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Rising serum estradiol triggers the surge release of gonadotropin-releasing hormone

(GnRH) at late proestrus leading to ovulation. We hypothesized that proestrus evokes

alterations in peptidergic signaling onto GnRH neurons inducing a differential expression

of neuropeptide-, growth factor-, and orphan G-protein-coupled receptor (GPCR) genes.

Thus, we analyzed the transcriptome of GnRH neurons collected from intact, proestrous

and metestrous GnRH-green fluorescent protein (GnRH-GFP) transgenic mice using

Affymetrix microarray technique. Proestrus resulted in a differential expression of genes

coding for peptide/neuropeptide receptors including Adipor1, Prokr1, Ednrb, Rtn4r,

Nmbr, Acvr2b, Sctr,Npr3,Nmur1,Mc3r,Cckbr, and Amhr2. In this gene cluster, Adipor1

mRNA expression was upregulated and the others were downregulated. Expression of

growth factor receptors and their related proteins was also altered showing upregulation

of Fgfr1, Igf1r, Grb2, Grb10, and Ngfrap1 and downregulation of Egfr and Tgfbr2

genes. Gpr107, an orphan GPCR, was upregulated during proestrus, while others

were significantly downregulated (Gpr1, Gpr87, Gpr18, Gpr62, Gpr125, Gpr183, Gpr4,

and Gpr88). Further affected receptors included vomeronasal receptors (Vmn1r172,

Vmn2r-ps54, and Vmn1r148) and platelet-activating factor receptor (Ptafr), all with

marked downregulation. Patch-clamp recordings from mouse GnRH-GFP neurons

carried out at metestrus confirmed that the differentially expressed IGF-1, secretin, and

GPR107 receptors were operational, as their activation by specific ligands evoked an
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increase in the frequency of miniature postsynaptic currents (mPSCs). These findings

show the contribution of certain novel peptides, growth factors, and ligands of orphan

GPCRs to regulation of GnRH neurons and their preparation for the surge release.

Keywords: GnRH, mouse, proestrus, transcriptome, neuropeptides, growth factors, G-protein- coupled receptors,

slice electrophysiology

INTRODUCTION

Gonadotropin-releasing hormone (GnRH) plays a key role in
the regulation of reproduction (Merchenthaler et al., 1980;
Knobil, 1988). This decapeptide is synthesized in neurons
of olfactory placode origin that invade the forebrain during
ontogenesis and migrate to the sites of their final residence, the
medial septum–diagonal band of Broca–medial preoptic area
(mPOA). The beaded GnRH axons project—among others—
to the median eminence where they discharge their GnRH
content into the portal circulation (Merchenthaler et al., 1980)
for regulation of the pituitary–gonadal axis (Carmel et al.,
1976). The physiological activity, hormone production, and
neurohormone release of GnRH neurons are regulated by
diverse neuronal circuits of the brain (Spergel, 2019a,b) and
by various endocrine hormones and metabolic signals arriving
from the periphery (Finn et al., 1998; Smith and Jennes, 2001;
Campbell, 2007; Christian andMoenter, 2010; Farkas et al., 2013,
2016; Csillag et al., 2019). The operation of the hypothalamo-
pituitary-gonadal (HPG) axis is cyclic including the physiological
performance of GnRH neurons (Plant, 2015). Gonadal hormones
heavily modulate GnRH neurons and their neuronal afferent
systems (Radovick et al., 2012). In female rodents, estradiol
(E2) exerts biphasic effects on GnRH neurons and the release
of the decapeptide (Sarkar and Fink, 1980; Herbison, 1998).
During the ovarian cycle, estradiol principally suppresses the

GnRH system via negative feedback mechanisms. The proestrous
phase is a functionally important exception when the rising

level of E2 restructures the GnRH system together with its

coupled regulatory neuronal circuits and prepares them for
execution of the forthcoming GnRH surge release (Sarkar et al.,
1976; Christian and Moenter, 2010). This positive regulatory
feedback mechanism is propelled by E2 acting on estrogen
receptors (ERα, ERβ, and GPR30) (Chu et al., 2009; Noel
et al., 2009; Terasawa et al., 2009; Moenter and Chu, 2012)
expressed in neuronal systems known to regulate reproduction
centrally. GnRH neurons are regulated by ERβ (Hrabovszky
et al., 2000, 2001), while their neuronal afferent systems are
regulated by ERα (Christian et al., 2008; Yeo and Herbison,
2014; Dubois et al., 2015) or both ER subtypes. The positive
E2 feedback regulation is known to target GnRH neurons
themselves and their distinct regulatory neuron circuits via
direct receptor actions (Gore, 2010). Neuronal networks that
mediate the negative and positive feedback effects of E2 to GnRH
neurons have comprehensively been studied by morphological
and functional tools (Wintermantel et al., 2006; Christian and
Moenter, 2008; Christian et al., 2008; Yeo and Herbison, 2014;
Farkas et al., 2018). GnRH neurons undergo activation in the
preovulatory GnRH surge period, characterized by expression

of the immediate early gene, c-Fos (Lee et al., 1990), enlarged
transcriptional activity (Wang et al., 1995), induction of hormone
synthesis (Gore and Roberts, 1997; Finn et al., 1998), and altered
firing pattern (Christian et al., 2005; Farkas et al., 2013).

Classic neurotransmitter systems have been found as powerful
regulators of GnRH neurons (Smith and Jennes, 2001). The
most potential neurotransmitter regulators include gamma-
aminobutyric acid (GABA) (Herbison and Moenter, 2011),
glutamate (Iremonger et al., 2010), dopamine (DA) (Liu and
Herbison, 2013), norepinephrine (NE) (Hosny and Jennes, 1998),
serotonin (Bhattarai et al., 2014), acetylcholine (Ach) (Turi et al.,
2008), and histamine (H) (Fekete et al., 1999). The expression
of genes encoding for neurotransmitter receptors (Todman
et al., 2005) and ion channels (Bosch et al., 2013; Norberg
et al., 2013; Vastagh et al., 2019) in GnRH neurons has also
been verified. In a recent study, we have reported that several
neurotransmitter receptors belonging to the aforementioned
systems show differential expression in GnRH neurons of
proestrous mice (Vastagh et al., 2016). In addition to the
classic neurotransmitter systems, neuropeptides, growth factors,
and their receptors are equally important regulators of GnRH
neurons (Gore, 2010). Electrophysiological studies have provided
evidence for direct targeting of GnRH neurons by various
peptides via G-protein-coupled receptor (GPCR) signaling
mechanisms including anti-Mullerian hormone (AMH) (Cimino
et al., 2016; Barbotin et al., 2019), secretin (Csillag et al.,
2019), adiponectin (Klenke et al., 2014), alpha-MSH (Roa and
Herbison, 2012), AgRP (Roa and Herbison, 2012), CART (Roa
and Herbison, 2012), cholecystokinin (CCK) (Giacobini and
Wray, 2007), CRH (Phumsatitpong and Moenter, 2018), galanin
(Todman et al., 2005), ghrelin (Farkas et al., 2013), GnRH
(Todman et al., 2005), glucagon-like peptide 1 (GLP-1) (Farkas

