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LAMA2-related congenital muscular dystrophy (CMD; LAMA2-MD), also referred to as
merosin deficient CMD (MDC1A), is a severe neonatal onset muscle disease caused by
recessive mutations in the LAMA2 gene. LAMA2 encodes laminin α2, a subunit of the
extracellular matrix (ECM) oligomer laminin 211. There are currently no treatments for
MDC1A, and there is an incomplete understanding of disease pathogenesis. Zebrafish,
due to their high degree of genetic conservation with humans, large clutch sizes,
rapid development, and optical clarity, have emerged as an excellent model system
for studying rare Mendelian diseases. They are particularly suitable as a model for
muscular dystrophy because they contain at least one orthologue to all major human
MD genes, have muscle that is similar to human muscle in structure and function, and
manifest obvious and easily measured MD related phenotypes. In this review article, we
present the existing zebrafish models of MDC1A, and discuss their contribution to the
understanding of MDC1A pathomechanisms and therapy development.
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INTRODUCTION

LAMA2-related congenital muscular dystrophy (CMD; LAMA2-MD), also called merosin
deficient CMD or MDC1A, is the most common subtype of CMD (Schorling et al., 2017;
Sframeli et al., 2017; Mohassel et al., 2018; Mercuri et al., 2019). MDC1A is an autosomal
recessive neuromuscular disorder caused by mutations in laminin α2 (LAMA2, Helbling-
Leclerc et al., 1995; Holmberg and Durbeej, 2013). Complete loss of LAMA2 protein leads
to an early onset clinical phenotype featuring severe, diffuse muscle weakness and wasting,
demyelinating peripheral neuropathy, and pauci-clinical central nervous system abnormalities,
including white matter changes and, in some cases, structural brain lesions (Quijano-Roy
et al., 1993; Menezes et al., 2014; Oliveira et al., 2018). The disease is associated with
significant co-morbidities, including wheelchair dependence and respiratory failure, and
early mortality in some cases (Dimova and Kremensky, 2018). A less common entity is
partial merosin deficiency, a disorder caused by partial loss of LAMA2 expression/function
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that is associated with a later onset, milder form of muscular
dystrophy (Nguyen et al., 2019). Both MDC1A and partial
merosin deficiency, as well as other rare clinical phenotypes
associated with LAMA2 mutations, are all classified as
LAMA2-MD (Oliveira et al., 2018; Verma et al., 2018; Amin et al.,
2019). Currently, there are no treatments for LAMA2-MD, and
there is an incomplete understanding of disease pathogenesis.

Laminins
Laminins are high molecular weight glycoproteins expressed
abundantly in the basal lamina, a specialized layer of the
extracellular matrix (ECM; Aumailley, 2013). Laminins are
multidomain heterotrimeric proteins comprised of α, β and
γ polypeptide chains (Mohassel et al., 2018), which come in
five (LAMA1–5), four (LAMB1–4) and three (LAMC1–3)
genetic variants, respectively (Aumailley, 2013; Yurchenco
et al., 2018). The polypeptide chains fold in a similar cross-
shaped pattern, with distinct structural domains performing
specific functions, such as facilitation of self-assembly of
most laminins into large polymers by the globular laminin
N-terminal (LN) domain (Hohenester, 2019). A few of the
polypeptide chains, such as a4 lack the LN domain and
therefore do not self-assemble (Aumailley, 2013). Based
on the chain composition, more than 15 laminins have
been identified in humans (Colognato and Yurchenco,
2000; Sztal et al., 2011). In zebrafish, 12 laminin-encoding
genes have been found, out of which 10 have mammalian
orthologs, with evolutionarily conserved function (Sztal
et al., 2011), whereas two of them, lamb1b and lamb2l,
have no mammalian orthologs (Sztal et al., 2011). Two
human laminin-encoding genes, LAMB3 and LAMC2, have
not been found in zebrafish (Sztal et al., 2011). Laminins
play essential roles in many tissues and organs during
development (Yao, 2017). In zebrafish, laminins are involved
in myriad developmental processes spanning multiple organ
systems (Table 1).

