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Genetic analyses of patients with amyotrophic lateral sclerosis (ALS) have revealed a
strong association between mutations in genes encoding many RNA-binding proteins
(RBPs), including TARDBP, FUS, hnRNPA1, hnRNPA2B1, MATR3, ATXN2, TAF15,
TIA-1, and EWSR1, and disease onset/progression. RBPs are a group of evolutionally
conserved proteins that participate in multiple steps of RNA metabolism, including
splicing, polyadenylation, mRNA stability, localization, and translation. Dysregulation of
RBPs, as a consequence of gene mutations, impaired nucleocytoplasmic trafficking,
posttranslational modification (PTM), aggregation, and sequestration by abnormal RNA
foci, has been shown to be involved in neurodegeneration and the development of ALS.
While the exact mechanism by which dysregulated RBPs contribute to ALS remains
elusive, emerging evidence supports the notion that both a loss of function and/or a gain
of toxic function of these ALS-linked RBPs play a significant role in disease pathogenesis
through facilitating abnormal protein interaction, causing aberrant RNA metabolism, and
by disturbing ribonucleoprotein granule dynamics and phase transition. In this review
article, we summarize the current knowledge on the molecular mechanism by which
RBPs are dysregulated and the influence of defective RBPs on cellular homeostasis
during the development of ALS. The strategies of ongoing clinical trials targeting RBPs
and/or relevant processes are also discussed in the present review.
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INTRODUCTION

Amyotrophic lateral sclerosis (ALS), a devastating neurodegenerative disease that primarily targets
motor neurons, is categorized into two forms, familial (genetically inherited) and sporadic (without
apparent family history). Familiar ALS (fALS) is responsible for ∼5% to 10% of all ALS cases,
whereas sporadic ALS (sALS) is the major form of the disease accounting for 90% to 95% of all
cases (Brown and Al-Chalabi, 2017; van Es et al., 2017). Since the first identification of SOD1 as a
causative gene for ALS, the list of genetic mutations associated with ALS has grown rapidly. Up to
date, more than 30 genes have been recognized as potential causal drivers for ALS (Al-Chalabi et al.,
2017). Among them, many encode RNA-binding proteins (RBPs), such as transactivation response
DNA-binding protein 43 (TDP-43) and fused in sarcoma/translocated in sarcoma (FUS/TLS).
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As key regulators of RNA metabolism, RBPs play a vital
role in maintaining the normal function of neuronal systems
(Nussbacher et al., 2019). Under physiological conditions,
these ALS-linked RBPs are involved in almost all aspects of
RNA metabolism, including transcription, alternate splicing,
mRNA transport, and stability. Although the exact functions
and mechanisms of action of these RBPs are still largely
unclear, current evidence suggests a central role for RBPs in
the maintenance of neuronal integrity. Defects in RBPs have
emerged as a significant contributing factor to the pathogenesis
of ALS (Nussbacher et al., 2019). More notably, cytoplasmic
mislocalization, aggregation, and fragmentation of RBPs, in
particular TDP-43 (termed TDP-43 proteinopathies), have been
regarded as a pathological hallmark of ALS or frontotemporal
dementia (FTD, a disease sharing many genetic and pathological
features with ALS; Neumann et al., 2006; Mackenzie et al., 2010).
In this review article, we summarize the current understanding
of how RBPs are dysregulated and the role of disrupted RBPs in
ALS development. We also highlight the emerging therapeutic
intervention by targeting these ALS-implicated RBPs.

MECHANISMS LEADING TO
DYSREGULATION OF RBPs IN ALS

As alluded to above, mutations in genes encoding many RBPs are
highly associated with ALS. In addition, dysregulation of RBPs
as a result of compromised nucleocytoplasmic trafficking,
posttranslational modification (PTM), aggregation, and
sequestration by abnormal RNAs also contributes significantly
to disease pathogenesis. This section will briefly discuss these
underlying mechanisms resulting in RBP dysregulation in ALS.

