and 18F-FDG
Ligands
Positron emission tomography (PET) with 11C-(+)-α-dihydro-
tetrabenazine (DTBZ; used to quantify the nigrostriatal terminal
density) and with 18F-deoxyglucose (FDG; to evaluate the
glucose metabolism) were performed as previously described
(Blesa et al., 2010).

Transcardiac Perfusion and Tissue
Preparation
After an overdose of a mixture of ketamine and midazolam,
animals were transcardially perfused with 0.01 M PBS/4%
paraformaldehyde (PFA, Sigma–Aldrich, St. Louis, MO, USA).
Brains were immediately removed, blocked using amonkey brain
matrix (ASI Instruments, Warren, MI, USA) and post-fixed for

2 days in 4% PFA/PBS. The brains were then cryoprotected in
a 30% sucrose (Sigma–Aldrich, St. Louis, MO, USA) solution in
0.01M PBS until processing. Brains were sliced into 40-µm-thick
coronal sections along the rostral axis with a freezing microtome
(SM 2000R, Leica, Germany) and collected in 0.125 M PBS
containing 2% dimethylsulphoxide (Sigma–Aldrich, St. Louis,
MO, USA), 20% glycerine (Panreac, Barcelona, Spain) and 0.05%
sodium azide (Sigma–Aldrich, St. Louis, MO, USA) and were
stored at −20◦C until ulterior analysis.

DNA Extraction and qPCR
Total DNA was extracted from fifteen 40-µm-thick PFA-fixed
sections from the putamen, motor cortex and the SN of
each animal with the QIAamp DNA FFPE Kit (Qiagen,
Gaithersburg, MD, USA) and according to manufacturer’s
protocol (without the deparaffinization step). Right and left
hemispheres were analyzed separately. DNA integrity was
confirmed by electrophoresis, and its concentration and purity
assessed spectrophotometrically. CAV-2 vector genomes were
then quantified by PCR (qPCR) using the inverted terminal
repeats (ITR) sequences. To detect the amplification products,
qPCR was performed on these DNAs with Power SYBRr

Green (Applied Biosystems, Foster City, CA, USA) and specific
primers using an ABI Prism 7300 sequence detector (Applied
Biosystems, Foster City, CA, USA). The primer sequences used
for qPCR were forward: AGGACAAAGAGGTGTGGCTTA;
reverse: GAACTCGCCCTGTCGTAAAA. The samples
were run in triplicate. Data were normalized against the
GAPDH sequence amplified using the primers GAPDH
forward: CCACCCAGAAGACTGTGGAT; GADPH reverse:
TTCAGCTCAGGGATGACCTT. Reference curves were
established by determining cycle threshold (Ct) values for the
amplification of serial dilutions of the CAV-2 genome.

Histology
Immunohistochemistry (IHC) and immunofluorescence (IF)
staining were performed on free-floating sections (see Table 1
for primary antibodies and Table 2 for secondary antibodies).
Tissue sections were washed in bi-distilled water and 0.01 M
PBS to remove the cryoprotectant solution and incubated in
PBS with 0.02% hydrogen peroxide (H2O2; Merck Millipore,
Darmstadt, Germany) for endogenous peroxidase inhibition.
After that, they were blocked in 5% normal serum (goat or
donkey in the function of the secondary antibody used) with
0.2% Triton X-100 (Sigma–Aldrich, St. Louis, MO, USA) for
60 min and then incubated overnight in the same solution
containing a primary antibody. After being rinsed in 0.01 M PBS,
tissue sections were incubated in 0.01 M PBS with 5% normal
serum and containing the corresponding secondary antibody.
The type of antibody, the time of incubation and subsequent
steps were dependent on IHC or IF technique performed. In the
IHC, the sections were incubated at room temperature with the
corresponding biotin secondary antibody for 30 min and after,
the sections were rinsed with the vector avidin-biotin complex
(1:200 Vectastain ABC kit, Vector Laboratories, Burlingame, CA,
USA) for 30 min. Staining for peroxidase was performed with
the DAB substrate kit (Vector Laboratories, Burlingame, CA,
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TABLE 1 | Primary antibodies used in the study.

