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Merosin deficient Congenital Muscular Dystrophy (MDC1A), or LAMA2-related muscular
dystrophy (LAMA2-RD), is a recessive disorder resulting from mutations in the LAMA2
gene, encoding for the alpha-2 chain of laminin-211. The disease is predominantly
characterized by progressive muscular dystrophy affecting patient motor function and
reducing life expectancy. However, LAMA2-RD also comprises a developmentally-
associated dysmyelinating neuropathy that contributes to the disease progression, in
addition to brain abnormalities; the latter often underappreciated. In this brief review,
we present data supporting the impact of peripheral neuropathy in the LAMA2-RD
phenotype, including both mouse models and human studies. We discuss the
molecular mechanisms underlying nerve abnormalities and involved in the laminin-211
pathway, which affects axon sorting, ensheathing and myelination. We conclude
with some final considerations of consequences on nerve regeneration and potential
therapeutic strategies.
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INTRODUCTION

LAMA2 encodes the α2 chains of the laminin-211 (also known as merosin), a major component
of the basal lamina of Schwann cells and skeletal muscles (Ehrig et al., 1990). Indeed, loss of
function mutations of the LAMA2 gene in humans, and the Lama2 gene in rodents, results in
muscular dystrophy, dysmyelinating neuropathy, and brain abnormalities. This results in Merosin-
deficient Congenital Muscular Dystrophy (MDC1A, OMIM #607855) also known as LAMA2-
related muscular dystrophy (LAMA2-RD).

LAMA2 NEUROPATHY IN HUMAN BEING

Shortly after the identification of the LAMA2 gene in 1995 (Helbling-Leclerc et al., 1995),
abnormalities in the nerve conduction studies of children affected by LAMA2-RD were reported
(Shorer et al., 1995). Over two decades later, the clinical significance and pathophysiology of such
alterations are yet to be clarified.
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The first neurophysiological studies conducted on genetically
confirmed patients outlined the high prevalence of mild-to-
moderate motor demyelinating neuropathy: deep peroneal nerve
motor conduction velocity ranged from 27 to 42 m/s in
patients older than 2 years (normal values >42 m/s; 43–57 m/s;
Shorer et al., 1995). Although initial reports suggested that
compound motor action potential (CMAP) amplitudes and
sensory fibers were both preserved in LAMA2-RD, subsequent
studies disproved these findings.

Neurophysiological evidence of demyelinating sensorimotor
neuropathy can be present as early as 1–6 months of age.
With growth, conduction velocities may progressively decrease
(Mercuri et al., 1996; Quijano-Roy et al., 2004) along with a
reduction of CMAP amplitudes, consistent with a combined
axonal and demyelinating polyneuropathy (Brett et al., 1998;
Fujii et al., 2011; Verma et al., 2018). Conversely, conduction
blocks have not been reported in other studies (Di Muzio et al.,
2003; Quijano-Roy et al., 2004; Verma et al., 2018). Although the
presence of residual merosin in muscle usually correlates with a
milder clinical phenotype and lesser muscle involvement, there
is no proven relation with peripheral nerve damage. This may be
due to either discordant expression of the laminin-α2 chain in the
basement membrane surrounding myofibers and Schwann cells,
or the role of compensatory tissue-specific laminin isoforms (see
paragraphs below on animal models; Vainzof et al., 1995; Mora
et al., 1996; Prelle et al., 1997; Di Muzio et al., 2003).

Muscle and skin biopsies of patients affected by LAMA2-RD
display absence of laminin α2 in intramuscular motor nerves
(a finding not observed in patients with secondary merosin
deficiency), and in skin neural structures, respectively (Tomé
et al., 1994; Hayashi et al., 1995; Osari et al., 1996; Marbini et al.,
1997; Sewry et al., 1997; Chan et al., 2014).