Gene Mutations
Genetic analyses of ALS patients have identified more than 100
ALS-related gene variants, including many genes encoding RBPs,
such as TDP-43, FUS, heterogeneous nuclear ribonucleoproteins
(hnRNP) A1, hnRNPA2/B1, matrin 3 (MATR3), ataxin 2
(ATXN2), TATA-box binding protein–associated factor 15
(TAF15), T-cell–restricted intracellular antigen 1 (TIA-1), and
Ewing sarcoma breakpoint region 1 (EWSR1; Al-Chalabi et al.,
2017; Nguyen et al., 2018). As shown in Figure 1, these RBPs
share some common structural domains. For example, TDP-
43, hnRNPA1, hnRNPA2/B1, and TIA-1 all contain the RNA
recognition motif (RRM) and the glycine (Gly)-rich prion-like
domain. FUS, TAF15, and EWSR1, belonging to the thyrotroph
embryonic factor (TEF) family of RBPs, share the N-terminal
Gly-rich and glutamine-glycine-serine-tyrosine (QGSY)–rich
prion-like domains, the RRM and zinc finger domains that
facilitate RNA and DNA interactions, and the C-terminal
arginine-glycine-glycine (RGG) domains that stabilize RNA
and protein bindings. MATR3 harbors two RRM and two
zinc-finger domains. The structure of ATXN2 is relatively
unique, containing the N-terminal polyglutamine (polyQ)
repeats, the like-Sm protein (LsM) and Lsm-associated domains
(LsmAD) that promote RNA bindings, and the poly(A)-binding
protein-interacting motif (PAMs). Except for gene mutations in
ATXN2 and MATR3, ALS-relevant genetic mutations in RBPs

commonly occur in Gly-rich, QGSY-rich, and RGG domains
(Kapeli et al., 2017). These gene mutations could lead to loss of
function and/or gain of toxic function (will discuss in detail later
in this review), contributing to the development of the disease.

Posttranslational Modification
In addition to gene mutations, PTM also serves as an important
mechanism for regulating protein structure and function.
Aberrant PTM of RBPs is commonly observed in ALS. For
example, TDP-43 is extensively posttranslationally modified,
including phosphorylation, ubiquitination, acetylation, and
sumoylation in both fALS and sALS (Buratti, 2018). Among
them, phosphorylation of TDP-43 is the most common PTM
of this protein and described as a marker of pathological
ALS inclusions (Hasegawa et al., 2008). Several protein kinases
have been identified to be responsible for its phosphorylation,
including casein kinase (Nonaka et al., 2016), cycle 7-related
protein kinase (Liachko et al., 2013), and tau tubulin kinase
1/2 (Liachko et al., 2014). Calcineurin was found to be a
phosphatase that regulates TDP-43 phosphorylation (Liachko
et al., 2016). Although the exact role of TDP-43 phosphorylation
in disease progression remains incompletely understood, clinical
data appear to support a function in neurodegeneration
(Buratti, 2018).

Another key PTM associated with pathological TDP-43 is
the generation of the C-terminal fragments (CTFs), which
accumulate in the brains of patients with ALS or FTD and are
considered a pathological feature of these diseases (Neumann
et al., 2006). Several mechanisms have been proposed for
their production, including proteolytic cleavage mediated by
cellular proteases such as caspases and calpains, alternative
splicing of the TDP-43 gene, and alternate in-frame translation
(Buratti, 2018). The CTFs of TDP-43 mislocalize to the
cytoplasm due to the removal of nuclear localization signal
(NLS) and are prone to form aggregates as compared to
the full-length TDP-43 because of the presence of Gly-rich
prion-like domain. However, the relative contribution of these
CTFs to disease progression remains controversial as transgenic
animals expressing CTFs show only subtle motor or behavioral
alterations, failing to fully recapitulate those observed in ALS
or FTD patients (Berning and Walker, 2019). Methylation is
another common type of PTM for RBPs. Methylation often
occurs on R residues in RGG motifs of hnRNPs and TEF
family of RBPs (i.e., FUS, TAF15, and EWSR1) through the
action of protein arginine methyltransferases (Hofweber and
Dormann, 2019). Methylation modification is a critical regulator
for RBP liquid–liquid phase separation (LLPS) and dynamics of
ribonucleoprotein (RNP) granules. Ribonucleoprotein granules,
including stress granules (SGs) and processing bodies, are
membrane-free, dense cytosolic aggregation of RBPs/RNA
and common sites for mRNA storage/degradation (Buchan
and Parker, 2009). Disrupted LLPS homeostasis and RNP
granule dynamics have been implicated in neurodegeneration.
Studies using in vitro systems found that R-methylation on
ALS-related RBPs, such as hnRNPA2 and FUS, reduces LLPS
via inhibiting R-aromatic interaction (Hofweber et al., 2018;
Qamar et al., 2018; Ryan et al., 2018). In addition to methylation,
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FIGURE 1 | Structure and mutations in RNA-binding proteins (RBPs). Schematic diagram for amyotrophic lateral sclerosis (ALS)-associated RBPs. The location of
single point mutations for each RBP is indicated as red dot, and the psi symbol denotes the location of multiple mutations associated with ALS-related motor
neuron diseases.