Several laminin genes are expressed during skeletal muscle
development in zebrafish. Some of these, like lama2, lama4,
lamb2, and lamc1, are detected as early as 24 hpf (when
myogenesis begins) and persist in the post-juvenile stages,
whereas others (lamb1, lamb4, and lamc3) have only a brief-
expression during early muscle development (Sztal et al.,
2011). For example, during zebrafish early skeletal muscle
development, lamb1 and lamc1 are required for fast muscle
fiber elongation, orientation, and their attachment at the
myotendinous junctions (MTJs), the primary site of force
transmission (Snow et al., 2008; Snow and Henry, 2009).
Zebrafish lamb1 and lamc1 mutants and morphants show
delayed or impaired muscle fiber elongation, non-parallel
orientation of fibers in the myotome, and defects in MTJ
morphogenesis (Snow et al., 2008). Lama4 is essential for
mechanical stability in zebrafish skeletal muscle (Postel et al.,
2008). In lama4 morphants, recruitment of focal adhesion
proteins integrin-linked kinase (ilk) and paxillin at the MTJs
is impaired, resulting in detachment of myofibers and their
surrounding sarcolemma from the MTJ complex (Postel et al.,
2008). Lama2 was also shown to be important for zebrafish

muscle development and relevant studies on its role in this
process are discussed below.

Laminin α2
The laminin α2 (LAMA2) gene encodes the alpha2 chain and
constitutes a subunit of several laminin proteins (Tunggal et al.,
2000; Aumailley et al., 2005): Laminin 211 (Laminin α2β1γ1,
Laminin 2 or merosin; Durbeej, 2015; Barraza-Flores et al.,
2020), Laminin α2β2γ1 (Laminin 221, Laminin 4 or S-merosin;
Patton et al., 1997) and Laminin 213 (Laminin α2β1γ3, Laminin
12; Koch et al., 1999; Ido et al., 2008). LAMA2 is the major
laminin isoform expressed in the vertebrate muscle system
(Sztal et al., 2012).

The zebrafish lama2 gene, representing the ortholog of
human LAMA2, maps to chromosome 20 and is expressed in
the nervous system, head, otic vesicle, adaxial cells, and skeletal
muscle (Sztal et al., 2011). Mutations in zebrafish lama2 results
in a type of muscular dystrophy phenotypically similar to the
human MDC1A (Hall et al., 2007), which identifies zebrafish
as a suitable model for understanding this disease and for
development of therapies.

ZEBRAFISH MODELS OF MUSCULAR
DYSTROPHIES

Studies of animal models of muscular dystrophies have proven
essential for a better understanding of the pathogenesis of these
disorders and for developing disease-specific therapies (Saunier
et al., 2016; Widrick et al., 2019). Research using mouse models
for LAMA2-MD have identified potential therapeutic strategies,
which, in turn, have led to improvements in murine disease
pathology and survival (Miyagoe-Suzuki et al., 2000; Meinen
et al., 2007, 2011; Vishnudas andMiller, 2009; McKee et al., 2017;
Reinhard et al., 2017; Willmann et al., 2017; Mohassel et al., 2018;
Yurchenco et al., 2018).

Recently, zebrafish have emerged as an excellent animal
model for studying human muscle diseases, mainly due to
their highly similar skeletal muscle, with conserved genetic,
molecular and histological features (Telfer et al., 2010;
Berger and Currie, 2012; Gibbs et al., 2013). Also, external
fertilization, a large number of offspring, rapid embryonic
development, optical transparency of embryos and larvae,
combined with the ability to easily absorb pharmacological
compounds, make zebrafish an excellent tool for studying
disease pathomechanisms and identifying potential therapeutic
targets (Zon and Peterson, 2005; Gibbs et al., 2013; Waugh
et al., 2014; MacRae and Peterson, 2015; Cassar et al., 2020;
Fazio et al., 2020). Importantly, readily available and easily
applied experimental approaches allow for efficient and
rapid assessment of structural and functional damage of
the muscular system in the numerous zebrafish dystrophy
models. For example, comprehensive phenotypic analysis of
muscle damage can be easily done by using birefringence
assay (Figures 1A,A′; Berger et al., 2012), histochemistry or
immunohistochemistry staining (Figures 1B,B′), injections
with fluorescently-tagged markers (Figures 1C,C′; Lombardo
et al., 2012) or vital dyes, such as Evans Blue Dye (EBD;