Antigen Host Source, catalog
Working concentration/
Incubation period (h) Normal localization

GFP Rabbit polyclonal Molecular Probes, A11122
RRID:AB_221569

1:1,000/16 Recognizes the CAV-GFP/
HD-GFP transduced areas

MTCO2 Mouse monoclonal Abcam, AB3298
RRID:AB_303683

1:500/24 Recognizes mitochondria

NeuN Mouse monoclonal Millipore, MAB377
RRID:AB_2298772

1:1,000/24 Neurons

PHF-1 Rabbit polyclonal Calbiochem, 577815 1:500/24 Recognizes the phospho-Tau
epitope (Ser396/Ser404)

Tyrosine Hydroxylase (TH) Mouse monoclonal Millipore, MAB5280
RRID:AB_2201526

1:1,000/16 Dopaminergic neurons

TH Rabbit polyclonal Millipore, AB152
RRID:AB_390204

1:1,000/16 Dopaminergic neurons

VMAT2 Rabbit polyclonal Novus Biologicals,
NBP1-69750
RRID:AB_11035444

1:500/16 Monoaminergic neurons

TABLE 2 | Secondary antibodies used in the study.

Antigen Host Source, catalog Working concentration/Incubation period (h)

Anti-mouse Alexa 546 Goat Molecular Probes, A11003 RRID:AB_141370 1:500/2
Anti-mouse Alexa 568 Donkey Molecular Probes, A10037 RRID:AB_2534013 1:500/2
Anti-mouse Alexa 488 Goat Molecular Probes, A11029 RRID:AB_138404 1:500/2
Anti-mouse Alexa 488 Donkey Molecular Probes, A21202 RRID:AB_141607 1:500/2
Anti-rabbit Alexa 555 Donkey Molecular Probes, A31572 RRID:AB_162543 1:500/2
Anti-rabbit Alexa 568 Goat Molecular Probes, A11011 RRID:AB_143157 1:500/2
Anti-rabbit Alexa 488 Goat Molecular Probes, A11034 RRID:AB_2576217 1:500/2
Biotin anti-mouse Goat Dako, E0433012 RRID:AB_2687905 1:200/0.5
Biotin anti-rabbit Goat Dako, E0432 RRID:AB_2313609 1:200/0.5

USA). Finally, the sections were rinsed in double-distilled water
and 0.01 M PBS, mounted on gelatin-coated slides and air-dried.
The next day, almost all the sections were Nissl counterstained
and coverslipped using DPX (VWR, Radnor, PE, USA). In
the IF, the corresponding secondary antibody was incubated
for 2 h in 0.01 M PBS containing normal donkey/goat serum
(1:20). Finally, some sections were counterstained with a nucleic
acid stain (TO-PRO-3 iodide, Molecular Probes, Waltham, MA,
USA) and coverslipped with mounting medium (Immu-mount,
Thermo-Shandon).

Cell Counting and Volume Measurement
The total number of TH+ and VMAT2+ neurons in the
SN were quantified according to the optical fractionator
principle (Olympus CAST system, Denmark). Cells in every
14th section were quantified. To determine the area transduced
following CAV-GFP injection in the putamen, 40-µm-thick
coronal sections were generated and anti-GFP IHC and Nissl
counterstaining was performed. Every 12th section, from +7 to
−8 (according to the Martin and Bowden atlas) was used.
The striatal volume (caudate + putamen) and the volume
of GFP-immunoreactivity were quantified according to the
Cavalieri principle using CAST software. The transduced area in
SN in the animals of the CAV-GFP group was determined using
stereology in consecutive serial coronal sections of SN stained
using anti-TH and anti-GFP IHC.

Densitometry of pTau Immunoreactivity
Samples were viewed and digitalized with an Olympus BX-51
microscope equipped with an Olympus DP-70 camera using
the CAST grid software package (Olympus, Denmark). The
images were analyzed using ImageJ software, converted to an
8-bit (binary) format and the background (20 pixels) subtracted.
Consequently, the perimeter of each layer was outlined manually
for each image excluding any unwanted immune stained
structures (i.e., capillary). Then, the same threshold limits
were defined for each image and the percentage of immune-
reactive area was determined. The images were obtained from
different brain regions and different magnification according
to the protein in the study. IHC was performed using the
same incubation times. The same investigator performed all
quantifications with masked sections.