Abbreviations: Acvr2b, activin receptor IIB; Adipor1, adiponectin receptor

1; Amhr2, anti-Mullerian hormone type 2 receptor; Cckbr, cholecystokinin

B receptor; Ednrb, endothelin receptor type B; Egfr, epidermal growth factor

receptor; Fgfr1, fibroblast growth factor receptor 1; Gpr1, G-protein-coupled

receptor 1; Gpr107, G-protein-coupled receptor 107; Gpr125, G-protein-

coupled receptor 125; Gpr18, G-protein-coupled receptor 18; Gpr183,

G-protein-coupled receptor 183; Gpr4, G-protein-coupled receptor 4;

Gpr62, G-protein-coupled receptor 62; Gpr87, G-protein-coupled receptor

87; Gpr88, G-protein-coupled receptor 88; Grb10, growth factor receptor-bound

protein 10; Grb2, growth factor receptor-bound protein 2; Grk6, G-protein-

coupled receptor kinase 6; Igf1r, insulin-like growth factor I receptor; Mc3r,

melanocortin 3 receptor; Ngfrap1, nerve growth factor receptor (TNFRSF16)

associated protein 1; Nmbr, neuromedin B receptor; Nmur1, neuromedin U

receptor 1; Npr3, natriuretic peptide receptor 3; Prokr1, prokineticin receptor

1; Ptafr, platelet-activating factor receptor; Rtn4r, reticulon 4 receptor; Sctr,

secretin receptor; Tgfbr2, transforming growth factor, beta receptor II; Vmn1r148,

vomeronasal 1 receptor 148; Vmn1r172, vomeronasal 1 receptor 172; Vmn2r-ps54,

vomeronasal 2, receptor, pseudogene 54.
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et al., 2016), kisspeptin (Pielecka-Fortuna et al., 2008; Pielecka-
Fortuna and Moenter, 2010), neuromedin B (Todman et al.,
2005), NPY (Roa and Herbison, 2012), somatostatin (Todman
et al., 2005), and orexin (Gaskins and Moenter, 2012), among
others. In the present study, the proestrus-evoked changes in
expression of peptide/neuropeptide-, growth factor-, and orphan
GPCR genes of GnRH neurons have been challenged. To
achieve this goal, we carried out microarray-based transcriptome
analysis of GnRH neurons harvested from regularly cycling,
GnRH-green fluorescent protein (GnRH-GFP) transgenic mice
at proestrous and metestrous phases of the gonadal cycle. Three
of the identified targets were further studied by patch-clamp
electrophysiology. The comparative study revealed a differential
expression of certain peptide-, growth factor-, and orphan GPCR
genes in GnRH neurons of proestrous mice and explored novel
regulatory signals and receptors taking part in the regulation of
GnRH neurons in proestrus under the positive feedback action
of estradiol.

MATERIALS AND METHODS

Animals
Adult, gonadally intact female mice were used from local colonies
bred at the Medical Gene Technology Unit of the Institute
of Experimental Medicine (IEM). The animals were housed in
light-controlled (12:12 light–dark cycle, lights on at 06:00 h) and
temperature-controlled (22± 2◦C) environment, with free access
to standard food and tap water. GnRH-GFP transgenic mice
(Suter et al., 2000) bred on a C57BL/6J genetic background
were used. In this animal model, a GnRH promoter segment
drives selective GFP expression in most GnRH neurons. The
estrous cycle was monitored daily between 09:00 and 10:00 h by
microscopic evaluation of vaginal cytology (Byers et al., 2012).
Proestrous (n = 6) and metestrous (n = 6) female mice with
at least two consecutive, regular estrous cycles were used. To
avoid the possible circadian effect, animals were sacrificed at
the same period of the day, between 16:00 and 18:00 h. Those
animals were considered to be in the proestrous stage that
fulfilled the following criteria: (1) vaginal smear staining with
predominance of nucleated epithelial cells (Byers et al., 2012);
(2) luteinizing hormone (LH) serum concentrations >5 ng/ml
(15.11 ± 3.4 ng/ml); (3) uterus wet weights >0.15 g (0.19 ±

0.01 g). Accordingly, the following criteria were applied for the
metestrous cycle phase: (1) vaginal smears consisting of the
three cell types: leukocytes and cornified nucleated epithelial cells
(Byers et al., 2012); (2) serum LH levels <0.5 ng/ml (0.35 ±

0.02 ng/ml); (3) uterus wet weights <0.1 g (0.08± 0.01 g).
For slice electrophysiological experiments, metestrous mice

with uterine weight of <80mg were used (Silveira et al., 2017).

Serum Luteinizing Hormone
Measurements
Blood samples were collected from the heart of deeply
anesthetized mice immediately before the brain fixation
step. The samples were chilled on ice, centrifuged at 1,300 g for
3min at 4◦C. Plasma was aspirated, frozen, and stored at −80◦C
until further use. Serum LH concentrations were measured with

a rodent LH ELISA kit #ERK R7010 (assay range: 1–50 ng/ml;
sensitivity: 0.5 ng/ml) from Endocrine Technologies Inc.
(Newark, CA, USA) according to manufacturers’ instructions.

Laser Capture Microdissection, RNA
Isolation, and Whole Transcriptome
Amplification
Brain fixation, preparation of sections for the later laser capture
microdissection (LCM) andmicroarray profiling were performed
as reported elsewhere (Khodosevich et al., 2007; Vastagh et al.,
2015). Briefly, metestrous (n = 6) and proestrous female (n =

6) mice were deeply anesthetized and perfused transcardially
with 80ml of 0.5% paraformaldehyde followed by 20% sucrose.
For microdissection, 7-µm-thick coronal brain sections were
cut. Sections were mounted on PEN-membrane slides (Zeiss,
Jena, Germany) and processed further for laser microdissection.
Uniform and representative sampling of GnRH neurons residing
in the mPOA was performed using a PALM MicroBeam system
(Carl Zeiss Microimaging GmbH, Jena, Germany), which was
equipped with an epifluorescent setup. Sections were cut between
coronal planes bregma 0.85 and 0.13 (Paxinos and Franklin,
2012); 250 GFP-positive neurons were dissected and pooled from
80 to 100 consecutive sections of each brain. GnRH neurons
were cut precisely along their outlines (plasma membrane) as
visualized by the endogenous GFP signal. The collected tissue
sample included the perikarya and the short initial segments of
the GnRH dendrites.

GnRH cell samples collected with LCM were incubated in
200ml of lysis buffer at 56◦C for 3 h. RNA was isolated from
the lysate by proteinase K/acid phenol method. RNAwas purified
using RNeasy MinElute Cleanup kit (Qiagen, Hilden, Germany).
Total RNA was eluted with 14 µl of ribonuclease-free water. The
quality of RNA was measured with Bioanalyzer.

Library preparation and amplification were performed
according to the manufacturer’s (Sigma-Aldrich) instructions
for the WTA2 kit. When the SYBR Green signal reached
a plateau, the reaction was stopped. The amplified double-
stranded cDNA was purified and quantified on a Nanodrop ND-
1000 spectrophotometer (Thermo-Fisher Scientific, Waltham,
MA, USA).