Frontiers in Molecular Neuroscience | www.frontiersin.org 2 July 2020 | Volume 13 | Article 122

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Fabian and Dowling Zebrafish Models of LAMA2 Disease

TABLE 1 | Examples of developmental processes where laminins are involved.

Developmental process Genes References

Neuronal migration lama1 Sittaramane et al. (2009)
Brain morphogenesis lamb1, lamc1 Gutzman et al. (2008)
Axon-axon interactions, axon guidance lama1 Paulus and Halloran (2006) and Wolman et al. (2008)
Notochord and blood vessel formation lama1, lamb1, lamc1 Parsons et al. (2002) and Pollard et al. (2006)
Establishment of liver and pancreas left-right asymmetry lamb1a Hochgreb-Hägele et al. (2013)
Fin development lama5 Webb et al. (2007)
Myocardial function lama4 Knöll et al. (2007)
Retinal differentiation and maintenance lama1, lamb1, lamc1 Biehlmaier et al. (2007)
Eye development lama1, lamb1, lamc1 Semina et al. (2006), Zinkevich et al., 2006 and Lee and Gross (2007)

FIGURE 1 | Examples of experimental approaches used for the phenotypical analysis of the zebrafish LAMA2-related congenital muscular dystrophy (CMD,
LAMA2-MD) model. (A,A’) Birefringence assay. The organization of muscle fibers can be seen by polarized light. Detached muscle fibers in the caf mutant show up
as dark regions in the muscle (arrows). (B,B’) Whole-mount staining. Phalloidin stains the actin filaments in the muscle. Muscle fibers detached from the
myotendinous junctions (MTJs) in the caf mutant can be easily identified (arrows). (C,C’) Injected fluorescent marker. unc53:mCherry-CAAX-pA construct (Zhao
et al., 2019), which marks muscle cells, was injected into 1-cell stage embryos and visualized by live imaging at 3 dpf. Detached fibers in the caf mutant can be
easily identified (arrows). (D,D’) Swimming assay. Swim behavior can be tracked and quantified using Viewpoint Zebrabox software (Viewpoint Life Sciences Inc.).
Time spent moving, distance traveled and speed of movement are useful indicators of muscle function. Fewer tracks and lower speed (indicated by green tracks) are
seen in the recorded caf mutants.

Smith et al., 2015) followed by live imaging, swimming
assay to assess motor behavior (Figures 1D,D′; Zon and
Peterson, 2005; Gibbs et al., 2013; Smith et al., 2013),
and other equally useful techniques (Gibbs et al., 2013;
MacRae and Peterson, 2015).

Zebrafish models have been developed for many human
diseases, such as glioblastoma (Gamble et al., 2018), eye diseases

(Moosajee et al., 2008; Bryan et al., 2016), cardiovascular
disorders (reviewed in Gut et al., 2017), and kidney diseases
(reviewed in Jerman and Sun, 2017), to name a few.
Various human muscle disorders, such as Duchenne muscular
dystrophy (DMD; Bassett and Currie, 2003; Bassett et al.,
2003; Widrick et al., 2016), Laminin α2-associated muscular
dystrophy (Jacoby et al., 2009), Ullrich CMD (Telfer et al., 2010),
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dystroglycanopathies (reviewed in Hewitt, 2009; Lin et al., 2011;
Bailey et al., 2019), facioscapulohumeral muscular dystrophy
(Mitsuhashi et al., 2013; Pakula et al., 2019), X-linkedmyotubular
myopathy (Dowling et al., 2009; Lawlor et al., 2016; Sabha et al.,
2016), and nemaline myopathies (Telfer et al., 2012; Sztal et al.,
2015), also have been modeled in zebrafish (reviewed in Nance
et al., 2012; Gibbs et al., 2013; Lek et al., 2015; Li et al., 2017).

