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Microtubule-associated protein tau is characterized by the fact that it is an intrinsically

disordered protein due to its lack of a stable conformation and high flexibility. Intracellular

inclusions of fibrillar forms of tau with a β-sheet structure accumulate in the brain of

patients with Alzheimer’s disease and other tauopathies. Accordingly, detachment of

tau from microtubules and transition of tau from a disordered state to an abnormally

aggregated state are essential events preceding the onset of tau-related diseases. Many

reports have shown that this transition is caused by post-translational modifications,

including hyperphosphorylation and acetylation. The misfolded tau is self-assembled

and forms a tau oligomer before the appearance of tau inclusions. Animal and

pathological studies using human samples have demonstrated that tau oligomer

formation contributes to neuronal loss. During the progression of tauopathies, tau seeds

are released from cells and incorporated into other cells, leading to the propagation

of pathological tau aggregation. Accumulating evidence suggests several potential

approaches for blocking tau-mediated toxicity: (1) direct inhibition of pathological tau

aggregation and (2) inhibition of tau post-translational modifications that occur prior

to pathological tau aggregation, (3) inhibition of tau propagation and (4) stabilization

of microtubules. In addition to traditional low-molecular-weight compounds, newer

drug discovery approaches such as the development of medium-molecular-weight

drugs (peptide- or oligonucleotide-based drugs) and high-molecular-weight drugs

(antibody-based drugs) provide alternative pathways to preventing the formation of

abnormal tau. Of particular interest are recent studies suggesting that tau droplet

formation by liquid-liquid phase separation may be the initial step in aberrant tau

aggregation, as well results that implicate roles for tau in dendritic and nuclear functions.

Here, we review themechanisms through which drugs can target tau and consider recent

clinical trials for the treatment of tauopathies. In addition, we discuss the utility of these

newer strategies and propose future directions for research on tau-targeted therapeutics.

Keywords: tau protein, post-translational modifications, aggregation, microtubule stabilizer, immunotherapy,

oligonucleotide therapy, liquid-liquid phase separation, inflammation

INTRODUCTION

Two classes of drugs for dementia treatment have been approved by the major regulatory agencies
(US Food and Drug Administration, FDA; European Medicines Agency, EMA; Pharmaceuticals
andMedical Devices Agency, PMDA): acetylcholinesterase inhibitors, which treatmild tomoderate
Alzheimer’s disease (AD), and N-methyl-D-aspartate receptor antagonists (e.g., memantine),
which treat moderate to severe AD. Although these drugs can slow progression and control
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dementia-related symptoms, the treatments are not definitive.
Systematic reviews have reported that the drugs are efficacious
against dementia (Loveman et al., 2006; Tan et al., 2014), but
they are also controversial in terms of cost effectiveness (Bond
et al., 2012). There are currently many research and development
efforts to provide disease-modifying therapies for AD treatment
(Cummings et al., 2019). The main targets are amyloid-β (Aβ),
a major component of senile plaques, and tau, neurofibrillary
tangles (NFT). To investigate the Aβ cascade hypothesis, many
clinical trials of therapeutic approaches targeting Aβ have
been conducted. However, clinical trials for targeting Aβ have
repeatedly failed (Holmes et al., 2008; Rosenblum, 2014). Because
histological analysis and tau positron emission tomographic
studies have revealed that cognitive impairment correlate better
with tau and neuronal loss than with Aβ pathology (Bondareff
et al., 1989; Bobinski et al., 1996; Gomez-Isla et al., 1996; Guillozet
et al., 2003; Schöll et al., 2016; Schwarz et al., 2016; Bejanin et al.,
2017), AD drug discovery research has increasingly shifted from
Aβ to tau protein (Giacobini andGold, 2013), with some reaching
clinical trial stages. In this review, we describe and discuss the
structure and mechanisms of action of drugs that target tau
(Figure 1). We also discuss perspectives for drug development in
this area.

TAU PROTEIN AND TAUOPATHIES

Tau is a stabilizing microtubule-associated protein that was
discovered in 1975 (Weingarten et al., 1975). The protein is
mainly found in the axonal compartment of neurons (Morris
et al., 2011; Mandelkow and Mandelkow, 2012; Guo et al.,
2017). In the adult human brain, alternative splicing from the
MAPT gene on chromosome 17 yields six tau isoforms (352–441
amino acid residues; 37–46 kDa) (Goedert et al., 1991), which
are distinguished by the absence or presence of one or two N-
terminal inserts, and the presence of three (3R) or four (4R)
microtubule-binding repeats in the C-terminal half of tau (Guo
et al., 2017).

Tauopathies are neurological disorders (Avila et al., 2004;
Götz and Götz, 2019), characterized by aberrant tau aggregates
(NFT and tau inclusions) in neurons and glial cells. These
aggregates represent tau gene mutations or hyperphosphorylated
tau (Kovacs, 2015). The majority of tauopathic patients also
show depositions of Aβ, α-synuclein, or huntingtin (Guo et al.,

Abbreviations: a. a., amino acid; Aβ, amyloid-β; AD, Alzheimer’s disease; APP,

amyloid precursor protein; ASO, antisense oligonucleotides; CBD, corticobasal

degeneration; cryo-EM, electron cryomicroscopy; CSF, cerebrospinal fluid; CTE,

chronic traumatic encephalopathy; EMA, European Medicines Agency; FDA,

US Food and Drug Administration; FTDP-17, frontotemporal dementia and

parkinsonism linked to chromosome 17; GSK3, glycogen synthase kinase 3;

IDP, intrinsically disordered protein; Ig, immunoglobulin; LLPS, liquid–liquid

phase separation; MB, methylene blue; MCI, mild cognitive impairment; NFT,

neurofibrillary tangles; OGA, O-GlcNAcase; O-GlcNAcylation, addition of β-

linked N-acetylglucosamine; PHF, paired helical filaments; PiD, Pick’s disease;

PMDA, Pharmaceuticals andMedical Devices Agency; PP2A, protein phosphatase

2A; PSP, patients with progressive supranuclear palsy; 3R, three microtubule-

binding repeats; 4R, four microtubule-binding repeats; scFv, single-chain variable

fragment; SF, straight filaments, STAND, ultra-stable cytoplasmic antibody.

2017). These observations suggest that tau abnormalities have a
common pathological role across neurodegenerative diseases.

AD is the most common and best-studied tauopathy. The
disease is caused by extensive atrophy of the brain beginning
in the temporal and parietal lobes. Analysis of cell lysates from
the AD brain by sodium dodecyl sulfate polyacrylamide gel
electrophoresis reveals three major electrophoresis bands: tau
proteins with relative molecular weights of 68,000, 64,000, and
60,000 (Lee et al., 1991; Goedert et al., 1992; Greenberg et al.,
1992; Delacourte et al., 1999). Although the actual molecular
weight of tau is 37–46 kDa, treatment of AD-derived samples
with phosphatases shows that the band pattern of tau was
similar to that of recombinant human tau (Hanger et al.,
2002). This finding indicates that the tau aggregates found
in AD undergo post-translational modifications (Guo et al.,
2017). Indeed, structural biology studies have revealed that the
major components of tangles in AD are paired helical filaments
(PHF) and straight filaments (SF), and both types are composed
primarily of abnormally phosphorylated tau proteins (Kosik
et al., 1988; Gendron and Petrucelli, 2009). Like the tangles in
the healthy adult human brain, those in the AD brain consist
of 3R and 4R isoforms (1:1 ratio) (Williams, 2006). However,
some other tauopathies are characterized by an imbalance in the
ratio of 4R/3R tau isoforms. For example, brains from patients
with progressive supranuclear palsy (PSP) and corticobasal
degeneration (CBD) predominantly exhibit 4R tau, whereas the
insoluble tau of Pick’s disease (PiD) is mainly 3R tau (Arai et al.,
2003). In frontotemporal dementia and parkinsonism linked to
chromosome 17 (FTDP-17), the predominance of isoforms varies
according to the type of disease-causing tau mutation (de Silva
et al., 2006; Andreadis, 2012; Rossi and Tagliavini, 2015).

TAU-TARGETED THERAPIES

Tau-targeted drugs may be a promising disease-modifying
therapy because previous studies focusing on the correlation
of AD neuropathological changes (Aβ plaques and NFT) with
cognitive impairment have shown that the severity of cognitive
impairment correlated best with the burden of abnormal tau
(Nelson et al., 2012). Accordingly, many clinical trials of drugs
targeting tau have been conducted.

Post-translational Modifications
Tau undergoes a variety of post-translational modifications,
including phosphorylation, acetylation, glycation, nitration,
addition of β-linked N-acetylglucosamine (O-GlcNAcylation),
oxidation, polyamination, sumoylation, and ubiquitination
(Martin et al., 2011; Morris et al., 2015). Here, we discuss some
of the post-translational modifications of tau, its function and
relationship to disease, and drugs that have been developed to
prevent or ameliorate these modifications (Figure 2).

Tau Phosphorylation
Phosphorylation is the best known post-translational
modification of tau. Tau bears 85 phosphorylation sites,
including 45 serine residues, 35 threonine residues, and five
tyrosine residues (Hanger et al., 2009). Tau phosphorylation
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FIGURE 1 | Mechanism of tau-targeted drugs in clinical trials. In tauopathies, tau protein is dissociated from microtubules by post-translational modifications,

including phosphorylation, and tau is mis-sorted into the somatodendritic compartment. The mis-sorted tau undergoes further post-translational modifications and is

converted to misfolded tau. After tau self-assembly, tau filaments are formed via tau oligomers. The pathological tau seed is subsequently released from the

pre-synapse and propagated into post-synapses. Tau-based drugs in clinical trials are inhibitors of post-translational modification (Figure 2) or tau aggregation

inhibitors (Figure 3), as well as oligonucleotides to reduce tau expression, microtubule stabilizers, and immunotherapeutics.

regulate its binding to microtubules (Gong and Iqbal, 2008).
Phosphorylation of tau, including at residues S262, S293, S324,
and S356, cause a dissociation of the bond between tau and
microtubules, whereas these bonds are enhanced when tau is
hypophosphorylated (Mandelkow et al., 1995; Martin et al.,
2011). NFT in the AD brain are accumulations of PHF and SF
comprised of hyperphosphorylated tau (Gendron and Petrucelli,
2009). Under normal conditions, there is an average 2–3 moles
of phosphate per molecule of tau is present, but in AD, this
ratio can be about 3–4 times higher (Gong and Iqbal, 2008).
Tau hyperphosphorylation induces accumulation of tau in the
somatodendritic compartment (mis-sorting), self-aggregation,
polymerization, defects of axonal mitochondrial trafficking,
ultimately leading to neuronal toxicity (Zempel et al., 2010;
Zempel and Mandelkow, 2019; Lauretti and Praticò, 2020). Tau
phosphorylation precedes the formation of tau fibrils in the AD
brain (Iqbal et al., 2005). Together, these observations suggest
that tau hyperphosphorylation is involved in the development
and pathogenesis of tauopathies and that its inhibition may be a
therapeutic strategy.