Mouse Genome 430 PM Arrays
Eight micrograms of cDNA was fragmented by DNase I and
biotinylated by terminal transferase obtained from the GeneChip
Mapping 250K Nsp Assay Kit (Affymetrix Inc., Santa Clara,
CA, USA). Hybridization, washing, staining, and scanning of
Affymetrix Mouse Genome 430 PM Strip arrays were performed
following the manufacturer’s recommendations. The Mouse
Genome 430 PM Strip array allows the analysis of 34,325
well-annotated genes using 45,123 distinct probe sets. Scanned
images (DAT files) were transformed into intensities (CEL files)
using the AGCC software (Affymetrix). RMA analysis was
performed by the statistical analysis software Partek Genomics
Suite (Partek Inc., St. Louis, MO, USA) to obtain probe set level
expression estimates.
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Bioinformatics and Data Analysis
All statistical and data mining works were performed in R-
environment (R Core Team, 2020) with Bioconductor packages
(Huber et al., 2015). Quality assessment of microarrays (n
= 12) was performed using affyQCReport. Raw microarray
data were pre-processed for analysis using RMA (Robust
Multi-Array Average) (Irizarry et al., 2003). Fold change (FC)
estimation and difference analysis of gene expression were
based on linear models combined with Bayesian methods. FC
was calculated from normalized and log2 transformed gene
expression microarray data for each probe sets. The obtained
p-values were adjusted by the false discovery rate (FDR)-based
method. The following cutoff criteria were applied on the
differentially expressed gene (DEGs)s: FC>± 1.5 and adjusted p
(padj) < 0.05.

The differentially regulated genes were displayed in heat
map. Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis (http://www.genome.jp/kegg/) was used to
reveal the main gene ontology (GO) pathways associated
with molecular functions linked to the DEGs. The putative
interactions among proteins encoded by DEGs were analyzed
by the web-based STRING v11.0 program (https://string-db.org)
(Szklarczyk et al., 2015).

Slice Electrophysiology
Brain slice preparation was carried out as described earlier
(Farkas et al., 2010). Briefly, after decapitation, the heads were
immersed in ice-cold, low-Na cutting solution, and continuously
bubbled with carbogen, a mixture of 95% O2 and 5% CO2;
and the brains were removed rapidly from the skull. The
cutting solution contained the following (in mM): saccharose
205, KCl 2.5, NaHCO3 26, MgCl2 5, NaH2PO4 1.25, CaCl2
1, and glucose 10. Hypothalamic blocks were dissected, and
250-µm-thick coronal slices were prepared from the mPOA
with a VT-1000S vibratome (Leica Microsystems, Wetzlar,
Germany) in the ice-cold, low-Na, oxygenated cutting solution.
The slices containing preoptic area (POA) were transferred into
artificial cerebrospinal fluid (aCSF) (in mM): NaCl 130, KCl
3.5, NaHCO3 26, MgSO4 1.2, NaH2PO4 1.25, CaCl2 2.5, and
glucose 10, bubbled with carbogen and left for 1 h to equilibrate.
Equilibration started at 33◦C, and it was allowed to cool down to
room temperature.

Recordings were carried out in carbogenated aCSF at 33◦C.
Axopatch-200B patch-clamp amplifier, Digidata-1322A data
acquisition system, and pCLAMP 10.4 software (Molecular
Devices Co., Silicon Valley, CA, USA) were used for recording.
Neurons were visualized with a BX51WI IR-DIC microscope
(Olympus Co., Tokyo, Japan). The patch electrodes (OD =

1.5mm, thin wall; WPI, Worcester, MA, USA) were pulled with
a Flaming-Brown P-97 puller (Sutter Instrument Co., Novato,
CA, USA).

GnRH-GFP neurons in the close proximity of the vascular
organ of lamina terminalis (OVLT; bregma 0.49–0.85mm) were
identified by brief illumination at 470 nm using an epifluorescent
filter set, based on their green fluorescence, typical fusiform
shape, and characteristic topography (Suter et al., 2000).

Reagents and Chemicals
Extracellularly Used Drugs
Secretin (30 nM; rat, Tocris) (Csillag et al.,
2019); secretin antagonist (3µM; secretin 5-27;
TFTSELSRLQDSARLQRLLQGLV) (Williams et al., 2012);
IGF-1 (13 nM; Sigma) (Kleppisch et al., 1992); IGF-1R antagonist
JB-1 (800 nM; Bachem, Swiss); neuronostatin-13 (10 nM, rat,
mouse, Phoenix Peptide No. 060-48) (Samson et al., 2008).

Intracellularly Used Drugs
Membrane impermeable G-protein inhibitor guanosine 5′-
[β-thio]diphosphate (2mM; Meis et al., 2002; Ponzio and
Hatton, 2005; Mcdermott and Schrader, 2011; GDP-β-S; Sigma);
phosphatidylinositol 3-kinase (PI3K) blocker LY294002 (50µM,
Sigma; Zhang et al., 2016).

Whole-Cell Patch-Clamp Experiments
Whole-cell patch-clamp measurements started with a control
recording (5min), then the selected receptor ligand was pipetted
into the aCSF-filled measurement chamber containing the
brain slice in a single bolus, and the recording continued
for a further 10min. Pretreatment with extracellularly
applied antagonist started 15min before adding the ligand
and the antagonist was continuously present in the aCSF
during the electrophysiological recording. Intracellularly
applied membrane impermeable G-protein inhibitor GDP-
β-S (2mM, Sigma; St. Louis, MO, USA) was added to the
intracellular pipette solution; and after achieving whole-
cell patch-clamp configuration, we waited 15min to reach
equilibrium in the intracellular milieu before starting recording.
Each neuron served as its own control when drug effects
were evaluated.

The miniature postsynaptic currents (mPSCs) in GnRH
neurons were measured as described earlier (Farkas et al., 2010).
Briefly, the neurons were voltage clamped at −70mV of holding
potential. Intracellular pipette solution contained the following
(in mM): HEPES 10, KCl 140, EGTA 5, CaCl2 0.1, Mg-ATP
4, and Na-GTP 0.4 (pH = 7.3 with NaOH). The resistance of
the patch electrodes was 2–3 M�. Only cells with low holding
current (10 pA) and stable baseline were used. Input resistance
(Rin), series resistance (Rs), and membrane capacitance (Cm)
were also measured before and after each treatment by using
5 mV hyperpolarizing pulses. To ensure consistent recording
qualities, only cells with Rs <20 M�, Rin >500 M�, and Cm
>10 pF were accepted.

Spike-mediated transmitter release was blocked in all mPSC
experiments by adding the voltage-sensitive Na-channel inhibitor
tetrodotoxin (TTX; 660 nM, Tocris) to the aCSF 10min before
mPSCs were recorded. Time distribution graphs of frequencies
were generated using 30 s time bins, shifted by 5 s steps, to show
time courses of effect of substances.

To show the effect of agonists and antagonist on the input
resistance (Rin) and capacitance (Cm) in GnRH neurons, current
clamp measurements were recorded. During the measurements,
900-ms-long negative current step was applied (−75 pA). The
Rin was determined from the voltage response to the application
of hyperpolarizing current. The time constant was the time
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required to reach 63% of the maximum voltage response to
hyperpolarizing current (Spergel et al., 1999). The Cm was
then calculated by dividing the time constant by the Rin. After
control recording, drugs were pipetted into the measurement
chamber; and 5min later, the current step was repeated. In case
of intracellularly used blockers, the negative current step was
applied immediately after the rupture of the membrane, and it
was repeated after 5 min.