Morphological data from sensory sural nerve biopsies have
been scarcely described in the literature. The few studies
available show a reduced number of fibers, especially those
of larger caliber (>6–7 µm), and variable myelin diameter.
In particular, both focally thickened myelin (tomacula like),
and thinner and uncompacted myelin have been reported; the
former predominantly in small fibers and possibly at paranodes.
Associated findings were shorter internodes and wider nodes of
Ranvier (>5 µm), suggesting a disorder in myelinogenesis that
resembles murine models (Shorer et al., 1995; Mercuri et al.,
1996; Deodatoa et al., 2002; Di Muzio et al., 2003; Quijano-Roy
et al., 2004; North et al., 2014). Whilst demyelination and onion
bulbs were not observed in sural nerve biopsies, post-mortem
pathology of the cauda equina showed clear evidence of ongoing
segmental demyelination and remyelination in one case (Hissong
et al., 2016). Moreover, one case report described a marked
reduction in the number of myelinated axons together with
naked axons and increased collagen deposition on electron
microscopy (Brett et al., 1998).

It is still not clear to which extent peripheral neuropathy
contributes to muscle weakness in patients affected by LAMA2-
RD. Absent deep tendon reflexes, distal muscle atrophy and
weakness, neurophysiology, and neuropathology studies are
consistent with a predominantly dysmyelinating sensory-motor
polyneuropathy with some axonal involvement (Mora et al.,

1996; Deodatoa et al., 2002; Di Muzio et al., 2003; Verma
et al., 2018). However, studies are reporting the preservation of
CMAP amplitudes and the absence of neurogenic changes on
electromyography (EMG), suggesting that axonal degeneration
may be negligible in some patients (Quijano-Roy et al., 2004).
It is of course possible that neurogenic defects are somehow
masked in these patients by the predominantmuscular dystrophy
phenotype, or that nerve involvement is prevalent in some
mutation types.

Neurophysiology revealed reduced sensory action potentials
(SAP) in a few cases (Di Muzio et al., 2003; Quijano-Roy et al.,
2004). However, tactile sensation, proprioception, and vibration
are usually normal (Chan et al., 2014) or mildly altered (Mora
et al., 1996) at clinical assessment.

Overall, the main neuropathophysiological feature of
LAMA2-RD seems to be an abnormal maturation of
myelin sheets accompanied by segmental demyelination.
In murine models, the secondary axonal loss has been
extensively described; yet, this is less commonly reported
in humans (Brett et al., 1998). Neuropathy could be still
a potentially detrimental contributor to disease burden,
particularly in patients with partial deficiency where the
overall clinical picture is not overshadowed by severe muscle
involvement. Finally, although we lack consistent data suggesting
progressive axonal loss and clinically significant neuropathy
in patients with LAMA2-RD, future therapies might reveal
new phenotypes.

LAMA2 NEUROPATHY IN MOUSE MODELS

The prototype of LAMA2-RD was first reported in mice of the
Bar Harbor 129 Re strain in 1955 (dystrophic mice Lama2dy/dy);
this was however limited to the recessive inherited muscular
dystrophy phenotype (Michelson et al., 1955). In the 1970s,
nerve conduction studies showed functional abnormalities of the
peripheral nerve (Papapetropoulos and Bradley, 1972; Bradley,
2008), which was confirmed by subsequent morphological
studies. In 1971, Harris observed a reduced number of
intramuscular myelinated fibers in Lama2dy/dy mice (Harris
and Wilson, 1971). This data was confirmed and quantified
in the tibialis nerve in 1972 (Harris et al., 1972), and
further extended to other nerves and roots by Bradley and
Jenkison (1973). Similar findings were described a year later in
Lama2dy2J/dy2J (Biscoe et al., 1974). The genetic characterization
of dystrophic mice was achieved two decades after this, when
mutations of the Laminin chain α2 gene (Lama2) were
reported (Xu et al., 1994; Sunada et al., 1995). Recently, mouse
engineering by homologous recombination generated further
mutants that have almost complete (Lama2dyW/dyW; Kuang
et al., 1998) or a complete lack (Lama2dy3K/dy3K; Miyagoe
et al., 1997) of laminin-211 expression. Finally, a further
mutant was generated by ENU-induced point mutation C79R,
called Lama2dynfm417/dynfm417 (Patton et al., 2008). This mouse
mutant shows typical Lama2 muscle and nerve pathology in the
presence of normal expression (but not function) of laminin-
211. This is likely due to defective high-level organization (3D
interactions between different laminin-211 heterotrimers; see
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FIGURE 1 | Bundle of unsorted axons in Lama2 mutants. (A) Normal
Remak fiber, formed by a non-myelin forming Schwann cell (nmfSC) with
unmyelinated axons (Ax); axons are smaller than 1 µm and are well separated
and ensheathed by a single non-myelin forming Schwann cell. (B–D) Bundle
of unsorted, non-ensheathed, and tightly packed axons of different caliber
(some are larger than 1 µm, as Ax in figure B and C), are similarly present in
Lama2dy2J/dy2J (B), Lama2dyW/dyW (C) and Lama2dy3K/dy3K (D) mice. Bar = 1
µm in (A), 2 µm in (B,C), 1 µm in (D).