Statistical Analyses
The histological findings (volume, stereology, and densitometry)
were analyzed by parametric tests by comparing intact and
animals injected with HD-LRRK2G2019S in the putamen, whereas
the comparisons between SN-injected HD-GFP/LRRK2G2019S

animals were performed with non-parametric analysis. Finally,
comparisons between different groups were performed using the
Kruskal–Wallis test followed by the Mann–Whitney test (2–2).
The results are expressed as a mean ± standard error of the
mean (SEM).
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RESULTS

CAV-2 Preferentially Infects Neurons and Is
Transported to Efferent Regions
Targeting the putamen in the monkey brain is straightforward
and allows one to rapidly determine the efficacy of vector
transduction and retrograde transport, due to its multiple and
well-characterized connections. We, therefore, injected CAV-
GFP, a replication-defective CAV-2 vector harboring a GFP

expression cassette, in the M. fascicularis left putamen. GFP was
observed within cell bodies and projections with neuron-like
morphology (Figures 1A–G). The GFP signal in the putamen
and caudate (Figure 1A) corresponds to a volume of 540 mm3

(∼47% of total striatum (1,140 mm3), with an approximative
ratio between injected volume and transduced volume of 1:9.
We also detected GFP expression in the soma of cells located
in the injected and contralateral motor cortex, claustrum,
parafascicularis, centromedian thalamus nuclei, and in the SN,

FIGURE 1 | Coronal sections of animals injected with canine adenovirus type (CAV)-GFP in the left putamen. (A) Low magnification of immunohistochemistry (IHC)
against GFP and Nissl counterstained of the injected putamen; (B) higher magnification of IHC against GFP and Nissl counterstained of the injected thalamus; (C)
IHC against GFP and Nissl counterstained of the substantia nigra (SN) of the injected hemisphere; (D) IHC against GFP (pink) and NeuN (black) in the SN of the
injected hemisphere; and in the contralateral SN (E) immunofluorescence (IF) against GFP (green; F) IF against TH (red; G) merge of (E,F). White arrows denoted
TH+/GFP+ cells. Scale bars: (A) 1 mm; (B,C) 100 µm; (D) 10 µm; (E) 5 µm.
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where the majority were NeuN+ (Figure 1D). We also quantified
the efficacy of retrograde transport from the putamen to the SN.
In this pilot assay, ∼5% of the ∼1,20,000 TH+ cells neurons in
the ipsilateral SN were GFP+. Of note, we also found a handful
of GFP+/TH+ cells in the contralateral SN (Figures 1E–G).
Together, these data demonstrate CAV-2 vector infection at the
site of injection, the retrograde transport from the putamen to
efferent regions, and that the monkey SN sends DA projection to
the striatum in each hemisphere.

Injections of HD-LRRK2G2019S in the
Putamen
We then explored the injection of HD-LRRK2G2019S (Mestre-
Francés et al., 2018) in the Macaca fascicularis brain. Because
dopaminergic neurons in the SN are lost in Parkinson’s disease
patients, our null hypothesis was that one may need to target
these neurons to induce disease-like features. Notably, striatal
injection of CAV-2 vectors leads to a transduction efficacy
of ∼70% of the dopaminergic neurons in the SN of the
gray mouse lemur (Mestre-Francés et al., 2018). While the
injection of CAV-GFP in the monkey putamen suggested that
technical improvements would be needed to reach this level,
a non-cell autonomous effect of LRRK2G2019S activity might
impact the putamen and/or SN (di Domenico et al., 2019).
We, therefore, injected four monkeys in the left putamen with
HD-LRRK2G2019S. Of note, in the gray mouse lemur, we found
no adverse physiological, histological, or biological effects from
a control vector (HD-GFP) injections. Nonetheless, because a
cohort of monkeys injected with HD-GFP was not performed at
this stage, the below results are only suggestive.

To determine if LRRK2G2019S activity could influence
nigrostriatal termini density or DA uptake in the striatum, we
measured 11C-DTBZ and 18F-FDG levels by PET. Compared
to pre-injection levels, we found a decrease in DTBZ uptake
throughout the injected striatum at 15 days postinjection,
which remained stable during the 6-months follow-up
(Figure 2A). When the anterior and posterior striatum
were analyzed separately, we found that DTBZ uptake was
reduced during the first month in the anterior putamen
(Figure 2B), and a progressive reduction in the posterior
putamen (Figure 2C). DTBZ uptake in the caudate was relatively
stable (Figure 2D). FDG-PET scans at 0.5, 3, and 6 months
postinjection showed bilateral hypermetabolism in the ventral
striatum, thalamus and midbrain at 6 months (Figures 2E–G).
Quantification suggested that the ipsilateral pre-frontal gyro,
bilateral superior frontal gyro, and bilateral thalamus displayed
hypermetabolism 3 months postinjection. We also noted a trend
towards a mild, bilateral, parieto-occipital hypometabolism
(Figure 2G).