phosphorylation has also been shown to either enhance or
suppress RBP phase separation and/or RNP granule dynamics
(Hofweber and Dormann, 2019).

Disrupted Nucleocytoplasmic Trafficking
RBPs have predominant localizations within the nucleus to
perform RNA processing and metabolism. However, many
RBPs are abnormally aggregated in the cytoplasm in ALS. As
mentioned above, the CTFs of TDP-43 are mainly found in the
cytoplasmic aggregates due to the lack of theNLS. In addition, the
presence of ALS-related missense mutations within NLS or PTM
sites of these RBPs constitutes another mechanism responsible
for their cytoplasmic accumulation (Kim and Taylor, 2017).
However, gene mutations and fragmentations cannot explain all
cases of the observed mislocalization of RBPs.

Emerging evidence proposes impaired nucleocytoplasmic
trafficking as a key mechanism for RBP mislocalization in
ALS. Although the precise mechanism remains elusive, studies
suggest a role for the hexanucleotide repeat expansion mutation
in chromosome 9 open reading frame 72 (C9orf72) gene,
the most common genetic cause of ALS and FTD (DeJesus-
Hernandez et al., 2011; Renton et al., 2011), in such effects. It
was found that dipeptide repeats (DPRs) produced from the
C9ORF72 expansion mutant accumulate within the nuclear
pore complex to disturb its integrity, leading to compromised
nucleocytoplasmic transport (Freibaum et al., 2015; Jovicic
et al., 2015; Zhang et al., 2015; Shi et al., 2017). Interestingly, a
recent study reported that expression of C9ORF72-derived DPR

poly-GA (glycine–alanine), but not poly-GR (glycine–proline)
and poly-PR (proline–arginine), disturbs nucleocytoplasmic
transport (Vanneste et al., 2019), suggesting a DPR-specific
role in the regulation of nucleocytoplasmic trafficking.
Further investigations revealed that many nucleocytoplasmic
transport factors are recruited and sequestrated in the SGs
upon stress or treatment with mutant proteins implicated
in ALS (Zhang et al., 2018). Importantly, it was found
that inhibition of SG formation attenuates the defects in
nucleocytoplasmic trafficking and alleviates neurodegeneration
in C9orf72-ALS Drosophila models (Zhang et al., 2018).
Recent evidence has also identified a mechanism for the
observed cytoplasmic mislocalization of wild-type FUS in ALS
(Tyzack et al., 2019). It was found that FUS directly binds
to the mRNA of splicing factor proline and glutamine rich
(SFPQ). The authors proposed that translocation of SFPQ
transcripts to the cytoplasm drives nuclear export of FUS
(Tyzack et al., 2019).