Yurchenco andMcKee, 2019) and missing interaction with other
specific molecular partners.

All of these Lama2 mutants are characterized by progressive
muscle wasting and consequent motor impairment, ranging
from a less severe phenotype and almost normal lifespan
of Lama2dy2J/dy2J (and likely Lama2dynfm417/dynfm417) to the
most severe form Lama2dy3K/dy3K, which die within 3–4 weeks
after birth. Peripheral nerves display typical morphological
features that are considered prototypic abnormalities of Lama2
neuropathy. The morphological hallmark is the presence of
defective axonal sorting during nerve development resulting
in bundles of ‘‘naked’’ unsorted axons (Figures 1, 2 and
Supplementary Table S1). This finding is spanning from
spinal roots (more consistently) to peripheral nerves, including
cranial nerves (Biscoe et al., 1974). These bundles contain
several axons of mixed caliber, as well as those larger than
1 µm that should be sorted out and myelinated. Axons
are tightly packed and often completely unsheathed or only
partially surrounded by Schwann cell protrusions (Figure 3).
Axonal sorting is a process that in rodents is completed
within a few weeks, starting a couple of weeks before birth
and ending around postnatal day 10 (P10). A similar process
likely occurs in all vertebrates. In this process, immature
Schwann cells surrounding bundles of mixed caliber axons
start a physiological process of axon ‘‘docking’’ and ‘‘locking’’
to sort them out of the bundle, as well described and
illustrated by Henry Webster in the 1970s and recently reviewed
(Feltri et al., 2016). Only axons with a diameter larger than
1 µm are sorted, although the molecular mechanism that
sustains their selection (docking) and engagement (locking)
is still mostly unclear. In parallel, immature Schwann cells
proliferate to match the axon number and to organize a
continuous basal lamina around them (Webster et al., 1973;
Jessen and Mirsky, 2005). In Lama2 models, many axon
bundles are devoid of Schwann cell processes, although in other
Schwann cell processes are visible between axons (Stirling, 1975;

FIGURE 2 | Schematic representation of unsorted axons in Lama2 nerves. Each axon along its length can be myelinated at one internode and belong to a bundle
of unsorted axons in the subsequent one. The electron microscope (E.M.) constitutes a hypothetical cross-section of the nerve fibers in the scheme; unsorted axons
are pseudo-colored in yellow, myelinated fibers in blue.
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FIGURE 3 | Lama2 Schwann cells fail to sort axons. Unsorted axons are
surrounded by immature Schwann cells that fail to sort them. In this E.M.
photograph from Lama2dy2J/dy2J sciatic nerve, the axon protrusions of one
immature Schwann cell are pseudo-colored in blue. Bar = 1 µm.

Yu et al., 2001; Yang et al., 2005). This also reflects the mouse age
as they tend to reduce in size and number with age (at least
in long-living Lama2dy2J/dy2J.mice), suggesting that radial sorting
may last longer in mutant mice (Yang et al., 2005 and S. C.
Previtali personal observation).

Other nerve abnormalities include a reduced number of
myelinated fibers as already reported in the original description
of Lama2dy/dy mice, including ventral and dorsal roots, tibial and
sciatic nerves (Harris et al., 1972; Bradley and Jenkison, 1973;
Salafsky and Stirling, 1973). Axon diameters are significantly
reduced in Lama2dy2J/dy2J (Gawlik et al., 2006) along with a
reduced number of myelinated fibers in Lama2dy3K/dy3K mice
(Yu et al., 2001). Occasional degenerating axons are described in
Lama2dy/dy mice (Bradley and Jenkison, 1973).