ZEBRAFISH MODELS FOR LAMA2-MD

To date, only a handful of zebrafish models for LAMA2-MD
have been developed, even though there are more than three
hundred LAMA2 gene variants associated with human disease
(Oliveira et al., 2018).

The first zebrafish model of LAMA2-MD was described by
Currie and colleagues (Hall et al., 2007) and was identified
through complementation studies between dystrophic
mutants generated through an N-ethyl-N-nitrosourea (ENU)
mutagenesis screen at the University of Tubingen, Germany
(Granato et al., 1996). Homozygous mutant zebrafish carrying
either teg15a or tk209 recessive mutant allele, show impaired
swimming behavior, severe muscle loss, and detached myofibers.
Based on the specific shape of the detached fibers, which
resemble cotton candy, they named this mutant candyfloss (caf ).
The two caf alleles, cafteg15 and caftk209, represent loss-of-function
mutations in lama2 gene, and both homozygous mutants exhibit
a loss of lama2 protein expression, with similar degenerative
muscle phenotype, death by 16 dpf in the majority of cases, and
lack of progeny for the small percent of surviving mutants. The
mutations have been mapped to the globular domain of lama2,
which is required for binding to dystroglycan (Hall et al., 2007),
a component of the dystrophin-associated glycoprotein complex
(DGC) involved in attaching the muscle fibers to the ECM
(Sztal et al., 2012). caf mutations are located within amino acid
residues conserved in humans and mice where known human
LAMA2-MDmutations have been identified (Hall et al., 2007).

Using a birefringence assay as a screening tool, it was shown
that the muscle defects present in the caf zebrafish resemble
those described in human patients with LAMA2-MD, namely a
stochastic pattern of myofiber detachment from the MTJs. This
detachment affects both slow and fast muscle fibers (Sztal et al.,
2012), is muscle cell-autonomous, and is dependent on themotor
activity of the muscle (Hall et al., 2007; Thomasi et al., 2018).
Notably, even though the detachment of the damaged fibers
happens rapidly, they maintain the integrity of their sarcolemma,
in contrast to what is happening in the muscle of the DMD
zebrafish model sapje (Bassett et al., 2003; Smith et al., 2015).
This is well demonstrated through the use of EBD injections,
with caf zebrafish showing limited uptake into the sarcoplasm
(Hall et al., 2007; Smith et al., 2015). A similar finding of
limited/reduced EBD uptake is observed in the dy mouse model
of LAMA2-MD (Straub et al., 1997), suggesting that impairment
of membrane integrity is less prominent in LAMA2-MD vs. other
MDs, and also supporting the validity of the muscle phenotype of
caf zebrafish.

Of note, through elegant in vivo time-lapse experiments using
various fluorescently-tagged constructs, the specific properties

of the lama2-deficient myofibers were characterized in detail
(Hall et al., 2019). The authors showed these fibers are long-
lived, and undergo extensive cellular remodeling by extending
protrusions to re-attach to the ECM. They display the formation
of new pre-myofibers and undergo nuclear fusion with nearby
satellite cells, all processes that indicate that repair, regeneration,
and survival mechanisms are activated in the lama2-deficient
myofibers. Importantly, the authors showed this is not the case
in dystrophin-deficient fibers (Hall et al., 2019).