Statistical Analysis
Recordings were stored and analyzed off-line. Event detection
was performed using the Clampfit module of the PClamp 10.4
software (Molecular Devices Co., Silicon Valley, CA, USA).
The root mean square of the noise was calculated, and then
threshold was set at two times the standard deviation of this value,
corresponding to the 95% confidence interval. If the amplitude of
an mPSC was higher than this threshold level, it was considered
as an event.

Spontaneous postsynaptic current (sPSC) and mPSC
frequencies were calculated as number of PSCs divided by the
length of the corresponding time period (5 or 10min). Mean
values of the control and treated part of the recording are
calculated from these frequency values. All the experiments
were self-controlled in each neuron: percentage changes in
the parameters of the PSCs were calculated by dividing the
value of the parameter in the treated period with that of the
control period.

Group data were expressed as mean± standard error of mean
(SEM). Two-tailed Student’s t-test was applied for comparison
of groups, and the differences were considered as significant at
p < 0.05.

RESULTS

In this study, we examined the impact of proestrus on the
expression of peptide/neuropeptide-, growth factor-, and orphan
GPCRs in GnRH neurons dissected from intact, metestrous and
proestrous GnRH-GFP transgenic mice brains, respectively.

Proestrus evoked differential expression of 33 genes in the
studied categories. Eight of themwere upregulated (Table 1). The
differential expression of individual genes was displayed in heat
map (Figure 1). The top 10 GO “molecular function” pathways
linked to the DEGs are summarized in Table 2. The predicted
interactions among proteins encoded by the DEGs in GnRH
neurons of late proestrous mice are depicted in Figure 2.

Differential Expression of Genes Encoding
Peptide/Neuropeptide Receptors
Analysis of microarray data revealed DEGs associated with
various peptidergic signaling mechanisms (Table 1, Figure 1).
Twelve G-protein-coupled peptide/neuropeptide receptors
showed differential expression in proestrus. Most of them (11
genes) were downregulated. The only upregulated receptor
gene was adiponectin receptor 1 (Adipor1). The downregulated
group of genes involved prokineticin receptor 1 (Prokr1),
endothelin receptor type B (Ednrb), reticulon 4 receptor (Rtn4r),
neuromedin B receptor (Nmbr), activin receptor IIB (Acvr2b),
secretin receptor (Sctr), natriuretic peptide receptor 3 (Npr3),

neuromedin U receptor 1 (Nmur1), melanocortin 3 receptor
(Mc3r), cholecystokinin B receptor (Cckbr), and AMH type 2
receptor (Amhr2).

Effects of Proestrus on Expression Profile
of Growth Factor Receptors
Like peptide receptors, the expression of growth factor receptors
and their adaptor/associated proteins was altered in proestrus
(Table 1, Figure 1). Altogether, seven genes showed differential
expression. Fibroblast growth factor receptor 1 (Fgfr1) and
insulin-like growth factor I receptor (Igf1r) genes were
upregulated. The expression of growth factor-bound/associated
proteins also increased involving growth factor receptor-
bound protein 2 (Grb2), growth factor receptor-bound protein
10 (Grb10), and nerve growth factor receptor (TNFRSF16)
associated protein (Ngfrap1). Epidermal growth factor receptor
(Egfr) and transforming growth factor beta receptor II (Tgfbr2)
genes showed downregulation.

Changes in Expression of Orphan G Protein
Receptor-Coupled Receptors in Proestrus
Proestrus had a profound effect on the expression of orphan
GPCRs (Table 1, Figure 1) by upregulating GPR107 and
downregulating eight members of the receptor family (Gpr1,
Gpr87, Gpr18, Gpr62, Gpr125, Gpr183, Gpr4, and Gpr88). A
GPCR kinase (Grk6) also showed upregulation.

Differential Expression of Other Peptide
Receptors
In this group, genes encoding a few vomeronasal receptors
(Vmn1r172, Vmn2r-ps54, and Vmn1r148) and platelet-activating
factor receptor (Ptafr) were affected. All of them showed
decreased expression in proestrus (Table 1, Figure 1).

Operability of Differentially Expressed
Receptors in Gonadotropin-Releasing
Hormone Neurons
From the three main signaling categories, the functionality
of three receptors was examined further by patch-clamp
electrophysiology. The selected receptors included GPR107,
the putative receptor of neuronostatin, insulin-like growth
factor 1 (IGF-1) receptor, and secretin receptor. The passive
membrane parameters remained unchanged after administration
of the agonists and antagonists (Table 3). Neuronostatin-13
(10 nM) significantly increased the frequency of mPSCs by
39.9% in GnRH neurons compared with the control period
(0.6145 ± 0.1388Hz, Student’s t-test, p = 0.0224), and its
effect was totally abolished by intracellularly applied G-protein
inhibitor administration (GDP-β-S; 2mM) (Figures 3A–C).
Neuronostatin-13 (10 nM) was not able to change the amplitude
of mPSCs (Table 4). Exposure of the preoptic slices to IGF-
1 (13 nM) also evoked an increase (by 85%) in the frequency
but not in the amplitude of mPSCs compared with the
control (0.4164 ± 0.1516Hz, Student’s t-test, p = 0.0061)
(Figures 3D,G, Table 4) in these hypophysiotropic neurons.
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TABLE 1 | Differentially expressed genes encoding peptide-, growth factor-, and orphan GPCR receptors in GnRH neurons.

Probe Symbol Description FC Adj. p-val

Peptide/neuropeptide signaling

1439017_x_at Adipor1 Adiponectin receptor 1 2.183 3.764E−03

1450279_at Prokr1 Prokineticin receptor 1 0.616 3.905E−03

1423594_a_at Ednrb Endothelin receptor type B 0.614 4.199E−02

1419732_at Rtn4r Reticulon 4 receptor 0.608 2.452E−02

1422342_at Nmbr Neuromedin B receptor 0.605 4.304E−02

1419140_at Acvr2b Activin receptor IIB 0.604 3.325E−02

1443454_at Sctr Secretin receptor 0.585 1.078E−03

1450286_at Npr3 Natriuretic peptide receptor 3 0.539 1.787E−03

1421667_at Nmur1 Neuromedin U receptor 1 0.475 1.851E−04

1422237_at Mc3r Melanocortin 3 receptor 0.447 2.462E−03

1460663_at Cckbr Cholecystokinin B receptor 0.443 3.521E−02

1457021_x_at Amhr2 Anti-Mullerian hormone type 2 receptor 0.218 4.651E−05

Growth factor signaling

1425911_a_at Fgfr1 Fibroblast growth factor receptor 1 2.456 1.937E−02

1452108_at Igf1r Insulin-like growth factor I receptor 2.036 3.486E−02

1449111_a_at Grb2 Growth factor receptor-bound protein 2 1.768 7.138E−03

1430164_a_at Grb10 Growth factor receptor-bound protein 10 1.746 3.595E−02

1428842_a_at Ngfrap1 Nerve growth factor receptor (TNFRSF16) associated protein 1 1.525 7.502E−03