Tau phosphorylation is tightly controlled by the balance of
protein kinase and phosphatase activity (Hanger et al., 2009).
Tau is a major substrate of protein phosphatase 2A (PP2A)
whose activity is reduced in the AD brain (Gong et al., 1993,
1995; Sontag et al., 2004; Liu et al., 2005). However, because
of its substrate specificity and several regulatory subunits,
PP2A is not easily amenable to drug targeting (Wolfe, 2016).
Therefore, attention has been paid to developing protein kinase
inhibitors that can reduce tau aggregation and neuronal death in
tauopathies (Hanger et al., 2009).

Glycogen Synthase Kinase 3β
Of the tau amino acid residues observed to be phosphorylated in
AD, at least 26 sites have been identified as targets of glycogen
synthase kinase 3 (GSK3). Indeed, the total protein level and
activity of GSK3 in brains with tauopathies seem to correlate with
the progression of neurodegeneration (Yamaguchi et al., 1996;
Imahori and Uchida, 1997; Pei et al., 1997), and over-activation
of GSK3β contributes to tau hyperphosphorylation (Blalock
et al., 2004; Guo et al., 2017). Interestingly, Aβ activates GSK3β
and tau hyperphosphorylation and, subsequently, neuronal
death (Takashima et al., 1993, 1996; Takashima, 2006). While
non-phosphorylated recombinant tau is polymerized in the
presence of an inducer of arachidonic acid, the phosphorylation
of tau by GSK3β promotes polymerization (Rankin et al.,
2007). Other supporting data includes demonstration that
co-transfection of truncated tau at D421 and GSK3β (Cho
and Johnson, 2004), or triple expression of wild-type tau,
GSK3β and JNK (Sato et al., 2002) in cultured cells leads
to the formation of detergent-insoluble tau and thioflavin-
S-positive inclusions. In transgenic mice, lithium or NP12,
a pharmacological inhibitor of GSK3β, causes a reduction
of tau phosphorylation and NFT formation (Caccamo et al.,
2007; Leroy et al., 2010) and also restored the loss of
neurons (Serenó et al., 2009). Based on this knowledge,
an open-label trial of lithium for PSP syndrome and CBD
(www.ClinicalTrials.gov Identifier: NCT00703677), but was
discontinued because of poor tolerability (Panza et al., 2020).
The TAUROS trial to evaluate another GSK3β inhibitors
(tideglusib) showed that while the test drug reduced brain
atrophy in PSP patients (Höglinger et al., 2014) it failed to
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FIGURE 2 | Mechanism of tau post-translational modification inhibitors in clinical trials. Post-translational modifications, including phosphorylation and acetylation,

regulate the binding of tau to microtubules. Microtubule instability and depolymerization are observed in tauopathies, suggesting a therapeutic role for microtubule

stabilizers. Phosphorylation, acetylation, or both, enhance tau aggregation. O-GlcNAcylation at serine and threonine compete with phosphorylation of the same

residues. Tau degradation is inhibited by acetylation. The post-translational modifications are tightly regulated by various enzymes that mediate the addition and

removal of the modifying groups. In clinical trials, tau kinase inhibitors or P300 acetyltransferase inhibitors have been investigated for their ability to inhibit tau

phosphorylation or tau acetylation. The usefulness of O-GlcNAcase inhibitors to elevate tau O-GlcNAcylation has also been examined in clinical trials. Ac, acetylation;

Gly, O-GlcNAcylation; P, phosphorylation.

demonstrate clinical efficacy in patients with mild to moderate
PSP (Tolosa et al., 2014).

Cyclin-Dependent Kinase 5
At least 17 kinases have been identified as tau phosphorylation
kinases (Martin et al., 2013), with GSK3β and cyclin-dependent
kinase 5 (CDK5) being the most frequently reported among
them. CDK5 is a proline-directed serine/threonine-protein
kinase. Physiological activation is controlled by binding the
regulatory subunit, p35 or p39, to CDK5, leading to brain
development and synaptic activity. The p35 and p39 are cleaved
by calpain, producing p25 or p29. The binding of p25 or
p29 to CDK5 leads to pathological hyperactivation (Kimura
et al., 2014a). CDK5 phosphorylates tau at 9–13 sites (Kimura
et al., 2014a). CDK5 was also found in the neurons having
pretangle or NFT (Pei et al., 1998). An experiment on cross-
transgenic mice overexpressing p25 and P301L tau transgenic
mice (JNPL3) showed increased tau phosphorylation level and
number of NFT (Noble et al., 2003). The silencing of CDK5
by si-RNA reduced tau phosphorylation in triple-transgenic AD
mice (Piedrahita et al., 2010). Roscovitine is a small-molecule
drug that inhibits CDK5 activity. CDK5 is also involved in
various cancers (Pozo and Bibb, 2016); therefore, clinical trials on
roscovitine have been conducted in patients with cancer (Cicenas

et al., 2015). No trials on CDK5 inhibitors have been reported
in tauopathies. Notably, Wen et al. reported that administration
of CP681301, a CDK5 inhibitor, enhanced tau phosphorylation
in p25 overexpression transgenic mice (Wen et al., 2008). CDK5
indirectly phosphorylates GSK3β at S9 and inhibits its activity
(Engmann and Giese, 2009), suggesting that CDK5 inhibition
enhances tau phosphorylation by activating GSK3β. As CDK5
can phosphorylate molecules other than tau, therapeutic agents
targeting CDK5 should be developed with great caution.

Fyn
Tau protein has five tyrosine residues (18, 29, 197, 310, and 394
sites) that are phosphorylated by tyrosine kinases. Src family
kinase, including Fyn, modulates neurotransmitter function and
NMDA trafficking (Ohnishi et al., 2011). Interestingly, tau
reduction improved Aβ-induced cognitive impairments in J20
transgenic mice that express a human APP with the Swedish
(K670M/N671L) and Indiana (V717F) mutants (Roberson et al.,
2007; Yoshikawa et al., 2018). Fyn is located at the PSD95-
rich post-synapse by binding to tau and phosphorylates the
NMDA receptor subunit NR2b. This complex promoted Aβ-
induced excitotoxicity (Ittner et al., 2010). Fyn preferentially
phosphorylated Tyr18 among the five tyrosine residues in tau
(Scales et al., 2011). Biochemical and immunocytochemical
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assays showed that phosphorylated tau at Y18 was observed in
the NFT from the AD brain (Lee et al., 2004). Fyn deficiency
reduced tau NFT formation and hyperphosphorylation in mice
overexpressing P301L-tau (Liu et al., 2020). These facts suggest
that Fyn inhibition is a potential target for tauopathy treatment.
Saracatinib is a small-molecule inhibitor of Fyn. Preclinical
studies showed that saracatinib rescued synaptic depletion and
spatial memory deficits in APP (Swe)/presenilin 1(1E9) mice
(Kaufman et al., 2015; Smith et al., 2018). A phase 1b trial in
mild and moderate AD showed that saracatinib is safe, has good
tolerability, and can penetrate into the central nervous system
(Nygaard et al., 2015). Unfortunately, the phase 2 trial showed no
positive therapeutic effects of the drug in patients with AD (van
Dyck et al., 2019).

Thousand-and-One Amino Acid Kinases
Recently, thousand-and-one amino acid kinases (TAOKs) have
been identified as tau kinases, which may be involved in the onset
of AD pathology and dementia (Tavares et al., 2013; Giacomini
et al., 2018). TAOKs are referred to as prostate-derived sterile
20-like kinases (PSKs), i.e., serine/threonine kinase. TAOKs have
two isoforms: TAOK1 (PSK2) and TAOK2 (PSK1). TAOKs
phosphorylated ≥40 sites on recombinant human tau (Tavares
et al., 2013). High TAOK activation (pS181) was observed in NFT
and pretangles of the entorhinal cortex in subjects with Braak
stage II but not in control subjects (Giacomini et al., 2018). A
TAOK inhibitor, compound 43, inhibited tau phosphorylation
at AT8 and 12E8 sites in vitro and in vivo (Giacomini et al.,
2018). Furthermore, the drug also inhibited phosphorylation at
T123 and T427 sites, newly found in AD (Giacomini et al.,
2018), suggesting that TAOKs may be a novel target to improve
tau-related pathogenesis. A previous report showed that TAOKs
modulate microtubule dynamics and organization (Mitsopoulos
et al., 2003). Compound 43 promoted cell death in a cultured
cancer cell line (Koo et al., 2017). These findings suggest that the
development of TAOK inhibitor should proceed with caution.

Because many tau kinases are involved in physiological
intracellular signaling pathways, tau kinase inhibitor
development appropriately avoiding physiological on targets
might be difficult. Meanwhile, based on the view that a
specific phosphorylation pattern is required to induce tau
self-assembly (Fichou et al., 2019; Lauretti and Praticò, 2020),
several groups have reported data indicating that the phospho-
S396/404 epitope constitutes an effective therapeutic target
(Boutajangout et al., 2011; Gu et al., 2013; Liu et al., 2016;
Rosenqvist et al., 2018). Thus, studies have used immunotherapy
targeting tau phosphorylation at S396/404. In a preclinical
study, subcutaneous injection of the liposome-based vaccine
ACI-35 into wild-type mice and mice carrying the P301L
tau mutation induced the formation of antibodies specific
to phospho-S396 and S404 tau and reduced soluble and
insoluble tau in the brain. This vaccine also improved body
weight loss and clasping frequency and survival (Theunis
et al., 2013). Thus, far, ACI-35 has been used in a phase 1 trial
(Main ID in the WHO International Clinical Trials Registry
Platform: ISRCTN13033912) (see section on Tau Clearance
and Immunotherapy).