After the in vivo follow-up, the monkeys were killed, the
brains fixed, and prepared for downstream assays. Initially, we
found no difference in the number of TH+ cells between the
injected vs. the contralateral hemisphere (1,04,000 ± 24,000 vs.
1,14,000 ± 22,000, respectively), or in the number of VMAT+

cells (1,14,000 ± 22,400 vs. 1,19,000 ± 14,000, respectively).
In contrast to the contralateral hemisphere, some SN cells in
the injected hemisphere presented with dystrophic neurites, and

broken and swollen axons (Figures 3A,B). Also, the somas of
some nigral neurons were fusiform and more mitochondrially-
encoded cytochrome C oxidase II (MTCO2) immunoreactive
(Figures 3C,D). The presence of pTauSer395/Ser404 in cortex
regions is a common feature in LRRK2 model systems (MacLeod
et al., 2006; Li et al., 2009; Melrose et al., 2010) and 79%
of LRRK2 mutation carriers have been reported to have tau
pathology (Poulopoulos et al., 2012). We, therefore, assayed
for pTauSer395/Ser404 accumulation. We found increased IR in
the white matter of the prefrontal, motor cortex and internal
capsule of the injected vs. that from contralateral hemisphere
and intact animals (Figures 4A,B). Finally, we used brain
sections from the SN, putamen and motor cortex to isolate
total DNA. Using qPCR targeting a conserved part of each
vector sequence, we detected genomes in both hemispheres,
with levels consistently higher in the injected hemisphere
(Table 3).

Together, these data suggest but do not unequivocally
demonstrate, that expression of LRRK2G2019S induces some
of the histopathological hallmarks present in patients with
genetic Parkinson’s disease. Although HD-CAV-2 vectors lead
to long-term transgene expression in vivo, and that it is unlikely
that capsid uptake still had an effect on neurons 6 months
postinjection (Piersanti et al., 2015; Mestre-Francés et al., 2018;
del Rio et al., 2019), further controls need to be performed to
show that these phenotypes are not linked to the CAV-2 capsid.

CAV-GFP, HD-GFP, and HD-LRRK2G2019S
Injections Into the SN
If a cell-autonomous effect of LRRK2G2019S is responsible for the
loss of SN neurons in Parkinson’s disease, then gene transfer
needs to be more efficient in these cells. Therefore, in the second
set of pilot assays, we bilaterally injected CAV-GFP in the SN
to test vector efficacy. GFP+ neurons were detected in the SN,
motor cortex, putamen, caudate, lateral hypothalamus, and the
pedunculopontine nucleus bilaterally (Figures 5A–G). Of note,
∼72% of the TH+ cells in SNs were GFP+.

These data prompted us to compare HD-GFP (a HD CAV-2
vector expressing GFP) and HD-LRRK2G2019S injections in
the SN. The results from six monkeys (three received HD-
LRRK2G2019S and three received HD-GFP) injected in the left SN
are shown. During the 6-month follow-up, we found no notable
differences in DTBZ or FDG uptake in HD-LRRK2G2019S-
injected vs. the HD-GFP-injected animals, or between the
injected and non-injected hemisphere (not shown). Themonkeys
were killed, and the brains were prepared for histology and
stereology. While the number of VMAT2+ cells was similar in all
12 SNs (i.e., three HD-GFP- and three HD-LRRK2G2019S-injected
hemispheres, and the six non-injected hemispheres) there was
a modest reduction in the number of TH+ cells in the injected
hemispheres (Table 4). We then compared pTauSer395/Ser404 IR
in HD-LRRK2G2019S- vs. HD-GFP-injected animals. While, we
found no differences in pTauSer395/Ser404 IR in the internal
capsule, there was a modest increase in the frontal and motor
cortex of HD-LRRK2G2019S-injected monkeys (Figure 6). Finally,
we found vector genomes in both hemispheres and, as expected,
higher levels in the injected hemispheres (Table 5).
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FIGURE 2 | Quantification of DTBZ and FDG uptake via PET scan following putamen injections of helper-dependent (HD)-LRRK2G2019S. (A) Representative image
of DTBZ-PET scan in the striatum; (B) anterior putamen; (C) posterior putamen; and (D) caudate. SPM analysis of the FDG PET scan showing (E) reduction in the
hypermetabolic areas. SPM analyses suggested a change in dopaminergic uptake (p ≤ 0.001) in the left striatum that remained stable at 0.5, 3, and 6 months after
surgery right column; and (F–G) changes in the hypometabolic areas.