More recently, another zebrafish model for LAMA2-MD has
been characterized (Gupta et al., 2012; Smith et al., 2017). The
lama2cl501 mutant, also identified through an ENU mutagenesis
screen (Gupta et al., 2011), carries a mutation in a highly
conserved splice site located in the coiled-coil α-helical domain
in the long arm of lama2, which is required for binding of
LAMA2 to the other laminins in the heterotrimeric complex.
This mutation results in a complete loss-of-function due to
defective splicing of the lama2 mRNA. The phenotype of
lama2cl501 mutants is essentially identical to that of caf zebrafish,
with early-onset muscle degeneration due to detachment of
fibers from the MTJs and death by 15 dpf (Gupta et al., 2012).
Importantly, the detachment of the myofibers from the MTJs
in lama2cl501 happens without the loss of sarcolemmal integrity,
similar to caf mutants. These mutants show reduced laminin
expression in the basal membrane at the MTJs complexes,
smaller myotomes indicative of growth defects, disorganized
sarcomere structure, and increased number of necrotic fibers.
Also, lama2cl501 mutants exhibit brain and eye defects (Gupta
et al., 2012). Pathogenesis of lama2cl501 is similar to that of human
patients with MDC1A, making this mutant another excellent
animal model for identifying potential therapies for MDC1A.

Additional research looking at genetic interactions between
lama2 and other dystrophic genes has contributed to our
understanding of the specific pathomechanism(s) by which the
muscle damage occurs in LAMA2-MD (Sztal et al., 2012).
LAMA2, as the major muscle isoform, regulates attachment
of myofibers to the ECM either through the dystroglycan
complex or through integrin pathways (Tunggal et al., 2000;
Pozzi et al., 2017). However, proteins such as dystroglycan
(Ervasti and Campbell, 1993; Lisi and Cohn, 2007), dystrophin
(Bassett and Currie, 2004), integrin-α7 (Postel et al., 2008), or
ilk (Postel et al., 2008) that interact directly or indirectly with
LAMA2, play important roles in modifying the LAMA2-MD
phenotype. Systematic epistatic experiments in this study (Sztal
et al., 2012) showed that concomitant loss of ilk and dmd
(dystrophin), or ilk and DAG1 (dystroglycan) result in a more
severe dystrophic phenotype than the loss of lama2 or either one
alone. Also, the authors show that the phenotype of lama2/ilk,
lama2/dmd, or lama2/dag1 double homozygous mutants is less
severe than the one exhibited by the ilk/dmd or ilk/dag1mutants,
implicating other laminins, in addition to lama2, in maintaining
the attachment of myofibers to the ECM. Further, by injecting
either lama4 or lama1morpholino in lama2mutants, Sztal et al.
(2012) showed that lama1, but not lama4, also plays a significant
role in this process.

A key outcome of the studies using the caf and lama2cl501
zebrafish models was the ability to discriminate between this
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disorder and DMD, another severe form of muscular dystrophy
(Bassett et al., 2003; Bassett and Currie, 2004; Widrick et al.,
2016). In muscle from the DMD zebrafish model sapje the
detached fibers show significant sarcolemmal damage, followed
by rapid and increased apoptosis and/or necrosis (Bassett et al.,
2003), whereas muscle from the caf and lama2cl501 zebrafish fully
detaches without concomitant sarcolemmal damage (Hall et al.,
2007; Gupta et al., 2012). Also, detached myofibers in lama2
zebrafish show increased survival and regeneration due to the
up-regulation of lama4 in detached fibers (Sztal et al., 2012).

THERAPEUTIC STRATEGIES FOR
LAMA2-MD—LESSONS FROM ZEBRAFISH

Several studies using lama2 zebrafish models identified potential
therapeutic strategies for LAMA2-MD (Sztal et al., 2012; Smith
et al., 2017; Hall et al., 2019). Results from studies in other
dystrophic zebrafish models can also be translated and applied to
LAMA2-MD (Goody et al., 2012; Kawahara et al., 2014; Widrick
et al., 2019; Wood et al., 2019).