Aggregation and Sequestration by
Abnormal RNA Foci
Protein aggregation is a common event in neurodegenerative
diseases, including ALS. Several mechanisms have been
recognized to contribute to protein aggregation in ALS,
including self-aggregation, altered RNP granule dynamics,
sequestration by aberrant RNA foci, and defects in protein
quality control system (Conlon and Manley, 2017; Morriss and
Cooper, 2017).
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Like RNP granules, protein aggregates are formed
through LLPS of weak interaction among RBPs and/or
RNAs (Hofweber and Dormann, 2019). Many RBPs contain
intrinsically disordered low complexity domains (LCDs) that
can lead to self-aggregation, especially when abnormally
mislocalized, overexpressed, or posttranslationally modified.
Interestingly, it was recently reported that factors involved in
nuclear import also have a role in phase transition of RBPs (Guo
et al., 2018). It was shown that expression of nuclear-import
receptors inhibits and reverses aberrant phase separations
of RBPs, including TDP-43, FUS, hnRNPA1, hnRNPA2,
TAF-15, and EWSR, to restore RBP homeostasis and rescue
neurodegeneration caused by ALS-related FUS and hnRNPA1
(Guo et al., 2018). In addition, RBPs can be recruited into RNP
granules through interaction with other proteins within the
granules. Alternatively, abnormal RNA foci may also lead to RBP
aggregations. The GGGGCC repeat RNA of C9ORF72 can fold
into G-quadruplexes and/or form stable hairpin-like secondary
structures. These RNA structures sequester ALS-associated
RBPs, such as TDP-43, and promote protein aggregation.
In vivo and in vitromodels further demonstrate that enrichment
of these abnormal RNA foci can induce misprocessing of
RNA transcripts that are commonly regulated by many RBPs
(Conlon and Manley, 2017; Morriss and Cooper, 2017). Finally,
malfunction of the protein quality control system also has a
role in the accumulation of RBP aggregates. Many ALS-related
mutations in genes, such as TBK1, p62, OPTN, VCP, and
UBQLN2, are involved in autophagy and ubiquitin-proteasome
degradation (Al-Chalabi et al., 2017). As a consequence of gene
mutations and increased proteasomal and lysosomal load due to
an excess production of abnormal protein products, the function
of the protein quality control system is impaired, resulting in the
buildup of RBP aggregates (Cipolat Mis et al., 2016).

DISRUPTED CELLULAR HOMEOSTASIS
CAUSED BY ALS-ASSOCIATED RBPs

Dysregulation of RBP influences various aspects of the RNA
metabolism, resulting in diverse molecular phenotypes, such
as disrupted transcription and RNA splicing, abnormal RNA
transport, altered mRNA stability, and protein translation.
Possible mechanisms involve the loss of function and/or toxic
gain of function of these RBPs through aberrant protein
interactions, aggregate formation, perturbation of RNP granule
dynamics, and phase transition (Figure 2). The following
sections will discuss the known/speculated disease mechanisms
in genes, including TARDBP, FUS, hnRNPA1, hnRNPA2/B1,
TIA1, TAF15,MATR3, and EWSR1.

TARDBP/TDP-43
TDP-43 is encoded by the TARDBP gene and belongs to the large
family of hnRNPs (Kapeli et al., 2017). TDP-43 participates in
multiple steps of RNA processing with its role in splicing being
best characterized. For example, research has suggested a role
for TDP-43 in cryptic splicing, which is impaired in ALS (Ling
et al., 2015). The expression of TDP-43 can be autoregulated at
the level of mRNA stability via a negative-feedback loop (Ayala

et al., 2011). Under normal conditions, TDP-43 plays a vital role
in maintaining the function of the central nervous system (CNS).
For example, TDP-43 has been shown to regulate many mRNAs
encoding proteins implicated in CNS development, survival, and
synaptic transmission and neural plasticity (Polymenidou et al.,
2011; Tollervey et al., 2011; Alami et al., 2014; Ling, 2018).
Knockout of TDP-43 inmice is embryonic lethal, and conditional
or partial loss of TDP-43 in neural cells results in progressive
motor neuron degeneration and motor function impairment
(Wu et al., 2012; Iguchi et al., 2013; Yang et al., 2014).