Tau Acetylation
There are≥30 lysine residues that are potentially acetylated in the
tau sequence (Kontaxi et al., 2017), mainly located in the proline-
rich region, the microtubule-binding region, and the C-terminal
domain (Kontaxi et al., 2017). The level of their acetylation is
regulated by acetyltransferases (p300 and CREB-binding protein;
Min et al., 2010; Cohen et al., 2011; Cook et al., 2014b) and
deacetylases (histone deacetylase 6 and sirtuin 1; Cook et al.,
2014a). Tau proteins promote the self-acetylation of autologous
lysine residues via catalytic cysteine residues (C291 and C322)
in the microtubule-binding domain (Cohen et al., 2013). Lysine
residues in tau are more highly acetylated in the brains of
AD and other tauopathy patients than in healthy brains (Irwin
et al., 2012, 2013). Specific acetylation at residues K280/K281 on
tau inhibits microtubule stabilization and promotes fibrillar tau
aggregate formation (Trzeciakiewicz et al., 2017). An increase
in acetylated tau by deletion of sirtuin 1, a class III protein
deacetylase, inhibits its degradation, leading to the accumulation
of pathogenic phospho-tau in vivo (Min et al., 2010). These
facts suggest that tau acetylation may be important for tau-
induced toxicity.

Salsalate is an old salicylate derivative which has with
anti-inflammatory properties related to its ability to inhibit
activation of the NF-κB pathway (Panza et al., 2019). Min et al.
reported that salsalate inhibits tau acetylation by blocking p300
acetyltransferase activity and acetylation of K174 in the PS19
transgenic mouse line which overexpresses P301S-tau. Moreover,
these authors found that salsalate prevents hippocampal atrophy
and memory impairment (Min et al., 2015). An open-label pilot
study (phase 1) of salsalate (2,250 mg/day) in 10 PSP patients
found that although salsalate was safe andwell-tolerated, the drug
did not significantly improve cognitive performance in patients
(VandeVrede et al., 2020b). This may be explained by either the
poor penetration of salsalate into the brain (<3%), or by an
increase in tau aggregation following reduced tau acetylation.

Tau Ubiquitination
Lysine residues undergo not only acetylation but also
ubiquitination which is closely related to the proteasomal
degradation pathway (Cook et al., 2014b). Hyperphosphorylated
tau is ubiquitinated in patients with AD (Mori et al., 1987; Perry
et al., 1987; Cripps et al., 2006) and interestingly, dysfunction
of either the proteasomal or lysosomal degradation pathways
may lead to accumulation of excessive ubiquitinated tau species
in AD patients that can contribute to NFT formation in disease
(Wang and Mandelkow, 2012; Cook et al., 2014b). Given this,
it is plausible that tau acetylation competes with ubiquitination
and therefore reduces tau ubiquitination and NFT formation.
Another observation warranting the role of tau acetylation in
tauopathies is thar Aβ-induced tau bead (mostly acetylated and
oligomeric tau) formation in neurites is inhibited by the HDAC6
inhibitor, Tubastatin A (Tseng et al., 2017).

O-GlcNAcylation
Glycosylated tau is present in PHF from Alzheimer disease
brains (Wang et al., 1996). The addition of β-linked N-
acetylglucosamine (O-GlcNAcylation) is the non-canonical form
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is glycosylation, and the levels are strictly regulated by O-
GlcNAc transferase and neutral β-hexosaminidase known as O-
GlcNAcase (OGA). Since serine and threonine residues undergo
O-GlcNAcylation (Arnold et al., 1996), there is a competition
between O-GlcNAcylation and phosphorylation (Liu et al., 2004;
Hart et al., 2007; Di Domenico et al., 2019). In P301L tau
transgenic mice (JNPL3), an OGA inhibitor was found to
increase tau O-GlcNAcylation, thereby inhibiting the formation
of tau aggregates and neuronal loss (Yuzwa et al., 2012). In
the AD brain, reduction of tau O-GlcNAcylation (Liu et al.,
2004; Wang et al., 2016) is linked to neurofibrillary pathology
(Liu et al., 2009). On the other hand, forebrain-specific O-
GlcNAc transferase conditional knockout mice display increased
neurodegeneration and tau phosphorylation and cognitive
impairment (Wang et al., 2016). These findings suggest that
upregulation of tau O-GlcNAcylation may be a therapeutic
strategy for tau-related neurodegeneration.

Thiamet G is an inhibitor of OGA, reportedly with good
bioavailability (Yu et al., 2012; Yuzwa et al., 2012; Borghgraef
et al., 2013). Acute injection of thiamet G into the lateral
ventricle of wild-type tau transgenic mice decreased the site-
specific phosphorylation of T181, T212, S214, S262/S356, S404,
and S409 residues (Yu et al., 2012). Also, oral administration
of thiamet G in the drinking water increased O-GlcNAcylation,
and inhibited tau aggregates and neuronal cell loss (Yuzwa
et al., 2012). A low-molecular-weight OGA inhibitor, MK-8719,
developed in a collaboration between Alectos Therapeutics and
Merck, was found to elevate brain O-GlcNAc levels, reduce
pathological tau, and ameliorate brain atrophy in an rTg4510
mouse model of tauopathy (Wang et al., 2020). Recently, a
clinical trial in 16 healthy controls showed that MK-8719 was
well-tolerated (VandeVrede et al., 2020a). Administration of
another OGA inhibitor, ASN120290 (developed by Asceneuron)
to P301S transgenic mice leads to increased O-GlcNAcylated tau
and decreased tau phosphorylation (VandeVrede et al., 2020a);
subsequently ASN120290 was found to be safe and well-tolerated
in a phase 1 study involving 61 healthy volunteers (VandeVrede
et al., 2020a).

TAU AGGREGATION

Onset and progression of tauopathies involve the formation of
misfolded and oligomerized tau and the appearance of NFT.
Classically, NFT gradually overload nerve cells and eventually
cause neuronal cell death (Ward et al., 2012; Guo et al., 2017).
The appearance of tau deposition is a typical pathological sign in
many tauopathies, including AD, and has been used to classify
disease stage in the Braak system (Braak and Braak, 1995).
Tau is self-assembled through the microtubule-binding domain
and then converted to aggregates. In the microtubule-binding
region, at least two amino acid sequences are involved in tau
aggregation (Schweers et al., 1995; von Bergen et al., 2000, 2001).
Hexapeptide segments known as PHF6 (306VQIVYK311) and
PHF6∗ (275VQIINK280) are present in R3 and R2, respectively.
The segments are enriched in hydrophobic amino acids, and
inter-molecular interaction is essential for forming the β-sheet

structure (von Bergen et al., 2000, 2001). In vitro and in silico
experiments showed that intact tau monomer has a β-hairpin
structure in regions including the PHF6 segment. In the presence
of P301L-tau mutation, PHF6 was shifted to disfavor the local
compact structure, which enhanced the aggregation propensity
(Chen et al., 2019). Disulfide bridges formed between cysteine
residues contribute to protein structure or protein–protein
(peptide) interaction. Although the role of cysteine residues in
tau aggregation remains disputable, some reports showed that an
intermolecular disulfide bond is involved in the seed formation
to initiate tau polymerization (Bhattacharya et al., 2001) and
tau oligomer (Schweers et al., 1995; Sahara et al., 2007). Our
finding that inhibition of tau oligomer formation by capping
cysteine residues with 1,2-dihydroxybenzene provides support
for the role of cysteine in the oligomer formation (Soeda et al.,
2015). Hyper-phosphorylated tau at various sites is observed in
NFT. It has been shown that tau kinase inhibitors reduce tau
phosphorylation at multiple sites and inhibit tau aggregation (Lee
et al., 2011; Noble et al., 2020). While tau phosphorylation at
specific sites promotes tau aggregation (Jeganathan et al., 2008;
Despres et al., 2017), phosphorylation at some sites inhibits
tau aggregation (Schneider et al., 1999). The facts suggest that
compounds that directly target tau aggregation may be more
effective tauopathies than tau kinase inhibitors. Here, we describe
tau aggregation inhibitors.

The recombinant tau protein is polymerized in the presence
of polyanion, including heparin (Goedert et al., 1996) or
RNA (Kampers et al., 1996), and the aggregation level can
be monitored by fluorescent dye Thioflavin-T (S). Using this
experimental system, many researchers screened tau aggregation
inhibitors (Taniguchi et al., 2005; Bulic et al., 2009; Crowe et al.,
2009). Many of the aggregation inhibitors discovered share a
common characteristic: a negative or positive charge in their
structure, antioxidant properties, and natural compounds.

Curcumin
Curcumin is a primary component of the Indian turmeric spice
extracted from the rhizome of Curcuma longa. Turmeric is an
herbal medicine used to treat respiratory conditions, abdominal
pain, sprains, and swelling (Chen et al., 2018), and curcumin
has multifaceted actions as antioxidant, anti-angiogenic, anti-
inflammatory, and neuroprotective effects (Maheshwari et al.,
2006). Due to these actions, curcumin has been repeatedly
reported to have potential benefit for cognitive function (Dong
et al., 2012; Cox et al., 2015). Curcumin inhibits amyloidogenic
protein aggregation, including not only Aβ (Ono et al., 2004)
but also tau (Rane et al., 2017; Bijari et al., 2018). The
inhibitory mechanisms of tau aggregation by curcumin are
involved in the reduction of tau oligomer level (Rane et al.,
2017) and the interaction to PHF6 segment (Bijari et al.,
2018). These facts suggest that curcumin may contribute to tau-
related neurodegeneration therapy. However, curcumin is poorly
bioavailable and is rapidly degraded in the body (Vareed et al.,
2008). Furthermore, clinical trials in AD showed no therapeutic
benefit of curcumin (Chen et al., 2018). This has led to the
development of analogs that improved bioavailability (Okuda
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et al., 2017; Lo Cascio et al., 2019). The results of clinical trials
of these drugs are expected.