Drug Screening and Drug Therapy
Studies by Smith et al. (2017) identified and characterized
a very early coiling defect in the lama2cl501 fish, which can
be used as a measurable and reliable phenotype for drug
screening. The mutant fish complete significantly fewer tail
coiling movements compared to their wild type siblings (Smith
et al., 2017). Importantly, this phenotype manifests only in caf
and lama2cl501fish, not in DMD mutants. This early phenotype
is consistent with the early perinatal changes observed in
LAMA2-MD mouse models (Mehuron et al., 2014), and mirrors
the congenital onset phenotype of patients. Therefore, this
zebrafish model may be effectively used to identify drug therapies
that act at early stages in the LAMA2-MD disease process, which
then could be translated into mouse models and clinical trials.

Recent studies using an integrin beta1 zebrafish (itgβ1)
showed that targeting LAMA2 binding partners, such as integrin,
could also provide insights into putative drug therapies for
LAMA2-MD (Wood et al., 2019). itgβ1-deficient fish displayed
increased amounts of LAMA2 and collagen at the ECM,
indicating that inhibition of itgβ1 in lama2-deficient models
might ameliorate the LAMA2-MD phenotype. Injections of the
peptide RGD, an itgβ1 inhibitor, led to increased myofiber
stability at the basal lamina in caf zebrafish, by increasing the
levels of lama2 at the ECM (Wood et al., 2019).

Additional insights into using zebrafish models for the
development of drug therapies for muscular dystrophies
were provided by studies modulating nicotinamide adenine
dinucleotide (NAD+) biosynthesis in dag1 and itga7 dystrophic
morphants (Goody et al., 2012). NAD+ synthesis, mediated by
the muscle-specific nicotinamide riboside kinase 2b (nrk2b), was
shown to be essential for lamc1 polymerization at the MTJs and
identified additional regulators of muscle morphogenesis in the
cell adhesion signaling pathway (Goody et al., 2010). Exogenous
supplementation of NAD+ or overexpression of its downstream
effector, paxillin, ameliorate the dystrophic phenotype, by

increasing the MTJ-basement membrane organization through
laminin augmentation (Goody et al., 2012).

Gene Therapy and Protein Replacement
Therapy
Recent studies in the cafteg15 zebrafish model showed that
expressing lama2 or injecting lama2 rescues the LAMA2-MD
dystrophic fiber phenotype (Hall et al., 2019). Generalized
expression of lama2 under a heat-shock promoter during
embryonic development or muscle-specific overexpression of
lama2 in caf fish led to normal levels and correct distribution
of laminin at the MTJs and complete rescue of the dystrophic
phenotype (Hall et al., 2019). Driving the expression of
lama2 later in development, after the dystrophic phenotype
is fully established, resulted in a significant decrease in the
number of detached fibers, increased survival, remodeling,
repair and reattachment of detached fibers (Hall et al., 2019).
Intramuscular delivery of Laminin111, a laminin complex similar
to Laminin211 shown to functionally replace Laminin211 in
an MCD1A mouse model (Van Ry et al., 2014), increased
the population of muscle stem cells and resulted in significant
improvement of the caf phenotype (Hall et al., 2019). This is
similar to what has been described for laminin replacement
therapy inDMDand alpha7 integrin-null mousemodels (Rooney
et al., 2009a,b; Goudenege et al., 2010) and provides additional
validation of the therapy, as well as of the model as a vehicle for
discovery and development of therapies.

Caveats of Using Zebrafish as the
LAMA2-MD Disease Model
The above studies describing LAMA2-MD zebrafish models,
together with the increasing number of studies modeling other
human diseases in zebrafish (Steffen et al., 2007; Wood and
Currie, 2014), prove the amenability of zebrafish as an organism
for advancing our understanding of pathogenic mechanisms and
therapies development. However, we should mention that a few
caveats should be taken into consideration when translating
the results from the LAMA2-MD zebrafish to human patients
with LAMA2-MD.