TARDBP was first identified as a causative gene for ALS
in 2008 (Kabashi et al., 2008; Sreedharan et al., 2008; Van
Deerlin et al., 2008). Since then, more than 50 mutations
in TDP-43 have been found in ALS patients, accounting for
∼5% of fALS and ∼1% of sALS (Taylor et al., 2016). These
mutations are predominantly clustered in the Gly-rich domain,
an LCD domain critical for protein aggregation and phase
transition (Franzmann and Alberti, 2019). Transgenic animals
expressing mutant TDP-43 were shown to develop ALS-like
pathological and clinical features (Lutz, 2018). Although TDP-
43 mutations are rare, TDP-43 proteinopathies, characterized
by cytoplasmic mislocalization, aggregation, and cleavage of
TDP-43 accompanied by its nuclear clearance, are found in
the affected regions of the CNS in up to 97% of all ALS
cases, except for those fALS caused by SOD1 or FUS mutations
(Neumann et al., 2006; Mackenzie et al., 2010), suggesting
a broader involvement for TDP-43 dysregulation in ALS. In
addition to the CNS, mislocalization and aggregation of TDP-43
have also been observed in peripheral tissues, such as in the
peripheral blood mononuclear cells, in both fALS (De Marco
et al., 2017) and sALS (Arosio et al., 2020). The mechanisms
for TDP-43 toxicity in ALS are proposed to be both a loss
of function (nuclear depletion of TDP-43) and a gain of
toxic function, supported by evidence that both knockout and
overexpression of wild-type or mutant TDP-43 recapitulate
disease phenotypes (Butti and Patten, 2018). Recent studies
have established a mechanism by which aberrant RNA splicing
caused by mutant TDP-43 or depletion of nuclear TDP-43
contributes to ALS through a loss of function and/or a gain of
function (Deshaies et al., 2018; Fratta et al., 2018; Sivakumar
et al., 2018). TDP-43 has also been implicated in the DNA
damage response, and loss of nuclear TDP-43 causes defects in
DNA repair associated with ALS (Mitra et al., 2019). Moreover,
dysregulated or mislocalized TDP-43 has been shown to interfere
with cellular translational process. For instance, it was discovered
that ALS-linked cytoplasmic TDP-43 interacts with receptor for
activated C kinase 1 (RACK1), a ribosomal scaffold protein,
on polyribosomes, resulting in a global inhibition of protein
synthesis (Russo et al., 2017). It was also shown that mutant
TDP-43 (A315T) enhances direct binding and translation of
several mRNAs, including Dennd4a and Camta1 that are known
to be involved in neurodegeneration (Neelagandan et al., 2019).

Fused in Sarcoma/Translocated in
Sarcoma
Similar to TDP-43, FUS is a DNA/RBP and has primarily nuclear
localization, but mislocalizes to the cytoplasm in response to
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FIGURE 2 | Dysregulation of RBPs in ALS. Mutations in RBPs may result in mislocalization within the cells due to disruption in nucleocytoplasmic trafficking, which
can lead to the formation of toxic protein aggregates within cytoplasmic inclusions. The accumulation of these aberrant RNA granules enhances the
toxicity/pathological effects in mis-regulating normal RNA metabolism and thus leading to neurodegenerative phenotypes such as demyelination, axonal loss, and
death of motor neurons.

stress (Kapeli et al., 2017). FUS also plays multiple functions
in RNA metabolism by binding to the target RNAs through
its RRM domain (Lagier-Tourenne et al., 2012). Mutations in
FUS gene were identified as a genetic driver for ALS in 2009
(Kwiatkowski et al., 2009; Vance et al., 2009). Since then, more

than 70 mutations were reported in ALS patients. The majority
of these mutations are localized within the NLS, QGSY-rich
and RGG1 domains, leading to altered cellular localization and
increased aggregation tendency. FUS mutations are responsible
for ∼5% of fALS and less than 1% of sALS cases (Taylor
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et al., 2016). Unlike TDP-43 pathology that can be detected in
almost all ALS cases (Mackenzie et al., 2007), cytoplasmic FUS
inclusion/aggregation is uncommon and observed only in FUS-
related fALS (Vance et al., 2009) and a very small subset of sALS
(Deng et al., 2010). Thus, the contribution of FUS to ALS did not
receive as much attention as that of TDP-43. However, a recent
study found that cytoplasmic FUS in a diffused form is widely
present in ALS, suggesting that it may have a broader role in ALS
than previously recognized (Tyzack et al., 2019). This speculation
warrants future investigations.