Myelin thickness is reported normal or reduced in many
myelinated fibers of Lama2dy/dy and Lama2dy2J/dy2J mice
(Gawlik et al., 2006), in which few fibers (usually of small
diameter) may have thicker myelin sheath (Ghidinelli et al.,
2017). In Lama2dy3K/dy3K nerves, fibers are significantly thinner
(Yu et al., 2001).

Nodes of Ranvier are reported wider in dystrophic Lama2dy/dy
and Lama2dy2J/dy2J (Madrid et al., 1975; Jaros and Bradley, 1979;
Occhi et al., 2005), whereas they are narrowed in Lama2dy3K/dy3K
(Yu et al., 2001; Gawlik et al., 2006). Internodes are diffusely
shorter in almost all the Lama2 subtypes (Court et al., 2009 and
E. Porrello and S.C. Previtali, unpublished results).

Finally, sensory nerves are sometimes reported as
morphologically less affected than motor nerves (Jaros and
Jenkison, 1983), although our experience revealed similar
findings in motor and sensory roots and nerves (S.C. Previtali,
unpublished results).

With regards to other laminin isoforms described in
peripheral nerves of Lama2 mice, the α1 chain (generating
laminin-111) is not expressed in wild type nerves, whereas it
is reported to be upregulated in sciatic nerves of Lama2dy2J/dy2J
mice (Previtali et al., 2003b), but absent in Lama2dy3K/dy3K
(Gawlik et al., 2006). The α4 chains, generating the main
laminin isoform in embryonic nerve development laminin-411,
is reported to be upregulated in the nerves of Lama2dy/dy,
Lama2dy2J/dy2J and Lama2dy3K/dy3K mice (Patton et al., 1997;
Ringelmann et al., 1999; Yu et al., 2001; Gawlik et al., 2006;
Domi et al., 2015). The α5 chain (generating laminin-511) is also
modestly upregulated in nerves of Lama2dy/dy, Lama2dy2J/dy2J
and Lama2dy3K/dy3K mice (Patton et al., 1997; Ringelmann et al.,
1999; Gawlik et al., 2006; Domi et al., 2015). Moreover, β1 and
γ1 chains, necessary to generate all the laminin isoforms, are
normally expressed in all the Lama2mutants (Patton et al., 1997;
Gawlik et al., 2006).

Accordingly, minor defects in radial sorting are described
when Laminin-411 is deleted (Yang et al., 2005), whereas a severe
defect is observed when both α2 and α4 chains are ablated (Yang
et al., 2005). Similarly, targeted deletion of γ1 chain, impeding
the formation of all the above-mentioned laminin isoforms
(laminin-111, -211, -411 and -511) results in the most severe
and widespread neuropathy characterized by complete lack of
myelination and sorting defect (Chen and Strickland, 2003).

MOLECULAR MECHANISM OF LAMA2
NEUROPATHY

Several laminin-211 receptors have been described so far
in peripheral nerves, which activate downstream signaling
pathways necessary for proper nerve development, function, and
maintenance. Among them, the expression of integrins α6β1,
α7β1, α6β4 and dystroglycan has been reported as timely and
spatially regulated (Previtali et al., 2003b; Berti et al., 2006),
and their effective function confirmed or denied by specifically
targeted gene disruption. The G-protein-coupled receptor 126
(GPR126) has been more recently included in this list (Petersen
et al., 2015).