1454313_at Egfr Epidermal growth factor receptor 0.478 7.784E−05

1425444_a_at Tgfbr2 Transforming growth factor, beta receptor II 0.447 4.651E−05

Signaling via orphan GPCRS

1454828_at Gpr107 G-protein-coupled receptor 107 1.962 3.282E−02

1437436_s_at Grk6 G-protein-coupled receptor kinase 6 1.933 4.593E−02

1460123_at Gpr1 G-protein-coupled receptor 1 0.661 2.011E−02

1420364_at Gpr87 G-protein-coupled receptor 87 0.618 7.500E−03

1439141_at Gpr18 G-protein-coupled receptor 18 0.606 6.733E−03

1457236_at Gpr62 G-protein-coupled receptor 62 0.539 9.132E−03

1444300_at Gpr125 G-protein-coupled receptor 125 0.524 1.954E−03

1437356_at Gpr183 G-protein-coupled receptor 183 0.521 1.211E−03

1457745_at Gpr4 G-protein-coupled receptor 4 0.478 2.166E−02

1460327_at Gpr88 G-protein-coupled receptor 88 0.296 7.998E−05

Other signaling mechanisms

1421764_at Vmn1r172 Vomeronasal 1 receptor 172 0.630 3.250E−03

1450274_at Vmn2r-ps54 Vomeronasal 2, receptor, pseudogene 54 0.628 6.571E−03

1450315_at Vmn1r148 Vomeronasal 1 receptor 148 0.445 3.759E−02

1427871_at Ptafr Platelet-activating factor receptor 0.240 2.202E−05

The list shows differentially expressed genes (DEGs) involved in peptide, growth factor, and orphan GPCR signaling mechanisms. FC values indicate the changes of expression in the

proestrous vs. metestrous GnRH neurons. Gene symbols and FC values of upregulated genes are in bold. FC, fold change; adj. p-val, adjusted p-value.

The graphs also demonstrated that this facilitatory event was
prevented by administration of the extracellularly used IGF-1
receptor antagonist, JB1 (800 nM), or intracellularly used PI3K
blocker LY294002 (50µM) (Figures 3E–G, Table 4), prior to the
ligand exposure. The bath application of the secretin hormone
at 30-nM concentration also augmented the frequency of mPSCs
by 59.1% (Figures 3H,K, Table 4), but the amplitude remained
stable during the measurements (Table 4). The secretin receptor
antagonist, secretin 5-27 (3µM) or the intracellularly applied G-
protein blocker GDP-β-S (2mM) powerfully blocked this event
(Figures 3I–K, Table 4).

DISCUSSION

The main findings of the study reveal that proestrus changes

the expression of genes encoding peptide-, growth factor-,
and orphan GPCRs in GnRH neurons of mice and confirm

the significance of different neuropeptides, growth factors, and
ligands of orphan receptors, all acting via GPCRs of GnRH
neurons in orchestration of the pre-ovulatory GnRH surge.
These events together with classical neurotransmitter signaling
mechanisms (Vastagh et al., 2016) and voltage-gated ion channels
(Vastagh et al., 2019) contribute to shifting the phenotype of
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FIGURE 1 | Heat map of peptide/neuropeptide, growth factor, and orphan G-protein-coupled receptor genes regulated differentially in GnRH neurons of proestrous

vs. metestrous mice. Expression levels of involved in signaling mechanisms. The rows represent differentially expressed probe sets with corresponding gene symbols

on the right. The expression level of each probe is color coded. For decoding, see the color key. The individual samples are shown as columns. The six metestrous

and six proestrous samples are coded in yellow and blue, respectively.
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TABLE 2 | List of the top 10 GO molecular function pathways affected by

differentially regulated genes (33) in GnRH neurons of proestrous mice.

Pathway ID Pathway description Count in

gene set

Molecular function (GO)

GO:0004888 Transmembrane signaling receptor activity 22

GO:0038023 Signaling receptor activity 21

GO:0004930 G-protein-coupled receptor activity 18

GO:0004871 Signal transducer activity 19

GO:0008528 G-protein-coupled peptide receptor activity 7

GO:0001653 Peptide receptor activity 6

GO:0042562 Hormone binding 5

GO:0019199 Transmembrane receptor protein kinase activity 5

GO:0017046 Peptide hormone binding 4

GO:0005026 Transforming growth factor beta receptor activity,

type II

2

GO:0019838 Growth factor binding 4

GO:0005057 Receptor signaling protein activity 4

GO:0008188 Neuropeptide receptor activity 3

GO:0043560 Insulin receptor substrate binding 2

GO:0042277 Peptide binding 4

GO:0004702 Receptor signaling protein serine/threonine kinase

activity

3

GO:0004714 Transmembrane receptor protein tyrosine kinase

activity

3

GO:0016500 Protein-hormone receptor activity 2

GO:0004675 Transmembrane receptor protein serine/threonine

kinase activity

2

GO:0045028 G-protein-coupled purinergic nucleotide receptor

activity

2

GO:0005158 Insulin receptor binding 2

GO:0005070 SH3/SH2 adaptor activity 2

GO:0042923 Neuropeptide binding 2

Transmembrane signaling receptor activity, signaling receptor activity, G-protein-coupled

receptor activity, and signal transducer activity pathways are represented by the largest

count numbers among the gene sets (19–22).

the GnRH neuron from metestrous to proestrous type and to
initiation of downstream actions that prime the cells for surge
release of GnRH, a hormonal prerequisite of activation of the
pituitary–gonadal axis and the subsequent ovulation.

Methodological Considerations
Estrous cycle-dependent comparative investigations are
restricted to the whole hypothalamus at the cost of the lack of
cell type-specific spatial resolution (Dicarlo et al., 2017). The
list of DEGs in proestrus–metestrus pairwise comparison of
mouse hypothalami by DiCarlo et al. do not show any overlap
with DEGs of neuropeptide/growth factor and orphan GPC
receptors of the GnRH neurons presented in our study. This
evidence strengthens the view that the observed differential
gene expression is GnRH cell type specific, and it is due to the
gonadal cycle.

The rationale behind studying the mPSCs is that postsynaptic
actions on GnRH neurons modify the frequency of mPSCs by

altering the retrograde endocannabinoid and/or NO signaling
in the presynaptic terminals (Farkas et al., 2010, 2013, 2018;
Balint et al., 2016; Csillag et al., 2019). In this study, the
electrophysiological recordings in the presence of intracellular
blockers of the IGF-1 and neuronostatin signaling pathways
confirm the postsynaptic action of the peptides.

Proestrus Modifies the Expression of
Peptide/Neuropeptide Receptors
Adiponectin Receptor 1
Adiponectin secreted from the adipose tissue is a potent
regulator of fatty acid oxidation and glucose utilization. In GT1-
7 neurons, both adiponectin receptor 1 and 2 are expressed,
and the hormone inhibits GnRH secretion via AMP-activated
protein kinase (Wen et al., 2008). In nasal explants of mice,
GnRH neurons have been reported to express adiponectin
receptor 2 (AdipoR2), and about 20% of the cells responded to
adiponectin (Klenke et al., 2014), because this substance evoked
hyperpolarization of GnRH neurons and decreased calcium
oscillations. In this study, the nasal pits were isolated without
regard to the sex of the animal. Our present results show
a differential expression of adiponectin receptor 1 in GnRH
neurons of proestrous mice, with a marked upregulation of the
coding gene. Elucidation of the functional role of adiponectin
signaling via AdipoR1 in GnRH neurons during the positive
estradiol feedback awaits further studies.