Unlike TDP-43, the function of FUS does not appear to
be essential for embryonic development. Global or motor
neuron–specific knockout of FUS gene in mice does not
cause motor deficits (Sharma et al., 2016), whereas transgenic
mice expressing wild-type or mutant FUS were shown to
develop severe motor impairments and exhibit progressive
neurological symptoms, suggesting a mechanism of toxic gain
of function rather than loss of function in FUS-linked ALS
pathogenesis (Qiu et al., 2014; Scekic-Zahirovic et al., 2017;
López-Erauskin et al., 2018). Although the exact mechanisms
of FUS toxicity are still unclear, recent studies began to
unravel the involvement of defective RNA binding and splicing,
disrupted protein translation, and impaired DNA damage
response. ALS–associated mutant FUS has been shown to have
altered RNA binding profiles (Hoell et al., 2011), related to
the alteration of its subcellular localization (Dormann et al.,
2010; Deshpande et al., 2019). Mutant FUS can also cause
splicing defects in genes involved in dendritic growth and
synaptic functions (Qiu et al., 2014). In addition, ALS-related
mutant FUS was found to suppress protein translation at
both global and local (axon regions) levels and disrupt the
nonsense-mediated decay, both of which are associated with
motor neuron pathogenesis seen in human (Kamelgarn et al.,
2018; López-Erauskin et al., 2018). Moreover, defects in DNA
damage repair were also proposed to be a mechanism underlying
FUS-induced ALS pathogenesis. It was reported that DNA
damage repair is impaired in human induced pluripotent
stem cell (iPSC)—derived motor neurons that carry FUS
mutations, leading to the formation of cytoplasmic aggregates
and neurodegeneration (Naumann et al., 2018; Wang et al.,
2018). Finally, a recent study revealed that activation of
antiviral immune response is sufficient to induce the formation
and persistency of cytoplasmic FUS-containing aggregates,
contributing to onset and progression of FUS proteinopathy
(Shelkovnikova et al., 2019).

hnRNPA1 and hnRNPA2/B1
hnRNPA1 and hnRNPA2/B1 are two essential RBPs in the family
of hnRNPs. Like other RBPs, hnRNPA1 and hnRNPA2/B1 are
typically nuclear localized but accumulate in the cytoplasm
under stress conditions (Kapeli et al., 2017). hnRNPA1 and
hnRNPA2/B1 share similar functions in the regulation of mRNA
maturation, splicing, translation, and stability, but they play
a differential role in transcriptional regulation (Kapeli et al.,
2017). While knockout of hnRNPA1 is embryonic lethal, and
heterozygous mice display defects in muscle development (Liu
et al., 2017), knockdown of hnRNPA2/B1 in mice globally

disrupts alternative splicing and causes impaired cognitive
function (Berson et al., 2012). Genetic analysis identified several
ALS-related mutations in both hnRNPA1 and hnRNPA2/B1
(Kim et al., 2013; Couthouis et al., 2014; Liu et al., 2016;
Naruse et al., 2018); however, the incidence is low (<1%; Taylor
et al., 2016). Although the consequence of these mutations is
largely unclear, some evidence suggests that mutations within
the LCD could lead to increased cytoplasmic accumulation of
hnRNPA1 through misfolding and fibrilization that stabilize the
proteins (Kim et al., 2013; Gilpin et al., 2015; Molliex et al.,
2015; Liu et al., 2016). It was also reported that altered hnRNPA1
splicing induced by mutant or nuclear depletion of TDP-43
results in the production of an aggregation-prone mutant form
of hnRNPA1, contributing to disease progression (Deshaies
et al., 2018; Sivakumar et al., 2018). Furthermore, mutations of
genes are expected to cause a disruption of protein synthesis
as both hnRNPA1 and hnRNPA2/B1 have been implicated in
protein translation (Kosturko et al., 2006; Cammas et al., 2007).
Finally, iPSC-derived motor neurons expressing ALS-linked
hnRNPA2/B1 mutant were shown to have a higher level of cell
death and increased stress responses (Martinez et al., 2016).

Others RBPs, Including TIA-1, MATR3,
ATXN2, TAF15, and EWSR1
TIA-1 is a critical component of SGs and has multiple functions
in RNA metabolism, including mRNA splicing, translational
repression, and mRNA silencing. TIA-1 is mainly localized
to the nucleus; however, under cellular stress, it translocates
to the cytoplasm, where it nucleates SGs and suppresses
mRNA translation (Rayman and Kandel, 2017). A number
of ALS-related missense mutations in TIA-1 gene have been
identified, all of which manifest in the Gly-rich domain
(Mackenzie et al., 2017). Mutations of TIA-1 gene were shown to
alter LLPS and impair SG disassembly in vitro (Mackenzie et al.,
2017). Nonetheless, because of their rare occurrence in patients,
the causality betweenmutations in TIA-1 and the pathogenesis of
ALS is still debated (Baradaran-Heravi et al., 2018; van der Spek
et al., 2018).