Expression studies (Previtali et al., 2003b) showed that
β1 integrins are the first ones expressed in nerve development,
since early embryonic stages, likely associated with the
α6 subunits. Dystroglycan appears later on, around the
time of birth. Finally, α7β1 and α6β4 appear in post-natal
development. Accordingly, the deletion of the integrin β1 chain
resulted in severe neuropathy with axonal sorting defects and
dysmyelination (Feltri et al., 2002), thus confirming the role
of β1 integrins in this pathway and the pathogenesis of the
neuropathy. The Schwann cell deletion of dystroglycan, instead,
only mildly impacted nerve development (Saito et al., 2003;
Berti et al., 2011), whereas the deletion of both β1 integrins
and dystroglycan almost completely impaired axonal sorting
and myelination (Berti et al., 2011). Not surprisingly, loss
of β4 integrin did not affect nerve development, while it
may confer stability to mature myelin in peripheral nerves
(Nodari et al., 2008).
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More intriguingly, neither loss of α6 nor α7 integrin chains
in Schwann cells affected nerve development and function
(Previtali et al., 2003a; Pellegatta et al., 2013). While the
loss of α7 could be compensated by the presence of other
(redundant) β1 integrins (likely α6β1) in post-natal development,
it was unexpected that deletion of α6, expressed since early
embryonic nerve development, did not affect nerve formation.
It was shown that α7 is upregulated, thereby compensating
for the absence of α6 during nerve development and that
both α6 and α7 integrins should be deleted to impair the
ability of Schwann cells to spread and bind laminin-211 or -
411 (Pellegatta et al., 2013). However, double α6/α7 integrin
mutants showed only a mild phenotype suggesting that other
Schwann cell-β1 integrins might also contribute to radial
sorting during peripheral nerve development (Pellegatta et al.,
2013). Integrin β1 can couple with other α chains described
in the peripheral nerve, such as α1, α2, α3, α4, α5, α8, α9,
α10 and αv (Lefcort et al., 1992; Milner et al., 1997; Stewart
et al., 1997; Previtali et al., 2003b). These β1-integrins bind
other extracellular matrix components (i.e., collagen, fibronectin,
vitronectin, tenascin, and partially laminins) and may participate
in radial sorting of axons or partially compensate for the
loss of α6 and α7 in mutant mice. Accordingly, loss of
collagen XV aggravates radial sorting defects in laminin-411 null
mice (Rasi et al., 2010).

Downstream signaling pathways originating from integrins
and/or dystroglycan laminin-211 receptors have been widely,
although not exhaustively, investigated. They involve molecules
mainly regulating cytoskeleton rearrangement for proper
cell polarization and formation of Schwann cell protrusions
necessary for axon recognition, sorting, and ensheathment.
Among others, they include integrin-linked kinase (ILK),
focal adhesion kinase (FAK), Rho (Rac1, Cdc42) and Ras
(RalA/B) -GTPases, Profilin, Merlin/neurofibromin (Nf2)
and neuronal Wiskott-Aldrich syndrome protein (N-WASP;
Benninger et al., 2007; Nodari et al., 2007; Pereira et al.,
2009; Jin et al., 2011; Novak et al., 2011; Guo et al., 2013;
Grove and Brophy, 2014; Montani et al., 2014; Ommer
et al., 2019). Other laminin-211 downstream molecules
are instead involved in regulating cell cycle and survival
for proper matching of axon-Schwann cell units, such as
Cdc42, FAK, Wingless-Integrated (Wnt)/α-catenin, and Jab1
(Benninger et al., 2007; Grove et al., 2007; Grigoryan et al., 2013;
Porrello et al., 2014). Most of these molecules and associated
pathways have been previously reviewed (Monk et al., 2015;
Feltri et al., 2016).

More recently, a strict interaction between laminin-211
and neuregulin 1 type III (NRG1 III), the main signal
for peripheral nerve myelination (Nave and Salzer, 2006),
has been discovered (Ghidinelli et al., 2017). During nerve
development, laminin-211 limits NRG1 III function through
the inhibition of protein kinase A (PKA). Loss of laminin-211
would result in overactivation of the NRG1 III pathway resulting
in defective radial sorting, inappropriate/premature myelination
causing polyaxonal myelination or thicker myelin sheath
(Ghidinelli et al., 2017). This would explain the occurrence
of hypermyelinated small-caliber fibers in LAMA2 patients

(Shorer et al., 1995; Di Muzio et al., 2003) and mice (Ghidinelli
et al., 2017). Whether this effect is mediated by different
laminin-211 receptors, and possibly α6α4, remains elusive
(Heller et al., 2014).

Finally, studies in zebrafish and mouse mutants showed
that GPR126 is required in Schwann cells for myelin
expression (Monk et al., 2009) and radial sorting of axons
(Monk et al., 2011; Mogha et al., 2013). GPR126 acts as
a collagen IV and laminin-211 receptor (Paavola et al.,
2014; Petersen et al., 2015), whose interaction promotes
receptor cleavage into N-terminal fragment (NTF) and
seven-transmembrane containing C-terminal fragment (CTF;
Langenhan et al., 2013). The NTF fragment is necessary
to guide radial sorting of axons and is generated by the
interaction of GPR126 with a sort of (more) ‘‘immature’’
laminin-211 (i.e., low polymerization state), thus keeping
the GPR126 receptor ‘‘inactive’’ for myelination (Petersen
et al., 2015). Laminin-211 maturation (i.e., polymerization
and interaction with other ECM components) switches to
GPR126 in ‘‘active’’ state and through CTF can promote
cAMP elevation, PKA activation, and thus myelination
(Petersen et al., 2015).