Prokineticin Receptor 1
Prokineticin signaling has been extensively studied in the
regulation of reproduction (Maldonado-Perez et al., 2007).
Failure of this signaling mechanism results in abnormal
development of the olfactory bulb and the reproductive system
(Dode et al., 2006; Matsumoto et al., 2006). The role of
prokineticin 2 and prokineticin receptor 2 has been addressed
in processes of reproduction, including the human HPG axis
(Pitteloud et al., 2007; Sarfati et al., 2010; Balasubramanian
et al., 2011, 2014). Here, we report that GnRH neurons express
downregulated prokineticin 1 receptor in late proestrous mice.
The main putative source of the ligand is the nucleus of the
solitary tract of the adult mouse brain (Cheng et al., 2006).
Prokineticin 1 mRNA expression was detected in the olfactory
region, dentate gyrus, zona incerta, and dorsal motor vagal
nucleus (Cheng et al., 2006). Functional studies are required to
dissect further the role of prokineticin-1 receptor in actions of
GnRH neurons.

Endothelin Receptor Type B
Endothelins have been shown to regulate neurosecretion
in immortalized GnRH neurons via their specific receptors
(Krsmanovic et al., 1991). Endothelin 1 acting on endothelin
receptor B controls the migration of human olfactory GnRH-
secreting neuroblasts (Romanelli et al., 2005). Endothelin
receptor beta like immunoreactivity was observed in the OVLT
and median eminence of the rat brain, with clear association
with GnRH axons (Yamamoto et al., 1997). Our data confirm the
expression of the receptor in mouse GnRH neurons and prove
the differential expression of its coding gene in proestrus.
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FIGURE 2 | Predicted interactions among proteins encoded by differentially expressed genes in GnRH neurons of intact proestrous mice. The gene network was

constructed by using the STRING 10.5 Known and Predicted Protein-Protein Interactions program (http://string-db.org/). Analysis was performed at confidence value

of 0.7, and non-interacting elements were also visualized. There are three gene clusters with interacting elements: (1) growth factor receptors: Egfr, Fgfr1, Grb2, Igf1r,

and Grb10. (2) Peptide and GPCR receptors: GPR18, Nmur1, Ptafr, Ednrb, Prokr1, Nmbr, Gpr4, and Cckbr. (3) Peptide receptors: Sctr and Mc3r.

Reticulon 4 Receptor
This receptor binds the myelin-associated protein, Nogo, which
inhibits axon outgrowth and regulates neuronal plasticity.
Proestrus downregulates its expression.

The physiological significance of this signaling mechanism in
case of the GnRH system is still obscure.

Neuromedin B Receptor
Neuromedin B receptor expression has already been reported
in mouse GnRH neurons with a marked depolarizing effect of
its specific ligand (Todman et al., 2005). Intracerebroventricular
administration of neuromedin B—by acting at the level of the
hypothalamus—increases plasma LH (Boughton et al., 2013). We
found the downregulation of neuromedin receptor B in the late
proestrous phase of the gonadal cycle.

Activin Receptor IIB
Activin is expressed in neurons of the hypothalamus, and activin-
IR axons are juxtaposed to GnRH neurons (Macconell et al.,
1998). Activin-A has been reported to increase the secretion

of GnRH from GT1-7 cells (Gonzalez-Manchon et al., 1991).
In male rats, intracerebroventricular administration of activin-
A increases the secretion of follicle-stimulating hormone (FSH)
and evokes a modest LH release, without changing the GnRH
mRNA expression (Lee and Rivier, 1997). In explanted male
hypothalamus, activin-A stimulated the GnRH release, and its
effect was eliminated by inhibin and blunted by testosterone
(Calogero et al., 1998). Activin receptor type II null (Acvr2−/−)
male mice show altered reproductive behavior with marked
deficits in capacity of copulation and ejaculation (Ma et al.,
2005). Our present data indicate the presence of activin receptor
IIB in mouse GnRH neurons and its differential expression in
late proestrus.

Secretin Receptor
Our current knowledge about secretin signaling in the brain
(Zhang and Chow, 2014) is limited. In situ hybridization
histochemistry explored the distribution of secretin receptor
mRNA-expressing cells in the brain, including the OVLT
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TABLE 3 | Changes in passive membrane properties after administration of various agonists and antagonists.

Substance Control period % changes, 5 min

after

administration

p-value n N

Membrane capacitance (Cm)

Neuronostatin-13 24.58 ± 4.467 pF 97 ± 9.806 0.7797 5 2

Igf-1 25.29 ± 3.912 pF 102.8 ± 4.270 0.5654 4 2

Secretin 22.95 ± 3.418 pF 106.7 ± 8.686 0.523 5 2

JB1 26.28 ± 1.514 pF 101.3 ± 3.756 0.7566 4 2

Secretin receptor antagonist 28.41 ± 0.4295 pF 97 ± 4.163 0.546 5 3

PI3K blocker 28.31 ± 3.815 pF 107 ± 4.726 0.2767 4 2

GDP-beta-S 31.01 ± 2.202 pF 110.7 ± 12.20 0.4741 5 2

Input resistance (Rin)

Neuronostatin-13 767.8 ± 108.5 M� 95 ± 8.377 0.5926 5 2

Igf-1 732.6 ± 93.21 M� 88.25 ± 4.679 0.0869 4 2

Secretin 745.9 ± 30.94 M� 109.3 ± 4.333 0.1641 5 2

JB1 836 ± 42.81 M� 94.67 ± 1.764 0.0942 4 2

Secretin receptor antagonist 838.1 ± 71.87 M� 100.3 ± 5.0444 0.9533 5 3

PI3K blocker 795.3 ± 89.66 M� 89.67 ± 14.95 0.5608 4 2

GDP-beta-S 727.3 ± 35.33 M� 93 ± 2.309 0.0938 5 2

n, number of neurons measured; N, number of animals used (Student’s t-test).

region (Toth et al., 2013). The release of secretin from the
hypothalamus has been reported earlier (Chu et al., 2006).
Secretin activates hypothalamic magnocellular neurons with
involvement of noradrenergic signaling mechanisms in the
rat (Velmurugan et al., 2010). The involvement of secretin
signaling in the regulation of GnRH neurons of the male
mouse has recently been shown (Csillag et al., 2019). Our
current finding raises the possibility of a direct targeting of
GnRH neurons by secretin in the female, too, and the estrus
cycle phase-dependent nature of the regulation with a manifest
downregulated state of secretin receptors in late proestrus. The
acquired electrophysiological data indicate that secretin receptors
expressed in female GnRH neurons are operational and that their
activation by the natural ligand increases the frequency of mPSCs
in metestrous mice.

Natriuretic Peptide Receptor 3
Natriuretic peptide A and B receptors have previously been
described in mouse GnRH neurons (Todman et al., 2005). We
report here the presence and differential expression of NPR3
gene encoding natriuretic peptide C receptor in GnRH neurons
of proestrous mice. In GT1-7 cell line, natriuretic peptides
stimulate cyclic GMP production (Olcese et al., 1994). The role
of natriuretic peptides in the central control of reproductive
hormone secretion has also been substantiated (Samson et al.,
1992). The functional aspects of natriuretic peptide signaling via
the C type receptor await clarification.