Resveratrol
Resveratrol is a non-flavonoid polyphenol rich in grape skin
and red wine (Xia et al., 2010). Resveratrol extends their
lifespan in species, including mammals (Bauer et al., 2004;
Viswanathan et al., 2005; Baur et al., 2006). Wine consumption
has had beneficial effects on dementia (Orgogozo et al., 1997).
These reports suggest that resveratrol may be beneficial for
the treatment of AD. The Aβ fibrillary level was reduced by
resveratrol in cultured cells (Feng et al., 2009; Ge et al., 2012)
and APP/PS-1 transgenic mice (Porquet et al., 2014). Resveratrol
inhibited the aggregation of the repeat domain of tau (K18) in
vitro (PubChem BioAssay AID 1460, CID 445154). The level of
tau phosphorylation at AT8 sites was reduced by resveratrol in
P301L tau transgenic mice (JNPL3) (Yu et al., 2018). Resveratrol
enhanced the tau dephosphorylation through PP2A activation
(Schweiger et al., 2017) or downregulation of ERK1/2 and GSK3β
signaling pathways (Jhang et al., 2017). The drug treatment
rescued cognitive deficits in P301S tau transgenic mice (PS19)
(Sun et al., 2019). Thus, resveratrol appears to both directly and
indirectly inhibit tau aggregation. Alternatively, antioxidation
and anti-inflammatory actions by resveratrol may contribute
to the inhibitory effect on tau aggregation. Resveratrol has
low bioavailability through rapid metabolism in the liver and
intestine, leading to the development of nanocarriers and analogs
(Chimento et al., 2019).

Purpurin
Purpurin is a natural dye obtained from the madder extract
and has an anthraquinone skeleton. In vitro, purpurin inhibited
tau fibrillization by heparin through interaction with PHF6
segment (Viswanathan et al., 2020). Moreover, the drug broke
down the pre-formed fibrils (Viswanathan et al., 2020). In
Drosophila, overexpressing human tau, eye neurodegeneration
was prevented by purpurin (Viswanathan et al., 2020). The
purpurin permeability was observed in the cultured blood–brain
barrier (BBB) model (Viswanathan et al., 2020), suggesting it may
be suitable for the treatment of tau-related dementia.

Ginseng
Ginseng is the root of Panax ginseng Meyer and has been used as
an herbal medicine for various diseases. Red ginseng is believed
to be a processed form of ginseng with enhanced pharmacological
efficacy (Lee et al., 2015). Tau aggregation was inhibited by the
red ginseng treatment in vitro (Shin et al., 2020b). As ginseng
includes saponin and flavonoids (Choi, 2008), the inhibitory
effect may be involved in the surfactant action or antioxidation
by ginseng.

Metal Nickel
The association between metals and neurodegenerative diseases,
including AD, has been frequently reported (Aizenman and
Mastroberardino, 2015). Focusing on the relationship between
tau and metals, accumulation of iron (Spotorno et al., 2020)
or aluminum (Walton, 2010) is associated with the NFT

formation in patients with AD. Zinc (Huang et al., 2014), lead
(Zhu et al., 2011), or aluminum (Shin et al., 1994) interacted
with the microtubule-binding region or phosphorylation sites
on tau, leading to aggregation in vitro. Metal nickel and its
synthetic morpholine conjugate at 100µM, conversely, inhibited
tau aggregation in vitro (Gorantla et al., 2020). Unlike other
metals, the inhibitory mechanism seems to be involved in
the degradation and fragmentation of soluble tau. However,
subcutaneous administration of nickel solution showed the
accumulation of nickel and morphological changes in the
liver, kidney, and spleen of mice (Pereira et al., 1998). Nickel
concentrations in the liver, kidney, and spleen are 1.23–1.27µg/g
(9.79–10.11 nmol/g), 0.95–0.96µg/g (7.56–7.64 nmol/g), and
4.96–4.98µg/g (39.49–39.65 nmol/g), respectively (Pereira et al.,
1998), indicating that the nickel administered to humans requires
careful observation.

Folic Acid
Low folate level in the serum is strongly associated with mild
cognitive impairment (Quadri et al., 2004). Administration of
folic acid (1.25 mg/day) improved cognitive scores for patients
with AD treated with donepezil in a randomized trial (Chen
et al., 2016), indicating that the supplementationmay be clinically
beneficial. An in vitro study showed that folic acid inhibited tau
aggregation by stabilizing the tau native state (Ghasemzadeh and
Riazi, 2020). Further, in cultured cells, folic acid reduced the
tau phosphorylation level by regulating PP2A methylation (Li
et al., 2015). Results of clinical trials on drugs against tauopathies
besides AD are expected.

Methylene Blue
Methylene blue (MB) or phenothiazine was first developed in
the late 1800’s for the treatment of malaria (VandeVrede et al.,
2020a). MB was found in vitro to block tau–tau interaction and
prevent self-aggregation (Wischik et al., 1996). Its administration
to transgenic mice decreases the amount of phosphorylated tau
aggregates (Hosokawa et al., 2012; Hochgrafe et al., 2015) and
prevents memory impairment (Stack et al., 2014; Hochgrafe et al.,
2015). Akuory et al. reported that MB inhibits tau aggregation
by modifying cysteine residues in tau protein (Akoury et al.,
2013) such that its disordered monomeric form is retained,
preventing formation of filaments and their toxic precursors
(Akoury et al., 2013). A phase 2 clinical trial of MB (Rember R©;
TauRx, Singapore) in 321 patients with moderate AD showed
that, as compared to placebo, 24 weeks of MB administration at a
medium dose (138mg/day) resulted in a significant improvement
in AD subjects’ ADAS-Cog score (Wischik et al., 2014). However,
200mg of LMTM (LMTX, TRx0237), a MB-derived compound
with greater tolerability and absorption, failed to achieve the pre-
specified primary endpoint in two phase 3 trials involving∼1,700
patients with mild AD and 220 patients with the behavioral
variant frontotemporal dementia (Gauthier et al., 2016; Wilcock
et al., 2018). Because urine and stools were stained blue by MB
and related compounds, blinding was deemed necessary; for this,
a low dose of the active compound (8 mg/day) was given to the
placebo group, but since a cohort analysis showed that the low
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dose might be effective (Wilcock et al., 2018), a phase-3 low-
dose study of LMTM in AD (LUCIDITY; NCT03446001) was
eventually launched.

A number of findings suggest that tau-induced toxicity is not
due to tau filaments but rather to tau abnormality before the tau
filaments (Kimura et al., 2010; Shafiei et al., 2017; Maeda and
Takashima, 2019). For example, (i) the amount of neuronal loss
in the AD brain exceeds the accumulation of NFT (Gómez-Isla
et al., 1997) (ii) suppression of human tau in human P301L tau
transgenic mice (rTg4510) by doxycycline does not inhibit tau
filament formation but reduces neuronal loss (Santacruz et al.,
2005); (iii) human Tau overexpression in Drosophila, results in
neuronal loss without NFT formation (Wittmann et al., 2001);
(iv) analysis of in vivo multiphoton imaging suggests that the
formation of tangles is off-pathway to acute neuronal death (de
Calignon et al., 2010); and (v) neurons containing NFT are
functionally intact in cortical circuits in vivo (Kuchibhotla et al.,
2014).

Analysis using recombinant protein showed the existence of
two different intermediate aggregates called tau oligomers and
granular tau oligomers before the formation of tau filaments
(Maeda et al., 2007). Importantly, granular tau oligomers can
be detected in the brain before the onset of clinical symptoms
of AD (Maeda et al., 2006). Analysis of wild-type tau (Kimura
et al., 2007) and P301L tau transgenic mice (Kimura et al., 2010)
indicated that hyperphosphorylated tau/oligomeric tau and
granular tau oligomer are involved in synaptic loss and neuronal
loss, respectively (Takashima, 2013). Screening of a library
of natural compound derivatives identified low-molecular-
weight compounds bearing a 1,2-dihydroxybenzene backbone
as inhibitors of tau aggregation, specifically, of tau oligomer
formation. In P301L tau transgenic mice, one such compound,
DL-isoproterenol, decreased detergent-insoluble aggregated tau
and neuronal cell loss (Soeda et al., 2015). Together with themore
recent finding that MB reduces the number of tau fibrils and
increased the number of granular tau oligomers when applied to
recombinant tau protein (Soeda et al., 2019), these results support
the notion that tau-mediated toxicity is not due to tau fibril
formation but rather to formation of intermediate tau aggregates
(Figure 3).

Immunotherapy is one potential therapeutic approach for
preventing tau aggregation, a line followed by a number of
academic and industrial research groups. These efforts have
resulted in the generation of the TOC1 (Patterson et al., 2011),
TOMA (Castillo-Carranza et al., 2014), and T22 (Lasagna-
Reeves et al., 2012) antibodies that recognize intermediate tau
aggregates. While ongoing tau immunotherapy-based clinical
trials mainly targeted phosphorylated tau, monomeric tau, and
aberrant conformational changes in tau (details below), it is likely
that the next generation of antibodies will be directed at tau
intermediate aggregates.