MATR3 is a DNA/RBP that interacts with TDP-43. Similar
to other RBPs, MATR3 is involved in different steps of
RNA processing, including gene transcription, alternative
splicing, mRNA export, and stability (Malik et al., 2018).
MATR3 mutations were first reported to be linked to ALS
in 2014 (Johnson et al., 2014). Like TIA-1, mutations in
MATR3 are rare (<1%) among ALS patients (Taylor et al.,
2016). Studies from two recent articles showed that mice
expressing mutant MATR3 (S85C or F115C) develop motor
dysfunction, accompanied by decreased numbers of motor
neurons and activation of microglia and astrocytes in the
spinal cord (Moloney et al., 2018; Zhang et al., 2019).
Mechanistically, it was found that ALS-linked mutations
of this gene decrease mRNA nuclear export and inhibit
SG formation (Boehringer et al., 2017). S85C mutation of
MATR3 was also shown to disrupt the normal function of
MATR3 in mediating phase separation and formation of
intranuclear droplets (Gallego-Iradi et al., 2019). Contrary
to other ALS-related RBPs, wild-type or mutant MATR3 is
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primarily localized to the nucleus even under stress or
in ALS postmortem tissues (Johnson et al., 2014; Gallego-
Iradi et al., 2015), and the accumulation of MATR3 in the
nucleus as opposed to its location in the cytoplasm mediates
neurotoxicity (Malik et al., 2018).

ATXN2 is an RBP belonging to the like-Sm (LSm)
family and participates in the regulation of RNA metabolism.
The ATXN2 gene normally has ∼22–23 glutamine (CAG)
repeats. Intermediate-size polyQ expansions (24–34 repeats)
have been discovered to be significantly associated with the
risk of developing ALS (Elden et al., 2010; Sproviero et al.,
2017). ATXN2 plays a critical role in regulating TDP-43 and
FUS toxicity through direct protein–protein interaction, and
reduction of ATXN2 levels has been shown to inhibit TDP-
43–mediated neurotoxicity (Elden et al., 2010; Farg et al.,
2013; Becker et al., 2017). Both in vitro and knock-in mouse
studies demonstrated that polyQ expansion mutants increase
the insolubility of ATXN2 and its interacting protein PABPC1,
causing neurodegeneration (Damrath et al., 2012).

Mutant forms of both TAF15 and EWSR1 have also been
identified in ALS patients (Couthouis et al., 2011, 2012; Ticozzi
et al., 2011). Similar to other RBPs, TAF15 and EWSR1 normally
reside in the nucleus, but translocate to the cytoplasm upon stress
(Neumann et al., 2011; Marko et al., 2012). Expression of disease-
related variants of TAF15 and EWSR1 in primary neurons from
mouse spinal cord has been reported to cause the formation
of cytoplasmic foci. Cytoplasmic TAF15 and EWSR1 aggregates
were also detected in some spinal cord neurons of patients
with sALS (Couthouis et al., 2011, 2012). Overexpression of
wild-type and mutant TAF15 and EWSR1 has been shown to
enhance protein aggregation and shorten life span in Drosophila
(Couthouis et al., 2011, 2012).

DEVELOPMENT OF NOVEL
THERAPEUTICS BY TARGETING RBPs

Early studies on ALS therapy have been mostly focused on
SOD1. However, SOD1 mutations account for approximately
only 20% of fALS and approximately 2% to 3% of all ALS cases
(Taylor et al., 2016). Given the recognized importance of RBPs
in ALS, RBPs have emerged as critical therapeutic targets for the
treatment of ALS.

Antisense Oligonucleotide
Antisense oligonucleotides (ASOs) are synthetic single-stranded
oligonucleotides that can specifically bind to and accelerate the
degradation of the target mRNA via the nuclear endonuclease
RNase H. ASO-based gene silencing has been previously tested
on mutant SOD1 (mSOD1), and the results are promising (Smith
et al., 2006; Miller et al., 2013; McCampbell et al., 2018). It
was found that direct delivery of mSOD1-targeted ASOs to the
CNS effectively reduces the levels of mSOD1 and significantly
delays disease progression and prolongs survival in SODG93A

animal models (Smith et al., 2006; McCampbell et al., 2018) and
mSOD1-linked ALS patients (Miller et al., 2013). Recently, this
technique has been utilized to target ATXN2, a key regulator
of TDP-43 neurotoxicity, for degradation (Becker et al., 2017).