Neuromedin U Receptor 1
This receptor is expressed in 50% of the studied mouse
GnRH neuron pools (Todman et al., 2005). The expression
of neuromedin U receptor is downregulated in proestrus.
Neuromedin U is also synthesized in the hypothalamus, and it

controls LH secretion (Vigo et al., 2007). Furthermore, the effect
of centrally administered neuromedin U is dependent on the
phase of gonadal cycle.

Melanocortin 3 Receptor
GnRH neurons receive substantial orexigenic and anorexigenic
peptide signals from the arcuate nucleus (Roa and Herbison,
2012). Alpha-melanocyte-stimulating hormone (MSH) regulates
GnRH neurons via MC3 and MC4 receptors; and the signaling
activates the hypophysiotropic neurons (Roa and Herbison,
2012). Alpha-MSH also stimulates the secretion of GnRH from
the GT1-1 cell line (Khong et al., 2001).

Cholecystokinin B Receptor
CCK exerts its regulatory role via type 1 (CCK-1R) and 2
(CCK-2R) receptors. The significance of CCK signaling in the
development and operation of the GnRH system has already
been addressed. Regarding the developmental aspects of the
regulation, CCK exerts an inhibitory influence via CCK-1R on
migration of GnRH neurons (Giacobini et al., 2004). CCK-IR
axons contact GnRH neurons in the mouse brain (Giacobini
and Wray, 2007). The hormone induces the activity of GnRH
neurons via CCK-1R. Accordingly, in a nasal explant model,
antagonization of CCK-1R was found to increase the number
of calcium peaks/GnRH neuron, mean peak amplitude, and
percentage of GnRH cells exhibiting high activity (Giacobini and
Wray, 2007). The present study confirms that adult female GnRH
neurons also express CCK-2R, whose expression is differentially
regulated in proestrus.

Anti-Mullerian Hormone Type 2 Receptor
The powerful regulatory role of AMH via AMH-2R in
hypothalamic control of reproduction has recently been
discovered (Cimino et al., 2016). Consequently, GnRH neurons
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FIGURE 3 | Electrophysiological validation of functional peptide/growth factor receptors expressed in GnRH neurons of metestrous mice. Changes in the frequency of

mPSCs after administration of different substances. Under each representative recording, the corresponding frequency distribution graph is shown. On the right, the

control and treated mPSC frequency of each cell is displayed individually (paired t-test *p < 0.05). Arrow shows the application of the drugs. (A) Significant increase in

the mPSCs is observed after neuronostatin treatment. (B) Application of intracellular GDP-β-S prevented the effect of neuronostatin-13. (C) Bar graph shows the

normalized changes after neuronostatin-13 and antagonist treatment. Control period was considered as 100% (Student’s t-test; *p < 0.05). (D) IGF-1 increases

frequency of mPSCs. (E) JB1 abolished the effect of IGF-1. (F) In the presence of intracellularly applied PI3K blocker LY294002, IGF-1 application did not elevate the

frequency. (G) Bar graph shows the normalized changes after IGF-1 application on mPSCs, and after the IGF-1 receptor antagonist JB1 or intracellularly used Pi3K

blocker LY294002 treatment. Control period was considered as 100% (Student’s t-test; **p < 0.01). (H) Secretin elevated the frequency of mPSCs. (I) Sctr antagonist

prevented the effect of secretin. (J) Effect of secretin in the presence of intracellularly used GDP-β-S. (K) Bar graph shows the normalized changes after the applied

treatments. Control period was considered as 100% (Student’s t-test; *p < 0.05).

express AMH-2R, and AMH activates the firing of GnRH
neurons and increases the GnRH-dependent release and
pulsatility of LH (Cimino et al., 2016; Barbotin et al., 2019).
Insufficient AMH signaling to GnRH neurons interferes
with their development and results in hypogonadotropic
hypogonadism (Malone et al., 2019). Our present data suggest
the participation of AMH signaling in GnRH neurons of
proestrous mouse exemplified by downregulation of its receptor
at late proestrus.

Proestrus-Evoked Alterations in Growth
Factor Receptor Expression
Fibroblast Growth Factor Receptor 1
Basic fibroblast growth factor signaling is vital in the
development and regulation of GnRH neurons (Chung

et al., 2016). It promotes the emergence of GnRH neurons
and increases the neurite outgrowth and arborization in nasal
explants (Gill et al., 2004). The growth factor is important to
the proper morphogenesis of the olfactory bulb and migration
and maturation of GnRH neurons (Hu et al., 2013). Disruption
of this signaling contributes to Kallmann syndrome. Type 1
fibroblast growth factor receptor expression was confirmed
in immortalized GnRH neurons. Ligand activation of the
receptor evokes cell proliferation and enhances the steady-state
level of mRNA encoding the GnRH precursor processing
endoprotease prohormone convertase 2 (PC2) (Voigt et al.,
1996). Fibroblast growth factor 8 signaling via FGFR1 is vital in
emergence of GnRH neurons (Chung et al., 2008); its diminution
causes GnRH deficiency in humans and mice (Falardeau
et al., 2008). Our current finding about the expression and
upregulation of FGFR1 in GnRH neurons supports the view that
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TABLE 4 | Changes in mPSC frequency and amplitude of GnRH neurons upon application of different substances.

Substance Value of control periods

(mean ± SEM)

Normalized changes

compared with the

control 100%

(mean ± SEM)

p-value of the

normalized

changes

(Student’s t-test)

n N

Frequency changes Neuronostatin-13 0.6145 ± 0.1388Hz 139.9 ± 13.66 0.0224* 8 3

GDP-β-S + neuronostatin-13 0.6893 ± 0.227Hz 96.67 ± 6.075 0.6068 6 3

IGF-1 0.4164 ± 0.1516Hz 185 ± 20.54 0.0061** 6 2

JB1 + IGF-1 0.4953 ± 0.1908Hz 97.29 ± 4.224 0.5443 7 2

secretin 0.5409 ± 0.09737Hz 159.1 ± 20.16 0.0262* 7 3

Sctr antagonist + secretin 0.4794 ± 0.1063Hz 96.57 ± 4.303 0.4560 7 2

LY294002 + IGF-1 0.273 ± 0.059Hz 95.17 ± 6.819 0.5101 6 2

GDP-β-S + secretin 0.41 ± 0.108Hz 101.4 ± 6.345 0.8362 5 2

Amplitude changes Neuronostatin-13 30.86 ± 9.705pA 102.9 ± 2.091 0.2045 8 3

GDP-β-S + neuronostatin 53.38 ± 11.31 pA 103 ± 2.025 0.2126 6 3

IGF-1 66.94 ± 11.96 pA 104.0 ± 2.121 0.1324 6 2

JB1 + IGF-1 58.79 ± 9.943pA 104.1 ± 1.738 0.0545 7 2

secretin 31.36 ± 5.566pA 108.9 ± 6.847 0.2434 7 3

Sctr antagonist + secretin 49.66 ± 10.33 pA 101.4 ± 2.136 0.5286 7 2

LY294002 + IGF-1 52.77 ± 6.419pA 104.8 ± 1.973 0.058 6 2

GDP-β-S + secretin 61.16 ± 12.93 pA 99.8 ± 2.035 0.9264 5 2

n, number of neurons measured; N, number of animals used. *p < 0.05; **p < 0.01 (Student’s t-test).

this signaling mechanism is operational in adult female mice
in proestrus.