STABILIZATION OF MICROTUBULES

Because axonopathy, including microtubule instability and
disruption, have been observed in cultured cell models (Arawaka

FIGURE 3 | Processes of tau aggregation. Hyperphosphorylated tau is

detached from microtubules and mislocalized in the somatodendritic

compartment of neurons. In vitro studies have shown that tau is

self-assembled to form tau oligomers and granular tau oligomers before

forming NFTs. Tau aggregation inhibitors that halt these processes may be

useful in the treatment of tauopathies.

et al., 1999) and animal models (Spittaels et al., 1999; Probst
et al., 2000) of tauopathy, and in the brains of tauopathy
patients (Kneynsberg et al., 2017), microtubule stabilizers have
been developed to prevent axonal/dendritic degeneration and
therefore, to improve symptoms of tauopathies, including AD
(Lee et al., 1994; Khanna et al., 2016). Davunetide (NAP, AL-108),
an 8-amino acid peptide (Asn-Ala-Pro-Val-Ser-Ile-Pro-Gln)
derived from the activity-dependent neuroprotective protein
(Gozes et al., 1999), was shown to reduce tau pathology (AT8,
AT180, and CP13 site-positive phosphorylated tau) and enhance
cognitive function in triple-transgenic AD mice (Matsuoka
et al., 2008). In a phase 2 trial of 144 patients with mild
cognitive impairment (MCI), davunetide treatment for 12 weeks
was shown to be safe and tolerable (Morimoto et al., 2013).
However, the drug was found to be inefficacious (primary and
secondary outcomes) in a phase 2/3 trial on 360 patients with
PSP treated for 52 weeks (Boxer et al., 2014) and its development
was discontinued.

Epothilone D (BMS-241027) is a microtubule stabilizer
isolated from the myxobacterium Sorangium cellulosum.
Epothilone D can cross the BBB (VandeVrede et al., 2020a)
whereas taxanes with a similar structure are less penetrant
(Fellner et al., 2002). Administration of Epothilone D reduced
the number of dystrophic axons and inhibited cognitive deficits
in P301S-tau transgenic mice (Brunden et al., 2010). The drug
caused only one grade 3 hypersensitivity reaction when given to
healthy women in a phase 1 study (VandeVrede et al., 2020a)
but its development was halted without a report of its effects
in a phase 1/2 study (NCT01492374; 40 patients with mild AD;
Medina, 2018).

The traxane-derivative TPI287 (abeo-taxane) which has high
BBB permeability proved safe and well-tolerated in a phase 1
study (NCT02133846) in patients with CBD or PSP (n = 44)
and a phase 1 study (NCT01966666) in patients with mild to
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moderate AD (n= 33). However, the drug caused adverse effects
in the AD group and worsened dementia symptoms in the CBD
and PSP patients. It appears that TPI287 is no longer being
developed for clinical use (VandeVrede et al., 2020a).

Recent reviews propose that tau is not a stabilizer of
microtubules in the axon but rather confers flexibility to
the labile domain of microtubules and leads to microtubule
elongation (Qiang et al., 2018; Baas and Qiang, 2019). Further, an
analysis of fast single-molecule tracking showed that microtubule
assembly is regulated by more rapid tau dynamics, kiss-and-
hop mechanism, than previously reported (Janning et al., 2014).
These observations suggest that microtubule stabilizers may not
be suitable as inhibitors of tau-related dysfunction.

TAU CLEARANCE AND IMMUNOTHERAPY

Tau is degraded in both the ubiquitin–proteasome system and the
autophagy–lysosome system (Lee et al., 2013), both of which are
disrupted in AD and followed by the emergence of aberrant forms
of tau (Chesser et al., 2013). Previous research reported that direct
or indirect enhancement of the ubiquitin–proteasome system
(Shimura et al., 2004b; Myeku et al., 2016) or the autophagy–
lysosome system (Majumder et al., 2011; Di Meco et al., 2017;
Lauretti et al., 2017) can significantly enhance the clearance
of toxic forms of tau with improvements in neuronal health
and synaptic function. To date, however, drugs targeting these
systems have not been tested in clinical trials. Protein clearance
is enhanced by treatment with vaccines or antibodies and both,
active (Troquier et al., 2012; Ando et al., 2014) and passive
immunotherapies (Courade et al., 2018; Albert et al., 2019) to
target tau have yielded promising results, with several clinical
trials for AD and related tauopathies now in progress (Table 1)
(Sandusky-Beltran and Sigurdsson, 2020).

Active Immunotherapy (Vaccinations)
AADvac-1
Active immunization is an attractive therapeutic approach
because it can induce a sustained autoantibody response in small
doses. Moreover, unlike passive immunity, the therapeutic effects
should not be limited by the production of anti-drug antibodies.

The first approach for tau active immunization was
to immunize normal C57BL6J mice with full-length
recombinant human tau whose response included the display
of encephalomyelitis, axonal damage, and inflammation
(Rosenmann et al., 2006). To circumvent these effects,
active immunization subsequently used fragmented tau or
phosphorylated peptides of tau. Injection of a 30-amino acid tau
phospho-peptide (aa 379–408 residues, including phospho-S396
and S404) into P301L tau transgenic mice (JNPL3) reduced
aggregated tau in the brain and slowed progression of the tangle-
related behavioral phenotype (Asuni et al., 2007). AADvac1,
a synthetic peptide consisting of amino acids 294–305 of the
tau (KDNIKHVPGGS) reduced tau pathology and pathology-
associated behavioral deficits in transgenic rats (Kontsekova
et al., 2014). The vaccine was the first anti-tau vaccine to enter
clinical trials in 30 patients with mild to moderate AD, and had
a favorable safety profile and excellent immunogenicity. A phase

I pilot trial of AADvac1 (40 or 160 µg) for 2 years in patients
(n = 30) with the non-fluent/agrammatic variant of primary
progressive aphasia was conducted (AIDA) (NCT03174886). A
phase 2 trial to evaluate its safety and efficacy was conducted
in patients with mild AD for 24 months (ADAMANT)
(NCT02579252). Axon Neuroscience presented, at the 2020
virtual AAT-AD/PD FocusMeeting, that the incidence of adverse
events under the treatment of the antibody did not differ from
the placebo group. More than 80% of participants immunized
by the vaccine acquired high-affinity tau antibodies. In the trial,
AADvac-1 decreased the level of blood neurofilament, a marker
for neurodegeneration. While the vaccine treatment did not
improve the cognitive score in an analysis for participants of all
ages, a preplanned age subgroup analysis showed that treatment
trended to slow cognitive decline among younger participants.
The vaccine treatment decreased phosphorylated tau levels
in cerebrospinal fluid (CSF), but the CSF changes were not
statistically significant. Axon Neuroscience is appeared to plan
a phase 3 trial (Alzforum.org, Therapeutics; AADvac1. https://
www.alzforum.org/therapeutics/aadvac1).

ACI-35
ACI-35 is a liposomal vaccine developed by AC Immune
(Switzerland); its constituents include tau fragment (393–408)
with several phosphorylated serine residues (S396/S404). In
December 2013, AC Immune initiated a 6 month phase 1b
study to compare low-, moderate-, and high-dose ACI-35 in
mild to moderate AD subjects (ISRCTN, ISRCTN13033912)
(Alzforum.org, Therapeutics; ACI-35. https://www.alzforum.
org/therapeutics/aci-35). Results, presented at the virtual
AAT-AD/PD Focus Meeting in 2020, showed that although
the vaccine was well-tolerated, it elicited a weak immune
response (Alzforum.org, news; https://www.alzforum.org/
news/conference-coverage/active-tau-vaccine-hints-slowing-
neurodegeneration). ACI-35 was redesigned, and ACI-35.030
was produced. This showed a more robust immune response
than ACI-35 in rhesus monkeys. The vaccine is now licensed to
Janssen, and a multicenter phase 1b/2a study is being conducted
to evaluate the safety and immunogenicity of this vaccine in
AD patients (NCT04445831). In July 2020, AC Immune firstly
announced that positive safety and immunogenicity data were
obtained in the lowest dose of ACI-35.030 (AC immune press
release; https://ir.acimmune.com/news-releases/news-release-
details/ac-immune-advances-phospho-tau-alzheimers-vaccine-
phase-1b2a).

Passive Immunotherapy
The target for passive immunotherapy is commonly an
extracellular protein because antibodies having a molecular
weight of ∼150 kDa cannot efficiently penetrate cells. Studies
in AD patients (Braak and Braak, 1995) as well as in vitro
(Frost et al., 2009) and in vivo (Clavaguera et al., 2009), have
shown that the spread of tau accumulation in tauopathy is
related to the prion-like properties of tau (Mudher et al., 2017;
Duyckaerts et al., 2019). Thus, the tau propagation hypothesis
posits that pathological forms of tau (tau seeds) released from
donor cells can be taken up by recipient cells where they induce
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TABLE 1 | Summary of tau immunotherapies.

Drug Epitope Preclinical study Clinical Trial

Subject Current

stage

Trials No. Sponsor/Company References

AADvac-1 Tau a.a. 294–305 AADvac-1 reduced AD-type

hyperphosphorylation of tau and improved

the sensorimotor functions of transgenic

rats (Kontsekova et al., 2014).

AD Phase 2 NCT02579252 Axon

Neuroscience

SE

Novak et al., 2017,

2018b, 2019

ACI-35 Phospho-S396/404 ACI-35 reduced insoluble tau level and

improved survival in P301L tau transgenic

mice (Theunis et al., 2013).

Early AD Phase 1b/2a NCT04445831 AC Immune

SA—Janssen

RG7345 Phospho-S422 RG7345 inhibited tau pathology in

3xTg-AD mice (Collin et al., 2014).

Healthy volunteers Phase 1 -

discontinued

NCT02281786 F. Hoffmann-La

Roche

BIIB092 Secreted N-terminal

tau fragments

(Tau a.a. 15–24)

IPN002, the murine analog of BIIB092,

reduced the secretion of extracellular tau

in cell culture and in P301L tau JNPL

transgenic mice (Bright et al., 2015).

Early AD Phase 2 NCT03352557 Biogen

(Bristol-Meyers

Squibb; iPerian)

Qureshi et al., 2018;

Boxer et al., 2019

C2N-8E12 Extracellular form

of pathological tau

(Tau a.a. 25–30)

HJ8.5, the original mouse antibody of

C2N-8E12, reduced tau seeding activity in

vitro and in vivo (Yanamandra et al., 2013,

2015).

Early AD Phase 2 NCT02880956

NCT03712787

AbbVie

UCB0107 Mid-region of tau

(Tau a.a. 235–246)

Antibody D, the original mouse antibody of

UCB010, inhibited tau propagation in vivo

and in vitro (Courade et al., 2018; Albert

et al., 2019).