Together, these data suggest that following unilateral HD-
LRRK2G2019S injection into the SN, LRRK2G2019S increased
pTauSer395/Ser404 levels, but did not induce changes in
nigrostriatal terminal density or glucose metabolism in the
striatum, or the number of VMAT2+ cells in the SN.

DISCUSSION

Similar to the results found in other species (del Rio et al.,
2019), we demonstrated here that CAV-2 preferentially infects
neurons and is transported to efferent sites when injected into the
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M. fascicularis brain parenchyma. These data are consistent with
the neuronal expression of the coxsackievirus and adenovirus
receptor (CAR) and its role in axonal transport in rodent neurons
(Salinas et al., 2009; Loustalot et al., 2016; Zussy et al., 2016).
While little is known concerning CAR in the M. fascicularis
brain, CAR expression pattern (i.e., in which subtype/population
of neurons and in which structure), as well as the monkey

FIGURE 3 | Histological aspect of nigral neurons after the injection of
HD-LRRK2G2019S in the putamen. (A,B) IHC against TH and Nissl
counterstained in the SN from an intact monkey and in the SN from a monkey
injected in the putamen. Dystrophic neurites (broken and swollen axons) in
the injected hemisphere. (C,D) IHC against mitochondrially-encoded
cytochrome C oxidase II (MTCO2) in nigral neurons of an intact monkey and a
representative image from an HD-LRRK2G2019S injected monkey. Scale
bars = 20 µm.

neuroanatomical connections, and brain size, likely influenced
CAV-2 vector tropism and biodistribution efficacy.

The mean age of PD onset for LRRK2G2019S mutation carriers
is 57.5 years (Healy et al., 2008), which is similar to the age
of onset of idiopathic PD, and suggest that age-related factors
can also play a role in the genesis of symptoms in these
patients. In our pilot assays, we used 4–5 years old monkeys,
which may have precluded the rapid inception of functional
and/or histological LRRK2G2019S-associated disease phenotype.
Of note, we also used the relatively weak RSV promoter to drive
LRRKG2019S expression to better mimic physiological levels, and
therefore disease progression. While injections in the putamen
led to a lower efficacy of SN infection, they appeared to induce
greater impact concerning perturbed striatal metabolic activity
and histological factors. Whether these data reflect a greater
pathological role for LRRK2G2019S activity in the neurons in
the putamen vs. those in the SN, or that the neurodegenerative
process could begin in the nigrostriatal projections (Burke
and O’Malley, 2013) needs more analyses. However, if this is
the case, bilateral putamen injections in aged monkeys will
likely allow more robust disease inception. Consistent with
this reasoning, the modest reduction of DTBZ uptake in the
contralateral putamenmay be indicative of the impact of bilateral
SN projections and compensatory effects. Interestingly, following
HD-LRRK2G2019S putamen injections the changes in DTBZ
uptake resembles that seen patients (De La Fuente-Fernández
et al., 2003; Ishibashi et al., 2014), and is in contrasts to that
seen following MPTP intoxication (Snow et al., 2000; Blesa
et al., 2010). While we did not compare DTBZ uptake to
putamen injection of HD-GFP, our observations mirror the data
from pre-symptomatic carriers of an LRRK2 mutation (Adams
et al., 2005; Nandhagopal et al., 2008). The modest reduction
in radiotracer uptake by the striatum could be indicative of the

FIGURE 4 | pTauSer395/Ser404 immunoreactivity following HD-LRRK2G2019S injections in the putamen: pTauSer395/Ser404 immunoreactivity in the internal capsule in (A)
an intact animal (control), contralateral hemisphere, and injected hemisphere. Scale bar, 100 µm. (B) Quantification of pTauSer395/Ser404 immunoreactivity by optic
densitometry. *p ≤ 0.05 (student’s t-test).
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TABLE 3 | Vector genomes in the HD-LRRK2G2019S putamen-injected cohort.