Insulin-Like Growth Factor I Receptor
IGF-1 signaling mechanisms regulate the HPG axis at various
levels. Its role in reproduction has extensively been studied and
reviewed (Daftary and Gore, 2005; Wolfe et al., 2014). Central
IGF-1 receptors play a crucial role in the maintenance of the
estrus cycle. Administration of IGF-1 receptor antagonist (JB-
1) into the ventricular system severely delayed or abolished the
estrus cycle (Todd et al., 2007). GnRH neurons display IGF-
1 receptors (Daftary and Gore, 2004). It is noteworthy that
GnRH neurons also synthesize IGF-1 (Miller and Gore, 2001).
The upregulation of IGF-1R in GnRH neurons in proestrous
mice indicates that this growth factor signaling is operating in
adult GnRH neurons of mice and that its effects upon GnRH
neurons are gonadal cycle phase dependent. IGF-1 may derive
from GnRH neurons and acting upon IGF-1R expressed by
other GnRH cells; thus, it can contribute to synchronization of
GnRH neurons prior to the GnRH surge. IGF-1 administration
increased the frequency of mPSCs in GnRH neurons of
metestrous mice, providing evidence for the responsiveness of
the receptor to the ligand. Previous studies have shown the
capability of IGF-1 to modulate Ca2+ channels in neuroblastoma
cells (Kleppisch et al., 1992) and modify the electrophysiological
properties of dorsal column nucleus (DCN) neuron in the brain
stem (Nunez et al., 2003). Elucidation of the role of IGF-1 in the
regulation of adult GnRH neurons requires further studies.

Growth Factor Receptor-Bound Protein 2 and 10
Both genes encoding these adaptor proteins were upregulated.
GBR2 is known to bind to epidermal growth factor receptor

(EGFR), whose coding gene was also affected by proestrus. The
GRB 10 protein interacts with IGF-1 and IGF-2 receptors, as well
with insulin receptor.

Nerve Growth Factor Receptor Associated Protein
In proestrus, Ngfrap1 gene was also upregulated, which codes
for brain expressed X-linked protein (BEX3), whose role in
the regulation of the GnRH system is obscure. It has been
reported to regulate NGF-dependent survival and differentiation
of neurons by enhancing trkA gene transcription (Calvo et al.,
2015).

Epidermal Growth Factor Receptor
EGFR immunoreactivity is widely distributed in the
hypothalamus including the OVLT region (Ma et al., 1994). It
is expressed in both neurons and glial cells; however, GnRH
neurons were found immunonegative for EGFR (Ma et al., 1994).
In addition to EGF, the receptor binds transforming growth
factor alpha. Our present finding shows that GnRH neurons of
proestrous mice express an increased level of EGFR mRNA than
those of metestrous mice.

Transforming Growth Factor Beta Receptor II
Immortalized GnRH neurons are regulated by transforming
growth factor beta 2 (TGFB2) and contain TGFB receptor 2
mRNA (Messi et al., 1999). Exposure of the cell line to TGFB2
facilitated the release of GnRH and decreased the content of
GnRH mRNA, indicating that this cytokine is a recognized
regulator of GnRH cell functions.

In explants of the POA, about 40% of GnRH neurons were
immunopositive for TGFBR2 (Bouret et al., 2004). Our present
data strengthen the view about the regulatory role of TGFBR2
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upon the GnRH system and provide evidence for the gonadal
cycle-dependent expression of the receptor.

Influence of Proestrus on the Expression
Profile of Orphan G-Protein-Coupled
Receptors
Proestrus differentially regulated nine orphan GPCRs in GnRH
neurons. From this gene cluster, only GPR107 was upregulated;
the rest underwent downregulation in proestrus. GPR107 is
the putative receptor for neuronostatin, a hormone derived
from pro-somatostatin (Yosten et al., 2012). Knockdown of
GPR107 resulted in loss of responsiveness to neuronostatin. The
receptor may also regulate the return of receptors to plasma
membrane from endocytic compartments (Zhou et al., 2014).
Neuronostatin increased the frequency of mPSCs in GnRH
neurons in our study, which was blocked by G-protein inhibitor.
In the hypothalamus, Samson et al. have reported (Samson et al.,
2008) that neuronostatin depolarized paraventricular neurons
in the presence of voltage-gated sodium channel blocker, TTX.
GPR1 acts as a receptor for chemerin, which contributes to
hypothalamic remodeling (Helfer et al., 2016). The significance of
this signaling in case of GnRH neurons is unknown. GPR87 takes
part in cell communication and is important in cancer pathology
(Niss Arfelt et al., 2017). GPR18 is claimed to serve as receptor for
endogenous lipid neurotransmitters, including the anandamide
metabolite, n-arachidonyl glycine (Mchugh et al., 2010). GPR125
is an adhesion GPCR that is upregulated in traumatic brain injury
(Pickering et al., 2008). GPR62 is expressed in the brain (Lee et al.,
2001), but its function is still obscure. GPR183 was identified
as an oxysterol receptor (Hannedouche et al., 2011). GPR4 is
considered as a proton-sensing GPCR (Tomura et al., 2005).
GPR88 is expressed in neurons. It regulates GABAergic medium
spiny neurons in the striatum (Quintana et al., 2012).

GRK6 gene encodes GPCR kinase 6, which was markedly
upregulated in proestrus. Its role is to disable the activated
forms of GPCRs by phosphorylation. Among others, it takes
part in the regulation of postsynaptic D1-like receptors
(Gainetdinov et al., 2003).

Other Signaling Mechanisms
Vomeronasal Receptors
All three vomeronasal receptor genes (Vmn1r172, Vmn2r-
ps54, and Vmn1r148) showed downregulation in proestrus.
The expression of vomeronasal receptors in GnRH neurons
reflects the early stage of embryonic development in which
GnRH neurons migrate from the vomeronasal organ toward
the basal forebrain following the course of vomeronasal axons
(Wray, 2010).

Platelet-Activating Factor Receptor
This GPCR binds the phospholipid platelet-activating factor
(PAF). Proestrus evoked its downregulation. The signaling
mechanism is associated with inflammatory processes. A recent
report claims its role in the regulation of body weight and food
intake (Li and Mcintyre, 2015). Its role in the central control of
reproduction awaits clarification.

The regulation of the GnRH surge release is a highly complex
mechanism. In rodents, the positive estradiol feedback has a
marked effect on the excitability of GnRH neurons manifested in
increased firing (Adams et al., 2018). It is also essential for tuning
and synchronizing different neuronal inputs to GnRH neurons in
proestrus including the potent kisspeptin input from the AVPV
(Adams et al., 2018). Several classic neurotransmitter systems
of the brain also alter their communication with preovulatory
GnRH neurons as revealed by differential expression of their
corresponding receptors (Vastagh et al., 2016). Furthermore,
the changing hormonal milieu heavily influences the expression
of major voltage-gated ion channel genes in GnRH neurons
(Vastagh et al., 2019).

The explored neuropeptide/growth factor/orphan GPCRs are
differentially regulated in GnRH neurons in late proestrus when
the cells shift their operation mode to a higher level of activity.
It is achieved by neuronal plasticity; and probably dozens of
neurotransmitters, neuropeptides, and growth factors support
simultaneously the achievement of this transient process. The
clarification of the exact role of the identified novel modulatory
systems requires further functional studies in the future.
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