REGENERATION IN LAMA2
NEUROPATHIES

Intact Schwann cell basal lamina and correct formation of
regenerating tracks of transdifferentiated Schwann cells (known
as Bungner bands) is a prerequisite to preserve Schwann
cell-axon interaction in successful nerve regeneration after
damage (Jessen and Mirsky, 2019). Thus, matrix components
of the basal lamina, such as laminin-211, would constitute
key elements for nerve regeneration. Accordingly, the
expression of laminin-211 and -411 (either as protein or
mRNA) are upregulated after nerve damage (Wallquist
et al., 2002). Moreover, laminin-211 is well known to
promote neurite growth and nerve regeneration (Anton
et al., 1994), even as a substrate of artificial nerve graft
(Seo et al., 2013).

It is therefore not surprising that Lama2dy/dy Schwann cells
provide a poor environment for neurite growth in vitro (Uziyel
et al., 2000). Accordingly, nerve or spinal root damage in
Lama2dy/dy mice resulted in defective axon regeneration and
remyelination (Bray et al., 1983; Uziyel et al., 2000). Defective
reinnervation was also observed in Lama2dy2J/dy2J mice (Parry
and Melenchuk, 1981; S.C. Previtali and E. Porrello, unpublished
results), and have been described in mice with conditional
inactivation of the laminin γ1 chain, disrupting both laminin-211
and -411 (Chen and Strickland, 2003). Finally, the deletion of the
laminin α4 chain did not affect nerve regeneration, suggesting
that only laminin-211 (not -411) is necessary for the nerve to
regenerate (Wallquist et al., 2005).

In conclusion, although there is no direct evidence in human
LAMA2-RD patients, data from animal models suggest that
defective nerve regeneration may contribute to the progression
of LAMA2 neuropathy.
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LAMININ α2 CHAIN AND
NEUROMUSCULAR JUNCTIONS

At the basal lamina of neuromuscular junctions (NMJs), the
laminin α2 chain assembles in trimers with β2 and γ1 forming
laminin-221 (Sanes et al., 1990; Patton et al., 1997). Therein,
other laminin isoforms are also present, including laminin-421
and -521 (Patton et al., 1997). These three laminin isoforms
are essential in establishing and maintaining the structure of
NMJs and the alignment of the presynaptic zone (Rogers and
Nishimune, 2017). Thus, potentially, loss of laminin chain
α2 might affect NMJ formation and function, contributing to the
motor phenotype of LAMA2/Lama2.

There were no reports in the literature of NMJ abnormalities
in LAMA2 patients, neither in terms of symptoms nor as
neurophysiological findings typical of the myasthenic syndrome.
Single fiber EMG was reported in one case and described
as unremarkable (Chan et al., 2014). Lama2 mice have been
investigated at NMJs. Lama2 mutants (at least Lama2dy/dy and
Lama2dy2J/dy2J) develop smaller post-synaptic junctional folds,
partial axon detachment and minor Schwann cell infiltration
of the synaptic cleft (Gilbert et al., 1973; Banker et al., 1979;
Law et al., 1983; Desaki et al., 1995). However, they normally
assemble the presynaptic active zone and properly appose to
the acetylcholine receptors (Gilbert et al., 1973). More severe
effects on NMJs at pre and post-synaptic zone are instead
a consequence of the deletion of laminin chain α4 and/or
α5, and particularly in mice devoid of β2 chain (reviewed
in Rogers and Nishimune, 2017).

Laminin chain α2 has been also described in the assembly
and clustering of acetylcholine receptors, through the interaction
with agrin, perlecan, and MuSK (Smirnov et al., 2005). However,
acetylcholine receptors seem to be preserved in Lama2dy/dy and
Lama2dy2J/dy2J mice (Banker et al., 1979) and are most likely
regulated by laminin α4 and α5 chains (Nishimune et al., 2008).

