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INTRODUCTION

Alzheimer’s disease (AD) is the most common form of dementia. Its prevalence will significantly
increase in the coming decades, whereas no efficient treatment is currently available. AD has
two main neuropathological lesions: amyloid plaques and neurofibrillary tangles (NFTs). Amyloid
plaques are composed of amyloid ß (Aß) peptides cleaved from the Amyloid Precursor Protein
(APP) (Glenner andWong, 1984). NFTs, present in the brain of AD and related neurodegenerative
diseases, are constituted of tau proteins (Brion et al., 1985) in hyperphosphorylated and aggregated
form (Wang and Mandelkow, 2016).

ENDOLYSOSOMAL ABNORMALITIES IN AD

Evidence from both genetic and biochemical studies supports the involvement of endolysosomal
abnormalities in the development of Alzheimer brain lesions (Van Acker et al., 2019). Enlargement
of endosomes in neurons and peripheral cells is observed at early stage of AD and of Down
syndrome (DS) individuals who are at high risk for AD (Cataldo et al., 1996; Botte and Potier,
2020). The endocytic machinery may thus be a highly vulnerable cascade that undergoes alterations
at the early stages of AD. Importantly, endocytosis is closely linked to the development of both
Aß and tau pathologies. On one hand, it is believed that modifications of the endolysosomal
compartment in AD and DS are mostly linked to increased Aβ production as the amyloidogenic
processing of APP occurs in the endosomal pathway (Koo and Squazzo, 1994; Botte et al., 2020).
On the other hand, uptake of abnormal tau by endocytosis is an important step to sustain tau
spreading from cell to cell (Wu et al., 2013; Evans et al., 2018; Puangmalai et al., 2020; Rauch et al.,
2020). Tau pathology is strongly correlated to functional deficits in AD brains (Nelson et al., 2012).
The brain propagation of tau pathology in AD follows neuroanatomical pathways and can reflect
transmission of abnormal tau proteins from cell to cell in a “prion-like” manner. This transcellular
transfer of abnormal tau is thought to induce recruitment and seeding of the normal soluble tau
proteins into pathological aggregated tau and would need cellular internalization of abnormal
tau through endocytic mechanisms (Mudher et al., 2017). In this review, we mainly focus on
endocytic abnormalities in AD brains, the underlying potential mechanisms, and the relationship
with tau pathology.
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GENETIC RISK FACTORS FOR
LATE-ONSET AD (LOAD) AND
LOAD-RELATED ENDOLYSOSOMAL
PROTEINS

Familial AD (FAD) accounts for <5% of AD cases and is well
characterized by mutations in three genes (APP, PSEN1, and
PSEN2). Although genetic factors are estimated to represent 60%
of the risk to develop LOAD, they remained largely unknown
for a long time except for APOE (Gatz et al., 2006). Genome-
wide association studies (GWAS) and whole genome sequencing
studies (WGS) have identifiedmore than 45 genes/loci increasing
or decreasing the susceptibility to develop LOAD (Lambert
et al., 2013; Dourlen et al., 2019). Some GWAS hit genes
encode key proteins involved in endocytosis and membrane
dynamics such as INPP5D (SHIP1), Bridging Integrator 1
(BIN1), Phosphatidylinositol Binding Clathrin Assembly Protein
(PICALM), Ras and Rab Interactor 3 (RIN3), CD2 Associated
Protein (CD2AP), Sortilin Related Receptor 1 (SORL1), Cas
scaffolding protein family member 4 (CASS4) (Lambert et al.,
2013). In addition, several independent studies have reported the
involvement of genes encoding endolysosomal proteins in AD
such as INPPL1 (SHIP2) (Mostafavi et al., 2018), Synaptojanin-
1 (SYNJ1) (Miranda et al., 2018) and phospholipase D3 (PLD3)
(Cruchaga et al., 2014). The pathophysiological mechanisms by
which these genes may modulate the risk for LOAD are still
not fully understood.