PSP Phase 1 NCT04185415 UCB Biopharma

LY3303560 Same as MC1

antibody

(Tau a.a. 7–9,

313–322)

MC1 injection reduced tau pathology in

tau transgenic mice (Chai et al., 2011;

d’Abramo et al., 2013).

Patients with early

symptomatic AD

Phase 2 NCT03518073 Eli Lilly

BIIB076 Monomeric and fibrillar

tau

Healthy volunteers

and AD

Phase 1 NCT03056729 Biogen

JNJ-63733657 Mid-region of tau Healthy subjects

and AD

Phase 1 NCT03375697

NCT03689153

Janssen

Lu AF87908 Phospho-S396 The original mouse antibody inhibited tau

propagation in vitro and in vivo

(Rosenqvist et al., 2018).

Healthy subjects

and AD

Phase 1 NCT04149860 H. Lundbeck

A/S

PNT001 cis-phospho-T231 The original mouse antibody improved

traumatic brain injury-related structural

and functional sequelae in a mouse model

(Kondo et al., 2015).

Healthy volunteers Phase 1 NCT04096287 Pinteon

Therapeutics

RO7105705 N-terminal region of

tau

RO7105705 reduced brain pathology in

P301L tau transgenic mice (Lee et al.,

2016).

AD Phase 2 NCT03289143

NCT03828747

AC Immune

SA—

Genentech—F.

Hoffmann-La

Roche

Kerchner et al., 2017

3xTg-AD mice harbor a PSEN1 mutation (M146V) and the co-injected Swedish mutant amyloid precursor protein and tauP301L transgenes.
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the formation of intracellular tau aggregates. Based on this, tau
passive immunotherapy is considered a suitable treatment for
removing extracellular tau (Colin et al., 2020). On the other
hand, anti-taumonoclonal antibodies reportedly invade neurons,
probably through clathrin-mediated endocytosis, indicating that
intracellular tau can also be targeted by tau antibodies (Congdon
et al., 2013). At present, there are 10 tau antibodies that have
entered clinical trials.

RG7345 (RO6926496)
The first passive immunization test in a clinical trial (RO6926496)
was carried out with the antibody RG7345 which targets
phosphorylated tau at the S422 residue found in pathological
tau aggregates. In a triple-transgenic mouse model harboring
three mutations (presenilin 1 M146V, Swedish mutant amyloid
precursor protein (APP), and tauP301L), RG7345 was previously
shown to inhibit tau pathology (Collin et al., 2014). A phase 1
trial by Hoffman-La Roche in healthy volunteers was initiated
to evaluate the safety, tolerability, and pharmacokinetics of
RG7345 (NCT02281786). The development of this drug has been
discontinued. While the results have not been published to the
best of our knowledge, negative speculations about the antibody’s
pharmacokinetic has been expressed (Congdon and Sigurdsson,
2018; Sandusky-Beltran and Sigurdsson, 2020).

BIIB092 (BMS-986168, IPN007, Gosuranemab)
BIIB092 is a humanized monoclonal antibody against an N-
terminal fragment of tau (extracellular tau) secreted from
familial AD patient-derived pluripotent stem cells. The epitope
is considered to be N-terminal amino acids 15–24 and notably,
IPN002, the murine analog of BIIB092 was reported to reduce
the secretion of extracellular tau in cell culture and in P301L tau
JNPL transgenic mice (Bright et al., 2015). Results from phase 1
trials (NCT02294851) (NCT02460094) indicate that BIIB092 is
safe and well-tolerated (Qureshi et al., 2018; Boxer et al., 2019).
The phase 1 trial reported a marked reduction in CSF-free N-
terminal tau post-immunization in healthy participants (Qureshi
et al., 2018) and PSP (Boxer et al., 2019). The PASSPORT
(NCT03068468) phase 2 trial, conducted in PSP patients was
discontinued however because of a lack of efficacy in the interim
analysis (Sandusky-Beltran and Sigurdsson, 2020). The lack of
efficacy might be explained by the fact that the amount of CSF
tau did not change between the control subjects and PSP patients
(Sandusky-Beltran and Sigurdsson, 2020) and that IPN002 did
not reduce amounts of intracellular free tau in cultured cells
(Bright et al., 2015). BIIB092 is in a phase 2 clinical trial for AD
(TANGO; NCT03352557).

C2N-8E12 (ABBV-8E12)
C2N-8E12 is a humanized immunoglobulin (Ig)G4 antibody
that recognizes an aggregated extracellular form of pathological
tau. HJ8.5, the original mouse antibody of C2N-8E12, reduced
tau seeding activity in vitro (Yanamandra et al., 2013) and in
vivo (Yanamandra et al., 2013, 2015). Epitope of HJ8.5 was at
residues 25–30 aa (Yanamandra et al., 2013). While a phase 1
trial (NCT03413319) in PSP patients showed safety and good
tolerability (Sandusky-Beltran and Sigurdsson, 2020), interim

results of a phase 2 trial (NCT02985879) in patients with PSP
symptoms for <5 years failed to find any therapeutic beneficial
effects of this antibody (Alzforum.org, News, https://www.
alzforum.org/news/research-news/abbvies-tau-antibody-flops-
progressive-supranuclear-palsy), leading to a discontinuation
of the PSP trial (Sandusky-Beltran and Sigurdsson, 2020).
However, trials with C2N-8E12 in AD patients were conducted
(NCT02880956). An extension study (NCT03712787) is being
conducted for patients who have successfully completed the
phase 2 trial to evaluate long-term safety and tolerability.

UCB0107
The monoclonal antibody UCB0107 binds to the mid-region
of tau (amino acids 235–246). Its preceding mouse version
(antibody D) reportedly inhibited transneuronal propagation of
pathogenic and aggregated tau in vivo (Albert et al., 2019), and
seeding activity of human AD and PSP tau in vitro (Courade
et al., 2018). Two phase 1 studies aimed to evaluate the
safety, tolerability, and pharmacokinetic properties of UCB0197
in healthy adult males were conducted (NCT03464227 and
NCT03605082). A phase 1 study is ongoing in patients with PSP
(NCT04185415). The results of the trials are not yet available.

LY3303560 (Zagotenemab)
LY3303560 is a humanized anti-tau monoclonal antibody, its
prototype being monoclonal anti-mouse MC1 which recognizes
conformation-specific epitopes that appear along with tau
aggregation. In vivo experiments showed that MC1 injection
reduced tau pathology in tau transgenic mice (Chai et al.,
2011; d’Abramo et al., 2013) and since MC1 antibodies are
not incorporated by neurons (d’Abramo et al., 2013), their
mechanism of action is thought to involve binding and removal
of extracellular PHF tau. The epitopes recognized by LY3303560
are two discontinuous portions of tau, 7–9 and 313–322
amino acid residues (Jicha et al., 1997, 1999). LY3303560 binds
preferentially to tau aggregates rather than monomers. To date,
a phase 1 trial of LY3303560 has been conducted to evaluate
safety in MCI and mild to moderate AD (NCT03019536) while
an ongoing phase 2 trial (NCT03518073) is being undertaken in
early symptomatic AD patients. The results of both studies are
currently awaited.

BIIB076
BIIB076 is a human recombinant monoclonal anti-tau antibody.
Although the epitope to which this antibody is directed has
not been revealed, it is known that it recognizes monomeric
and fibrillar tau (Alzforum.org, Therapeutics; BIIB076. https://
www.alzforum.org/therapeutics/biib076). So far, a phase 1 trial
to examine the safety of BIIB076 has been conducted in healthy
volunteers and AD patients (NCT03056729).

JNJ-63733657
JNJ-63733657 is a monoclonal antibody that recognizes the
central domain of tau (Sigurdsson, 2018), but the exact epitope
is unknown and results of preclinical testing are not available. A
phase 1 trial of JNJ-63733657 in healthy volunteers and patients
with prodromal or mild AD has been conducted (NCT03375697
and NCT03689153).
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Lu AF87908
The monoclonal antibody Lu AF87908 binds to the phospho-
S396 region of tau (Sandusky-Beltran and Sigurdsson, 2020).
A preclinical study showed that the original mouse antibody
inhibited tau propagation induced by exposure of tau transgenic
brain lysates in vivo and in vitro (Rosenqvist et al., 2018).
Currently, a phase 1 trial (NCT04149860) is assessing the
tolerability of Lu AF87908 in healthy individuals and AD
patients (NCT04149860).

PNT001
Phosphorylated T231 on tau has a cis- or trans-structure
(Albayram et al., 2016), but only the cis form appears early
in the brains of patients with MCI where it is localized to
dystrophic neurites during the progression of AD (Nakamura
et al., 2012). Monoclonal antibodies against cis-phospho-
T231 improved traumatic brain injury-related structural and
functional sequelae in a mouse model (Kondo et al., 2015)
of chronic traumatic encephalopathy (CTE) in which tau
pathology is observed (Katsumoto et al., 2019). Currently a
phase 1 study is being undertaken in healthy volunteers to
evaluate the safety, tolerability, and pharmacokinetics of this
antibody (NCT04096287).

RO7105705 (MTAU9937A, RG6100, Semorinemab)
RO7105705 is a monoclonal IgG4 antibody, which is modified
to reduce effector function, such as microglial activation (Lee
et al., 2016). This antibody recognizes N-terminus on tau
and reacts with all six isoforms of human tau, both with
or without phosphorylation. Further, the antibody can bind
monomeric and oligomeric tau, and reduced brain pathology
in P301L tau transgenic mice (Alzforum.org, THERAPEUTICS,
https://www.alzforum.org/therapeutics/semorinemab). A phase
1 study was conducted in healthy volunteers and patients with
mild-to-moderate AD (Kerchner et al., 2017) (NCT02820896).
The trial showed that no serious adverse events occurred,
and RO7105705 plasma half-life was 32 days. Two phase
2 trials were conducted in AD patients to evaluate efficacy
and safety (NCT03289143 and NCT03828747). Genentech
announced top-line results from a phase 2 trial. Unfortunately,
RO7105705 did not meet the primary efficacy end-point
of reducing the decline of the cognitive score (Genentech
press release).