LAMA2-MD pathophysiology shows slight differences
between human patients and zebrafish models. For example, in
humans, the LAMA2-MD dystrophic phenotype is associated,
besides other features, with increased atrophy and apoptosis,
defective regeneration and repair, depletion of satellite cell
pools, upregulated autophagy and abnormal proteasome-
dependent degradation (Durbeej, 2015). These changes have
yet to be thoroughly examined in zebrafish models of LAMA2-
MD. Also, evaluating non-muscle phenotypes associated
with LAMA2 mutations presents challenges in the zebrafish.
Importantly, myelination is distinctly different in zebrafish
compared to mammals, with peripheral myelin expressing
myelin basic protein and not MPZ or PMP22. Thus, studying
mechanisms related to white matter disease and peripheral
neuropathy may not be feasible in zebrafish, and addressing the
impact of therapeutic interventions on these features of disease
not possible.
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Designing drug screens for LAMA2-MD in zebrafish requires
taking into consideration that detachment of myofibers in caf
mutants is movement- and mechanical load-dependent (Hall
et al., 2007). Therefore, it is necessary to ensure the drugs tested
do not affect swimming behavior. Fish immobilized due to highly
toxic drugs, for example, would lead to the identification of false-
positive drug hits.

Overall, there is therefore the need to balance the advantage
of the zebrafish with these shortcomings. The integration of
observations in caf mutants with other in vivo models of
LAMA2-MD should greatly aid in their translatability. In
particular, several mutant mouse models accurately phenocopy
key aspects of the human disease (Gawlik and Durbeej, 2020),
and provide an opportunity to test and validate findings
from the caf mutants and to determine their relevance to
non-muscle systems. This is particularly true concerning therapy
development, where a pipeline of large scale drug screening
in zebrafish combined with testing and validation in the
mouse may yield candidate therapeutics with the highest
potential for successful translation to patients. The establishment
of a similar pipeline crossing multiple species was recently
reported for congenital muscle disease due to RYR1 mutation
(Volpatti et al., 2020).

CONCLUSIONS

Zebrafish models of human diseases contribute significantly
to our understanding of underlying pathogenic mechanisms,
characterization of signaling pathways regulating them, and
development of therapeutic strategies. The main strengths of the
zebrafish model are a large number of offspring, rapid embryonic
development, and optical transparency of the embryos, which
allow for successful screening approaches, from drug discovery to
genome-scale CRISPR and genetic modifiers screening (reviewed
in Gut et al., 2017).

Zebrafish is an excellent model organism to study LAMA2-
MD, as they mirror the genetics and motor phenotypes of
patients and carry important advantages for pathway analyses
and drug discovery. Zebrafish are extremely amenable to
high-throughput chemical screening to identify therapeutic
drugs for LAMA2-MD (MacRae and Peterson, 2015). This

approach has been successfully used in other zebrafish models
of human disease (Bootorabi et al., 2017; Jardine et al.,
2020; Gut et al., 2017; Matsuda et al., 2018). Furthermore,
genome-editing technologies such as TALENs and CRISPR/Cas
systems are easily applied to zebrafish and could be used
to generate and study a large number of patient-specific
mutations (Zhang et al., 2018; Giardoglou and Beis, 2019;
Lek et al., 2020). Despite some limitations (Gut et al., 2017),
these genome-editing approaches allow for the generation
of a theoretically unlimited number of zebrafish mutants,
which could ultimately enable scientists to systematically and
comprehensively study full allele series for disorders such as
LAMA2-MD. Lastly, performing genetic modifiers screens in
caf zebrafish with methodologies including ENU mutagenesis
and CRISPR gene editing (McGovern et al., 2015; Quattrocelli
et al., 2017a,b; Rahit and Tarailo-Graovac, 2020; Volpatti et al.,
2020) should enable the identification of genetic interactions
and novel disease modifiers, data which would greatly advance
our understanding of the pathomechanisms and phenotypic
variability of LAMA2-MD.
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