DYNAMIN-DEPENDENT ENDOCYTOSIS
AND LOAD-RELATED ENDOLYSOSOMAL
PROTEINS

The endolysosomal proteins listed above play critical roles at
various steps of dynamin-dependent endocytosis and further
steps (Figure 1A). Endocytosis starts with the recruitment of
endocytic proteins to the plasma membrane subdomain enriched
with phosphatidylinositol (PI) 4,5-bisphosphate [PI(4,5)P2] to
form a clathrin-coated pit (CCP) (Ferguson and De Camilli,
2012;Wang et al., 2019). SHIP2 negatively regulates the dynamics
of CCP formation (Nakatsu et al., 2010) by engaging a change in
PI(3,4)P2 (Ghosh et al., 2018) and PI(4,5)P2 (Elong Edimo et al.,
2016). Membrane invagination starts from this pit by assembling
clathrin and AP-2 with the adaptor protein PICALM (Tebar et al.,
1999). BIN1 is involved in membrane curvature and remodeling
but BIN1 is also detected in the early endosomes of axons in
neurons and is also implicated in recycling BACE1, a ß-site APP
cleaving enzyme present in early endosomes (Ubelmann et al.,
2017). Deep invagination of the bud and narrow neck formation
are assisted by actin polymerization where SYNJ1 and dynamin
interact with their protein partners possessing BAR domains
(Chang-Ileto et al., 2011). After scission of newly formed vesicles
by dynamin, SYNJ1 plays a critical role in clathrin-coated vesicle
uncoating (Cremona et al., 1999). Then, RIN3 joins in the
transport pathway from plasma membrane to early endosomes
(Kajiho et al., 2003). Similarly, CD2AP is detected in the early
endosomes of the dendrites in cultured neurons and is involved

in actin remodeling, membrane trafficking (Lehtonen et al.,
2002) and in APP sorting (Ubelmann et al., 2017). SORL1,
directly interacting with APP, is localized primarily to early
endosomes and the trans-Golgi network, shuttling between these
two membrane compartments (Willnow et al., 2008). Lastly,
PLD3 is implicated in endolysosomal system (Fazzari et al., 2017).
CASS4 is rather implicated in focal adhesion integrity and tau
toxicity (Dourlen et al., 2019). Most of these proteins are directly
or indirectly involved in interactions with actin networks as
described for dynamin (Zhang et al., 2020), SHIP1 (Lesourne
et al., 2005), SHIP2 (Ghosh et al., 2018), BIN1 (Butler et al.,
1997; Drager et al., 2017), SYNJ1 (Sakisaka et al., 1997), CD2AP
(Lehtonen et al., 2002; Lynch et al., 2003; Tang and Brieher,
2013) and CASS4 (Deneka et al., 2015). Tau itself is also involved
in organizing actin networks (Elie et al., 2015). Given that
many of these endocytic proteins are also implicated in synaptic
vesicle endocytosis and focal adhesion formation at the synaptic
cleft, they are assumed to be involved in synaptic dysfunctions
observed in AD (Dourlen et al., 2019; Perdigao et al., 2020).

INVOLVEMENT OF ENDOCYTIC PROTEINS
WITH PROLINE-RICH DOMAIN (PRD) AND
SRC-HOMOLOGY3 (SH3)-DOMAIN IN
ENDOCYTIC ALTERATIONS IN AD

Dynamin-dependent endocytosis is regulated by the interplay
of the interactions between PRD of dynamin and SH3 domain-
containing proteins (Ferguson and De Camilli, 2012). Some of
the endocytic proteins discussed above possess SH2 or SH3
domains and/or PRD (Figure 1B). These endocytic proteins form
an interconnected protein network by direct or indirect protein-
protein interactions. For example, BIN1 directly interacts with
PICALM, SYNJ1, dynamin, RIN3 and tau (Chapuis et al., 2013;
Shen et al., 2020). We hypothesize that dynamin-dependent
endocytosis could be highly vulnerable and sensitive. Firstly,
cyclin-dependent kinase 5 (CDK5), a kinase activated in AD
brains (Patrick et al., 1999), phosphorylates PRD of both
dynamin1 and SYNJ1 to block the interaction with SH3 domains
of their protein partners (Ferguson and De Camilli, 2012).
Secondly, the expression level of each of these endocytic proteins
has a profound effect on endosomal structures. For example,
depletion of SHIP2 accelerates the maturation of CCPs (Nakatsu
et al., 2010) and depletion of PICALM leads to enlargement
of clathrin-coated vesicle sizes (Miller et al., 2015). Likewise,
depletion of BIN1, SYNJ1, CD2AP, and SORL1 results in an
enlargement of early endosomes in cultured cells (Calafate et al.,
2016; Ubelmann et al., 2017; Fasano et al., 2018; Knupp et al.,
2020). In view of the fact that most of the LOAD-related SNPs
reside in noncoding regions of the genome, they are supposed
to play a role in regulating gene expression. Long-term up- or
down-regulation of even one of these endocytic proteins encoded
by LOAD-susceptibility genes might thus provoke endosomal
abnormalities. In other words, endocytic alterations might begin
much earlier than the appearance of AD lesions in the individuals
bearing risk alleles of these GWAS-hit genes.
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FIGURE 1 | (A) Schematic representation of the associations of Alzheimer key proteins in CCP formation and dynamin-dependent endocytosis. Some of the recently