Left hemisphere (injected) Right hemisphere

SN putamen cortex SN putamen cortex

7,070 (±2,320) 23,100 (± 8,960) 1,530 (± 270) 1,190 (± 390) 4,080 (± 325) 637 (± 90)

FIGURE 5 | CAV-GFP injection in macaque SN. Coronal sections of animals injected bilaterally in the SN. (A) Low magnification of IHC against GFP and Nissl
counterstained of an injected SNs; (B) higher magnification of GFP expression and Nissl counterstaining in the SN; and (C) GFP-IR in the pedunculopontine
tegmental nucleus; (D) GFP-IR in the motor cortex; (E,F) IF against GFP (green) and TH (red) in an SN (G) merge of (E,F). White arrows denoted TH+/GFP+ cells.
Scale bars (A) 5 mm; (B–D) 100 µm; (E) 20 µm.
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TABLE 4 | TH+ and VMAT2+ cells in the SN.

Cohort Side TH+ neurons mean (SD) VMAT2+ neurons mean (SD) p TH/VMAT2*

HD-LRRK2G2019S-SN Right 1,24,000 (± 16,600) 86,300 (± 6,340) 0.08/0.03
Left 1,04,000 (± 3,870) 87,300 (± 17,100) 0.03/0.03

HD-GFP -SN Right 115,000 (± 10,200) 91,700 (± 17,400) 0.03/0.03
Left 99,500 (± 2,500) 91,600 (± 27,800) 0.03/0.03

*U-Mann Whitney test.

FIGURE 6 | pTauSer395/Ser404 IR following HD-GFP or HD-LRRK2G2019S injection in the SN. Representative images of pTauSer395/Ser404 IR from the frontal cortex of
(A) an intact animal; (B) the contralateral hemisphere and (C) the injected hemisphere. (D) Quantification of signal intensity from pTauSer395/Ser404 IR in the prefrontal
cortex, motor cortex and internal capsule (n = 3 monkeys). Scale bar = 200 µm; ∗p ≤ 0.05.

TABLE 5 | Vector genomes in the SN-injected cohort.

Left hemisphere Right hemisphere

SN putamen cortex SN putamen cortex

HD-GFP 80,000 (± 22,500) 2,550 (± 1,320) 186 (± 42) 7,450 (± 2,520) 49 (± 260) 65 (± 29)
HD-LRRK2G2019S 2,20,000 (± 34,500) 1,270 (± 145) 434 (± 142) 2,840 (± 595) 552 (± 124) 76 (± 40)

preclinical phase of Parkinson’s disease, which is estimated to
be an annual reduction of 4.7% (Hilker et al., 2005). We do
not know if the decrease in DTBZ uptake in these monkeys
would have continued and led to the motor manifestations of
Parkinson’s disease.

Importantly, the morphological anomalies we found are
similar to reports using other LRRK2 forms (Li et al., 2009;
Ramonet et al., 2011), and were not found in the HD-
GFP-injected animals. Interestingly, LRRK2G2019S was able to
increase the level of pTauSer395/Ser404 in fibers of brain regions
that project into the putamen or SN. Tau binds tubulin to
stabilize microtubules and promotes tubulin assembly into
microtubules. The maintenance of cellular morphology and
transport of molecules and organelles over long distances

depends on microtubules stabilization by tau in neurons and
altered tau function could block the transport of organelles,
neurofilaments, and vesicles (Spires-Jones et al., 2009). Our
results agree with those reported by Melrose et al. (2010)
who described a similar increase in pTauSer395/Ser404 IR in
white matter fibers in the thalamus, hypothalamus, striatum,
and midbrain, as well as tracts in the pontine base and
medulla of LRRK2G2019S mice. Finally, 21–54% of LRRK2-
associated Parkinson’s disease patients do not show apparent
Lewy bodies in the SN although they show loss of dopaminergic
neurons in this area (Poulopoulos et al., 2012; Kalia et al.,
2015). Also, higher grade tau pathology in cortical areas is
a prominent feature of LRRK2-associated Parkinson’s disease
(Henderson et al., 2019).
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In summary, our study demonstrates that CAV-2 vectors
are powerful tools for gene transfer to the M. fascicularis
brain and that, following optimization, CAV-2–mediated
expression of LRRK2G2019S may be used to induce a functional
impairment of the nigrostriatal dopaminergic system inducing
histological changes.
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