Tau immunotherapy can directly target tau via binding to
specific sequences or specific conformational changes. Since
phosphorylation of S396/S404 (Augustinack et al., 2002) and
S422 (Augustinack et al., 2002; Vana et al., 2011; Kanaan et al.,
2016) was increased with the progression of AD (Augustinack
et al., 2002; Vana et al., 2011) and CTE (Kanaan et al.,
2016) stage, antibodies such as Lu AF87908 and ACI-35
target phosphorylation may be effective in halt progression
of the disease. Antibodies that bind to the N-terminus
region or mid-domain region target extracellular tau. Since
an antibody against the mid-region of tau (antibody D) was
more efficient at preventing both seeding and propagation
(Albert et al., 2019) than were antibodies targeting the N-
terminal region or C-terminal region (Nobuhara et al., 2017;

Courade et al., 2018), mid-domain targeted antibodies, such
as JNJ-63733657 and UCB0107 may be more effective than
N-terminal-directed antibodies at disrupting the seeding and
propagation of aberrant tau. Recently, Genentech showed no
efficacy of the N-terminal-directed antibody, RO7105705, in a
phase 2 trial.

REDUCING TAU EXPRESSION BY
OLIGONUCLEOTIDE THERAPY

Oligonucleotide therapy, including antisense and Si-RNA, is
a new strategy for difficult-to-treat hereditary diseases. The
therapies aim to control the onset and progression of the
disease by regulating protein expression levels. Previous reports
using tau-knockout mice have shown a beneficial effect on the
electrophysiological and/or behavioral deficits in models of AD
(Roberson et al., 2007; Yoshikawa et al., 2018). In P301S tau
transgenic mice, tau antisense oligonucleotides (ASO) reduced
the amounts of tau mRNA by ∼50%, inhibiting hippocampal
atrophy, neuronal loss, and a behavioral abnormality (DeVos
et al., 2017). Immunocytochemical analysis revealed that
stereotactic injections of Si-RNA against tau into the brains of
the mice suppress pathological tau phosphorylation (AT180 and
CP13) and conformational changes in tau (MC1), suggesting that
potential gene therapeutic value of Si-RNA against tauopathies
(Xu et al., 2014). The ASO drug BIIB080 is in a phase 1/2, double-
blind, placebo-controlled trial (NCT03186989) (Alzforum.org,
THERAPEUTICS, https://www.alzforum.org/therapeutics/
biib080; https://ir.ionispharma.com/static-files/4ab8c591-c51b-
45e1-8b0d-ef83a46c0853) in which subjects with mild AD (aged
50–74 years old) are being intrathecally injected with BIIB080 to
evaluate safety and pharmacokinetics.

Regulation of tau alternative splicing may also be worthy of
exploration for the treatment of tauopathies. In FTDP-17, an
inherited tauopathy, single nucleotide polymorphisms [SNP,≥47
(Rossi and Tagliavini, 2015)] are present on the MAPT gene are
causally related to a wide variety of clinical symptoms. Many
SNPs are located on exon 10 and intron 10. Some of these
SNPs (N279K, N296H, 1K280) alter the ratio of 3R and 4R
tau isoforms (Andreadis, 2012): whereas the N279K or N296H
mutations increased 4R tau transcripts, a 1K280 decreased the
number of 4R tau transcripts (Rossi and Tagliavini, 2015). The
ratio of tau isoforms is also altered in other primary tauopathies.
For example, while PSP and CBD predominantly exhibit 4R
tau, the insoluble tau in the brain of PiD is mainly 3R tau
(Arai et al., 2003). Therefore, oligonucleotide therapy, which can
specifically reduce 4R or 3R tau, is useful in treating tauopathies.
In a mouse model of human tau expression, ASO treatment
significantly shifted the splicing pattern to lower 4R tau without
altering the abundance of total tau (Schoch et al., 2016) and led
to a phenotypic improvement (Schoch et al., 2016). Importantly,
because of the physiological functions of tau proteins, such as
synaptic plasticity (Kimura et al., 2014b), signaling (Marciniak
et al., 2017) and nucleic acid protection (Sultan et al., 2011; Violet
et al., 2014), closemonitoring of adverse effects of oligonucleotide
therapies is essential.
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NEW TAU-TARGET THERAPY FOR
TAUOPATHIES

Liquid–Liquid Phase Separation (LLPS)
In addition to the above, candidate therapeutic targets for
tauopathies include tau truncation (Novak et al., 2018a),
impairment of axonal transport (Combs et al., 2019), dysfunction
of tau in the nucleus (Bukar Maina et al., 2016), and
functional impairment of dendritic tau (Ittner and Ittner, 2018).
As previously mentioned, tau protein is a large intrinsically
disordered protein (IDP) (Tompa, 2002) that can interact with
multiple binding partners (Morris et al., 2011; Guo et al., 2017;
Salvi, 2019). Tau is well-known to partner with microtubules
(Butner and Kirschner, 1991; Gustke et al., 1994) and also
interacts with other cytoskeletal proteins, such as actin (Griffith
and Pollard, 1978; Fulga et al., 2007; Whiteman et al., 2009), and
neurofilaments (Mandelkow and Mandelkow, 2012). Tau also
interacts with kinases involved in post-translational modification
of tau (Takashima et al., 1998; Sun et al., 2002), chaperones
(Shimura et al., 2004a; Dickey et al., 2007) and nucleic acids
(Loomis et al., 1990; Kampers et al., 1996; Sultan et al., 2011).

Currently, many cell biologists are turning their attention
to liquid–liquid phase separation (LLPS) which can make a
non-membrane-bound compartment in cells via liquid–liquid
de-mixing and separation from the liquid cytoplasm (Hyman
et al., 2014). Change of phase transition state by LLPS leads to
formation of a protein condensate referred to as liquid droplets.
These droplets are transient in nature owing to their weak
interactions (electrostatic, cation-π, and π-π) (Brangwynne
et al., 2015). In 2015, Uversky et al. hypothesized that intrinsically
disordered IDP serve as essential drivers of intracellular LLPS
that generate various membrane-less organelles (Uversky et al.,
2015). Abnormal LLPS is associated with neurodegenerative
diseases; for example, RNA-binding protein fused in sarcoma has
a low-complexity domain within the N-terminal domain, which
is SYGQ-rich (serine-, tyrosine-, glycine-, glutamine-rich), can
be transformed to liquid droplets through LLPS (Patel et al.,
2015) and converted to an aggregate state over time as seen in
amyotrophic lateral sclerosis patients (Patel et al., 2015). Other
IDP, including TAR DNA-binding protein-43 (Mann et al., 2019)
and heterogeneous nuclear ribonucleoprotein A1 (Molliex et al.,
2015) with a low-complexity domain, have also been reported
to form liquid droplets by LLPS and are involved in forming
pathological inclusions. These findings suggest that LLPS is an
essential physiological and pathological event and indeed, several
studies have shown that LLPS-mediated conversion of tau protein
to liquid droplets (Ambadipudi et al., 2017; Zhang et al., 2017;
Wegmann et al., 2018; Boyko et al., 2019; Kanaan et al., 2020).

Stress granules are membrane-less organelles produced via
LLPS. In stress granules, proteins and RNA interact with many
partners to form reversible complexes. The granules bear a
cytoprotective function against stress since they temporarily
inhibit the translation of non-essential mRNA and promote
translation of transcripts necessary for cell survival (Kedersha
et al., 2000; Liu-Yesucevitz et al., 2011). Tau has been shown to
undergo polymerization by RNA (as well as heparin) (Kampers
et al., 1996; Wang et al., 2006). Tau can binds to RNA in

living cells (Zhang et al., 2017) and it has been shown that
multiple tau molecules bound to tRNA leads to an increase in
tau levels and formation of coacervates (Kosik and Han, 2019);
thus, incubation of a tau-poly (U) RNA complex under droplet-
forming conditions results in a gradual increase in thioflavin
T (ThT) fluorescence over 15 h. These observations have been
supported by others showing that the formation of seeding-
competent tau aggregates from tau condensates (Wegmann
et al., 2018). Thus, the fact that β-sheets form by prolonged
retention of tau droplets, suggests that the highly condensed-
phase state of tau is a precursor to protofibrillation. Tau LLPS
may be initiated by localized gathering of tau into cellular
compartments (e.g., dendrites). Although the physiological
intracellular concentration of tau has been suggested to be
∼2µM (Wegmann et al., 2018), more than 50% of tau
molecules are bound to microtubules (Ackmann et al., 2000).
During NFT formation, non-fibrillar and hyperphosphorylated
tau accumulate in the soma and dendrites of neurons (Götz
et al., 1995; Uchihara et al., 2001). Therefore, tau dissociated
from microtubules migrates into the cytoplasm and forms the
first aggregates. Presumably, the localized gathering of tau is a
singularity of aggregation, but the mechanism is unknown.

Molecular crowding tunes the physical properties of RNP
condensates (Kaur et al., 2019). Different independently-
performed studies have reported the formation of tau liquid
droplets in vitro (tau concentrations from 1 to 25µM) in the
presence of crowding agents that mimic molecular crowding
(∼100–200 mg/ml proteins) in an intracellular environment
(Hernández-Vega et al., 2017; Wegmann et al., 2018). Tau
phosphorylation by microtubule affinity-regulating kinase 2,
which dissociates tau from microtubules, is converted to liquid
droplets (Wegmann et al., 2018). Together, these findings suggest
that LLPS is involved in local tau localization (Wegmann, 2019).