identified AD susceptibility factors are involved in the early and late stages of dynamin-dependent endocytosis. GWAS-hits are shown in pink. SHIP1 is rather

implicated in phagosome formation in macrophages and CASS4 in focal adhesion. SHIP1 and CASS4 are not included in (A). *SHIP2, SYNJ1, and PLD3 are

endolysosomal proteins involved in AD pathogenesis but not categorized as GWAS hits and shown in red. Dynamin is shown in orange. (B) The schematic illustration

of the endolysosomal proteins. Some of them possess SH2, SH3 domains, or PRD. PRD, proline-rich domain; MTR, microtubule binding repeats; PH,

pleckstrin-homology; SH2, Src homology 2; 5-Ptase, phosphoinositide 5-phosphatase domain; SAM, sterile alpha motif; NPxY, a conserved tyrosine phosphorylation

motif (Asn-Pro-x-Tyr); ANTH, AP180 N-terminal homology (ANTH) domain; CLAP, clathrin-associated protein-binding; AD1CLAP, A second sub-domain without

clearly crucial motifs for clathrin binding. CNS, central nervous system; BAR, BIN/Amphiphysin/Rvs; SH3, Src homology 3; SAC1, suppressor of actin 1; RH,

RIN-homology; Vps, vacuolar protein sorting; RA, Ras-association (RA); CC, coiled coil; TM, transmembrane; PDE, phosphodiesterase; SH2 Binding, tyrosine

phosphosite-enriched domain containing binding sites for partners with SH2 domains; FLSR, central serine rich region; FAT, focal adhesion targeting domain; EGF,

epidermal growth factor; CR cluster, complement-type repeat domains; FNIII, fibronectin type III repeats. *It has to be noted that tau, dynamin, SHIP2, SYNJ1, and

PLD3 are not GWAS hits. (C) Schematic summary of our hypothesis. Genetic factors are linked to both APP processing (Aß production) and tau pathology via actin

network, PI metabolism and endolysosomal pathway/autophagy, leading to neuronal dysfunctions. PI metabolism is modulated by both Aß (Berman et al., 2008) and

tau (Hwang et al., 1996). Aß is linked to tau by accelerating brain tau-seeded pathology (He et al., 2018; Vergara et al., 2019).

INTERACTIONS BETWEEN TAU,
ENDOCYTOSIS REGULATION, AND
PHOSPHOINOSITIDES

Given that endocytic proteins such as SHIP1, SHIP2, and
SYNJ1 are PI-5-phosphatases involved in PI metabolism (Ramos
et al., 2019), we hypothesize that upstream dysregulation of PI
metabolism in AD brains may as well accelerate AD pathology.
PIs act as signaling molecules in several biological functions,
including membrane dynamics, cell adhesion, autophagy, and
endocytosis. The homeostasis of PIs, tightly regulated by PI
kinases and phosphatases in healthy cells (Di Paolo and De
Camilli, 2006), is dysregulated in AD brains (Stokes and