Loss of laminin α2 in Lama2dy/dy does not affect α4 and
α5 expression at the NMJ (Ringelmann et al., 1999). α4 and
α5 was instead upregulated in Lama2dy3K/dy3K mice, which
otherwise showed normal expression of other NMJ components
such as neuronal cell adhesion molecule and utrophin (Miyagoe
et al., 1997). Finally, NMJs of Lama2dyNmf417/dyNmf417 mice
showed normal expression of laminin chain α2 (as well as
other components) suggesting normal assembly and possibly
function (Patton et al., 2008).

All these data suggest that loss of laminin-221 at the NMJ is
mostly compensated by laminin-421 and -521, although it cannot
be excluded that minor abnormalities described in Lama2 NMJs
might contribute to the motor phenotype and axonal neuropathy
in these mutants.

POTENTIAL TREATMENTS FOR
LAMA2/LAMA2 NEUROPATHY

Lack of the α2 chains of the laminin-211 in peripheral nerves
is responsible for peripheral neuropathy in LAMA2 disorder.
The obvious mechanism to repair this genetic defect would
involve gene replacing and/or gene editing, still not feasible

therapeutically so far. Gene replacement is mainly limited by the
size of the LAMA2 gene (around 9 Kb), too large to be inserted in
useful viral vectors. Gene editing, instead, has been successfully
used to repair Lama2 mutations with the contemporary rescue
of the peripheral neuropathy (Kemaladewi et al., 2017). Here,
the main limitation is related to the off-target effects of the
technique (Tsai et al., 2015).

Other strategies have been used to counteract or prevent
the neuropathy. One major finding was the observation that
the expression of α1 chain in peripheral nerves improved the
neuropathy in Lama2dy2J/dy2J mice, including axonal sorting and
myelination (Gawlik et al., 2006). This was recently confirmed
by employing the CRISPR/Cas9 technology targeting the Lama1
gene promoter delivered by adeno-associated virus (AAV9;
Kemaladewi et al., 2019). Laminin-111 protein was upregulated
in muscle and nerves of Lama2dy2J/dy2J mice, and specifically, in
peripheral nerve, it rescued myelination and nerve conduction
velocities (Kemaladewi et al., 2019).

A further strategy for treating LAMA2/Lama2 disorder is the
use of linker proteins mini-agrin and αLNNd. The first one was
able to reconnect orphan laminin-211 receptors to the other
laminin isoforms expressed in muscle and nerves and the second
one to allow laminin polymerization (Yurchenco et al., 2018).
These proteins are sufficiently small to be packed into AAV
vectors. Accordingly, mini-agrin delivery with AAV9 was able
to reach the peripheral nerve promoting the amelioration of
axonal sorting and myelination in Lama2dyW/dyW treated mice
(Qiao et al., 2018). Cell delivery of mini-agrin bymesoangioblasts
showed instead efficacy in skeletal muscle but not in peripheral
nerves, as these cells could not enter the endoneurium and
were stopped in the perineurium of treated mice (Domi
et al., 2015). Finally, αLNNd was proven to be effective in
promoting myelination in the presence of non-polymerizing
laminin isoforms (McKee et al., 2012).

Apoptosis was shown to play a role in the pathology of
Lama2 mice (Girgenrath et al., 2004; Dominov et al., 2005),
while doxycycline, as well as other tetracycline derivatives,
had been reported to inhibit apoptosis in mammalian cells
(Davies et al., 2005). Thus, doxycycline was investigated in
Lama2dyW/dyW mutants where it showed amelioration of muscle
and nerve pathology (Girgenrath et al., 2009; Homma et al.,
2011). Although the doxycycline mechanism of action in nerves
of Lama2 mutants remains vague, it might be linked to reduced
cell death of immature Schwann cells and amelioration of
Schwann cell differentiation (Homma et al., 2011). Moreover, is
possible that doxycycline acts through different mechanisms in
different tissues.

Glatiramer acetate (GA), an agent for immune modulation,
has been shown to significantly improve mobility and muscle
strength in the Lama2dy2J/dy2J mice (Dadush et al., 2010). Nerve
conduction velocities were also reported significantly increased
in these treated mice, suggesting a valuable effect of the drug on
Lama2 neuropathy (Rabie et al., 2019).
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