A relationship between tau and stress granules has been
reported (Apicco et al., 2018; Piatnitskaia et al., 2019) in which T-
cell intracellular antigen-1 (TIA-1), a DNA/RNA-binding protein
transferred from the nucleus to the cytoplasm during stress
may play an important role (Kedersha et al., 2000). In fact,
TIA-1 co-localizes with pathological tau in human tissue from
AD patients (Vanderweyde et al., 2012), and a 50% reduction
in TIA-1 expression of cytoplasmic stress granules in P301S
tau transgenic (PS-19) mice leads to improvements in behavior
and lifespan in parallel with reduced neuronal and synaptic
degeneration (Apicco et al., 2018). In cultured hippocampal
neurons, knockdown or knockout of TIA-1 also reduced tau
misfolding and toxicity, and kinase inhibitors that reduce stress
granule formation reduced tau abnormalities (Vanderweyde
et al., 2016). Therefore, inhibition of tau droplet formation
could be an important focus of therapeutic developments for
tauopathies. Since a droplet is a reversible structure formed by
weak interactions, tau droplets may be a better drug target than
irreversible tau aggregation (Figure 4). On the other hand, since
it has been shown that the condensed tau phase is involved
in the nucleation of microtubules in vitro (Hernández-Vega
et al., 2017), identification of the droplets formed specifically in
tauopathies and the search for inhibitors of the droplets will be a
challenge for the future.
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FIGURE 4 | Tau droplet formation by liquid-liquid phase separation (LLPS) is a

key initial step in aberrant tau aggregation. Tau must be abundant before it

begins to aggregate. LLPS-mediated formation of droplets supersaturated

with tau may be a key step in the latter process. A droplet is a reversible

structure formed by weak interactions, suggesting that tau droplets may be a

better drug target than irreversible tau aggregation.

Inflammation
GWAS studies reported 40 risk loci associated with AD (Andrews
et al., 2020), many of which appear to be associated with
immune response/inflammation, APP processing, endocytosis,
lipid metabolism, tau pathology, and cell migration (Ikezu
and Gendelman, 2016). Several reports link dysregulation of
inflammation with AD (McGeer et al., 1989; Akiyama et al., 2000;
Kinney et al., 2018). In the central nervous system, microglia
have major roles in the inflammatory process (Kim and Joh,
2006). Carriers of the R47H allele on TREM2 have a 2 to 4.5-
fold increased risk of developing late-onset AD, suggesting that
TREM2 is the secondmost relevant risk gene after apolipoprotein
E-ε4 (Kinney et al., 2018). TREM2 is specifically expressed in
microglia and is essential for maintaining microglial metabolic
fitness during stress events (Ulland and Colonna, 2018). In
mice expressing humanized TREM2, R47H impairs TREM2
function, restores Aβ-induced microgliosis and microglial
activation (Song et al., 2018). Some authors, studying the role
of TREM2 in tauopathies, have reported that TREM2 deficiency
exacerbates tau pathology [e.g., tau hyperphosphorylation and
aggregation via activated neuronal stress kinases (Bemiller et al.,
2017)]. Further, TREM2 deficiency was reported to attenuate
neuroinflammation and protects against neurodegeneration in
P301S mutant human tau transgenic (PS19) mice (Leyns et al.,
2017). Even though the role of TREM2 in tau pathology
and tau-mediated toxicity remains a matter of debate, it is
notable that a correlation between microglia activation and
formation of pathological tau has been recorded (Laurent et al.,
2018). Other recent studies have focused on the link between
NLRP3 inflammasomes formed within the microglia and tau.
Extracellular tau monomers and oligomers stimulate NLRP3

activation, increasing tau hyperphosphorylation. Since loss of
function of the NLRP3 inflammasome has been shown to reduce
tau pathology (Ising et al., 2019; Zhang et al., 2020b), it appears
that properly-regulated inflammation may protect against tau
pathology and tau-mediated toxicity.

Tau Loss of Function
A number of studies have suggested that correcting the loss of
tau function may be valuable or more valuable than correcting
the toxic gain-of-tau function (including hyperphosphorylation
and aggregation), in drug discovery programs for tauopathies
(Trojanowski and Lee, 2005). The majority of tau-targeted drugs
are designed to reduce the gain-of-toxic-tau and increase the
amount of normal tau (e.g., microtubule stabilizers). Since the
2010’s, a number of studies have pointed to the role of tau
in dendrites and nuclei. For example, in vivo and ex vivo
electrophysiological studies have shown dysregulation of synaptic
plasticity to be associated with tau deficiency (Ahmed et al.,
2014; Kimura et al., 2014b; Regan et al., 2015; Marciniak et al.,
2017) and studies in a tau deficiency model showed that nuclear
tau is protective against the cellular response to stress (Sultan
et al., 2011; Violet et al., 2014). These findings indicate that tau
has other physiological functions other than its better-known
microtubule-stabilizing effects; therefore, treatments that restore
tau function may be helpful the management of tauopathies.

DISCUSSION

There has been great interest in conducting tau-targeted
therapeutics in clinical trials to slow the onset and progression
of tauopathies such as AD (Giacobini and Gold, 2013). These
have been driven by the fact that phase 3 clinical trials for AD
using Aβ-targeted drugs failed to reach their primary predicted
outcome (Holmes et al., 2008; Rosenblum, 2014). Importantly,
the shift in focus on tau has led to the discovery of atypical
tau functions (Sotiropoulos et al., 2017) that may uncover new
strategies for preventing and treating AD.

Recent electron cryomicroscopy (cryo-EM) studies on the
structure of tau fibrils in postmortem brain samples from
tauopathy patients have provided interesting perspectives into
the direction of current and future tau-targeted therapies. The
pattern of tau isoform deposition varies with each tauopathy;
all six isoforms are presented in AD and CTE, and 3R-tau and
4R-tau are predominately expressed in Pick’s disease and CBD,
respectively. In 3R/4R tauopathies, the tau filament folds are
very similar to those found in AD (Fitzpatrick et al., 2017) and
CTE (Falcon et al., 2019), although the filament folds in Pick’s
disease (Falcon et al., 2018) and CBD (Zhang et al., 2020a)
differ from those observed in 3/4R tauopathies and the tau
filament core in Pick’s disease is distinct from that in CBD.
These observations suggest that different tau sequences must
be targeted in 3/4R, 3R, and 4R tauopathies. A combination of
cryo-EM and mass spectrometric post-translational modification
mapping indicate that ubiquitination of tau can mediate inter-
protofilament interfaces in fibrils from CBD and AD (Arakhamia
et al., 2020). While classical biochemical assays have detected tau

Frontiers in Molecular Neuroscience | www.frontiersin.org 14 December 2020 | Volume 13 | Article 590896

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Soeda and Takashima Direction for Tau-Targeted Therapies

ubiquitinations in PHF from AD (Mori et al., 1987; Morishima-
Kawashima et al., 1993), a re-focusing on the regulation of tau
ubiquitination may help efforts to inhibit tau aggregation.

The ability of immunotherapies (vaccines and antibodies)
to reach the brain at sufficient doses remains questionable.
Preclinical studies have shown that CSF penetration of some
IgG monoclonal antibodies is only 0.1–1% (Shin et al., 2020a),
prompting efforts to improve BBB permeability by designing bi-
specific antibodies with a therapeutic arm and a BBB-crossing
arm (targeting the transferrin receptor and insulin receptor) have
been developed (Neves et al., 2016). The presence of tau released
from neurons in the CSF (Meredith et al., 2013; Sato et al.,
2018) and interstitial fluid (Yamada et al., 2011, 2014) has led
to the development of immunotherapies targeting extracellular
tau. Since targetable extracellular tau is estimated to be 0.01–
0.001% of intracellular tau, targeting intracellular tau has been
suggested to be a more promising approach (Sandusky-Beltran
and Sigurdsson, 2020). Conventional monoclonal antibodies are
150-kDamultimeric proteins containing a heavy chain and a light
chain. To reduce manufacturing costs and to target previously
neglected molecules, smaller recombinant antibody fragments,
such as antigen-binding fragment and single-chain variable
fragment (scFv), have been developed. The US FDA has approved
two scFvs: brolucizumab, a humanized scFv for neovascular
(wet) age-related macular degeneration, and blinatumomab, a
mouse scFv for acute lymphoblastic leukemia. Camelid single-
domain (12–15 kDa) antibodies (sdAbs or VHHs, also widely
known as nanobodies) have full antigen-binding potential and
strong affinity to their cognate antigen (Arbabi-Ghahroudi, 2017;
Jovčevska and Muyldermans, 2020). Caplacizumab, a nanobody,
has been approved by the EMA and FDA to treat thrombotic
thrombocytopenic purpura. Although an ScFv could be used as
an intrabody (an intracellular antibody), they are destabilized by
intracellular reduction and often fail to function as antibodies
(Stocks, 2005). Kabayama and colleagues reported a method
for engineering an ultra-stable cytoplasmic antibody (STAND),
which fuses scFv into peptide tags with a highly negative charge
and a low isoelectric point (Kabayama et al., 2020). It has been
shown that STAND-A36 binds to the presynaptic vesicle protein
synaptotagmin and inhibits dopamine release in cultured cells
(Kabayama et al., 2020). Since tau is an intracellular protein, gene
therapy, in which cDNA expressing a tau intrabody is loaded into
neurons, may also prove efficacious for treating tauopathies.

We are attempting to approach both tau gain- and loss-
of-function to discover the therapeutic potential of tau. One

tau gain-of-function is tau oligomer formation that emerges
before forming tau fibrils. In particular, granular tau oligomers
have been suggested to be correlated with neuronal loss
(Takashima, 2013).We found that isoproterenol reduces granular
tau oligomer formation and inhibits cell death and behavioral
disorders (Soeda et al., 2015). Recently, we screened monoclonal
antibodies that recognize granular tau oligomers, which may be
used to develop therapeutic agents in the future. We reported
that tau has a critical physiological function in LTD (Kimura
et al., 2014b). We are currently investigating the mechanism,
which may lead to discovering new drugs targeting tau loss-
of-function.

Clinical trials of tau-based drugs aimed at gain-of-toxic-tau
function (e.g., dysregulation of post-translational modifications
and tau aggregation) or loss-of-function (microtubule instability)
have been conducted in tauopathy patients. Once these clinical
trials have been completed, the potential benefit of tau in the
treatment of progressive neurodegenerative dementias may be
revealed. However, even if these trials fail, they will serve as
a foundation for the next generation of tau-based drugs. New
tau abnormalities in the pathological and (previously unknown)
physiological functions of tau have been reported inmany papers.

The research reviewed here amply shows that basic research
related to tau drug discovery, integration of research results, and
clinical studies on candidate therapeutics must continue in our
effort to treat tauopathies.
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