Hawthorne, 1987; Jope et al., 1994; Morel et al., 2013). While
Aß modulates PI(4,5)P2 metabolism (Berman et al., 2008;
He et al., 2019), PI(4,5)P2 may as well be involved in the

formation of tau pathology. PI(4,5)P2 directly interacts with

tau (Surridge and Burns, 1994) and can induce fibrillization

of recombinant tau in vitro (Talaga et al., 2018). Indeed,

PI(4,5)P2 is abnormally concentrated with lipid raft markers
in NFTs and in granulovacuolar degeneration bodies in post-

mortem brain tissues of AD and other tauopathies (Nishikawa
et al., 2014) and is associated with several tau kinases in
the raft structures (Nishikawa et al., 2016). Furthermore, tau
possesses a PRD composed of seven Pro-X-X-Pro (PXXP)
motifs, in its central domain (Figure 1B). Tau interacts with
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various SH3-containing proteins including phospholipase C
(PLC) γ1 (Reynolds et al., 2008). PLC hydrolyses PI(4,5)P2 to
generate diacylglycerol (DAG) and inositol 1,4,5-trisphosphate
[Ins(1,4,5)P3], an important second messenger to mobilize
calcium from internal stores. Tau modulates cellular signaling
by interacting with PLC γ1 thereby enhancing the cleavage of
PI(4,5)P2 (Hwang et al., 1996). In vitro phosphorylation of tau
by GSK3ß, a kinase abnormally activated in AD brains (Leroy
et al., 2007), significantly decreases interaction with some of its
SH3-containing partners such as PLC γ1 (Reynolds et al., 2008).
This implies that interactions between tau and its SH3-containing
partners including PLC γ1 are likely to be disrupted in AD brains.
Tau hyperphosphorylation may thus trigger dysregulation of PI
metabolism and the upstream cascade of endocytosis (Wallroth
and Haucke, 2018). It is also speculated that some of the proteins
possessing SH2 and SH3 domains and/or PRDmay be influenced
by the release of “free” SH3 domains of tau partners due to
tau detachment. On the other hand, the somatodendritic tau
concentration is∼8-fold higher in AD compared to age-matched
controls (Khatoon et al., 1992). Tau is associated with some of
these endocytic proteins such as BIN1 (Calafate et al., 2016;
Sartori et al., 2019), PICALM (Ando et al., 2013, 2016, 2020a)
and SYNJ1 (Ando et al., 2020b). By direct interaction with tau,
these endocytic proteins may (i) play roles in internalization of
pathological tau during endocytosis by directly binding to tau, (ii)
undergo a significant alteration in their subcellular localizations
due to sequestration by tau. Some endocytic proteins interacting
with phosphorylated tau are significantly decreased from the
soluble fraction of AD brain lysates as observed for PICALM
(Ando et al., 2016) and SYNJ1 (Ando et al., 2020b). While
PICALM and SYNJ1 play critical roles in endocytosis, they also
modulate autophagy (Moreau et al., 2014; Vanhauwaert et al.,
2017). It is presumed that tau sequestration of such endocytic
proteins could also lead to defects in both endolysosomal and
autophagy pathways, central network to clearance of cellular
macromolecules including Aß and tau.

DISCUSSION

Many of the endocytic machinery proteins implicated in
AD risk possess SH2, SH3 domains, and/or PRD and are

involved in actin dynamics as well as in regulation of PIs.
Because the endocytic machinery needs fine-tuned regulation
of PIs and endocytic protein-protein interactions, the endocytic
pathway must be highly vulnerable. Dysregulation of even
one of these endocytic proteins could lead to significant
endocytic abnormalities. Hyperphosphorylation of tau may
further accelerate endocytic dysregulation. Genetic risk factors
and tau pathology might well have profound impacts on
synaptic functions, endolysosomal/autophagic pathways, and
APP processing via dysfunction of endocytosis, actin network,
and PI metabolism (Figure 1C). Endolysosomal/autophagic
abnormalities are also linked to both Aß and tau pathologies.
Aß and tau are also tightly linked: Aß inhibits proteasome
pathway (Almeida et al., 2006) and accelerates tau pathology
progression (He et al., 2018; Vergara et al., 2019). Several
genetic risk factors for LOAD may have pathological effects
by inducing endocytic abnormalities leading to Aß production,
tau pathology progression, synaptic failure, and deficits in
membrane dynamics, all events observed in the progression
of AD.
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