It was shown that administration of ATXN2-targeted ASOs
to the CNS of a mouse model with TDP-43 proteinopathy
attenuates TDP-43 pathology and improves motor function
(Becker et al., 2017). Moreover, ASO-based strategies have also
been successfully used to silence GGGGCC repeat expansion
of C9orf72, thereby inhibiting RBPs sequestration by abnormal
RNA foci (Donnelly et al., 2013; Sareen et al., 2013).

Small Molecules
Small molecules serve as another strategy for ALS treatment by
modulating the function and abundance of RBPs. For instance,
small molecules that specifically bind to the RRMs (RRM1 and
RRM2) of TDP-43 preventing pathogenic interaction of TDP-43
and RNAs led to motor function improvement in vivo
(Drosophila, François-Moutal et al., 2019). In addition, inhibition
of tankyrase, a poly(ADP-ribose) polymerase, through small
molecules was shown to reduce the accumulation of cytoplasmic
TDP-43, FUS, or HNRNPA2/B1 aggregates and associated
pathologies (McGurk et al., 2018; Fang et al., 2019;Marrone et al.,
2019). Various small molecule activators of autophagy, a major
cellular pathway for disposing of misfolded protein aggregates
and damaged organelles, have also been tested in mutant TDP-
43 transgenic mice and in mutant FUS Drosophilamodels (Wang
et al., 2012; Barmada et al., 2014; Marrone et al., 2019). It was
shown that application of these autophagy inducers increases the
clearance of protein aggregates and improves motor functions
and pathologies. Finally, studies using chemical inhibitors to
lessen nuclear export of TDP-43 demonstrated a neuroprotective
effect (Haines et al., 2015).

Chaperones
Molecular chaperones, such as heat shock proteins (HSPs),
function to assist proper protein folding and prevent misfolded
proteins from aggregation. In addition, chaperones can also
guide terminally misfolded proteins to the proteolytic system for
degradation (Xiao et al., 2010). In the study of ALS treatment,
modified yeast HSP104 was discovered to rescue TDP-43 and
FUS proteotoxicity by promoting aggregate dissolution (Jackrel
et al., 2014). Moreover, HSPB8, a small HSP, was reported
to promote autophagic clearance of misfolded mutant TDP-43
and SOD1, as well as DPRs of C9orf72 (Crippa et al., 2016).
Notably, a randomized phase II clinical trial is undertaken to
examine the therapeutic value of colchicine, which induces the
expression of HSPB8 and several autophagy modulators, in ALS
(Mandrioli et al., 2019).

Antibodies
Antibody-based therapies have been widely explored for the
treatment of neurodegenerative diseases, including ALS. There
was a recent study showing beneficial effects of antibodies
targeting TDP-43 in ALS (Pozzi et al., 2019). In this study, a
single-chain antibody against the RRM1 of TDP-43, a domain
involved in protein aggregation and interaction with p65 nuclear
factor κB, was generated and delivered into the CNS of TDP-43
mutant transgenic mice through a viral vector. It was found
that antibody treatment in these mice significantly reduces
neuroinflammation, cognitive impairment, and motor defects
(Pozzi et al., 2019).
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CONCLUSION

The contribution of dysfunctional RBPs in both fALS and sALS
has been greatly appreciated over the last decade since the
recognition of TDP-43 as an ALS causal gene and TDP-43
proteinopathy as a hallmark for ALS. The ALS-implicated
RBPs share structural and functional similarity. Dysregulated
or mutant RBPs have been shown to cause disease phenotype
through common protein pathologies, including increased
aggregation tendency, cytoplasmic mislocalization, and irregular
LLPS and SG dynamics. However, current evidence also points to
a distinct function and unique mechanism for individual RBPs in
the pathogenesis of ALS. A better understanding of the molecular
mechanisms underlying the pathological role of these RBPs in
ALS development will lead to a novel avenue for therapeutic
intervention for this devastating disease.
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