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Neuropeptide Y (NPY) is a neuropeptide abundantly expressed in the mammalian central

and peripheral nervous system. NPY is a pleiotropic molecule, which influences cell

proliferation, cardiovascular and metabolic function, pain and neuronal excitability. In the

central nervous system, NPY acts as a neuromodulator, affecting pathways that range

from cellular (excitability, neurogenesis) to circuit level (food intake, stress response, pain

perception). NPY has a broad repertoire of receptor subtypes, each activating specific

signaling pathways in different tissues and cellular sub-regions. In the context of epilepsy,

NPY is thought to act as an endogenous anticonvulsant that performs its action through

Y2 and Y5 receptors. In fact, its overexpression in the brain with the aid of viral vectors

can suppress seizures in animal models of epilepsy. Therefore, NPY-based gene therapy

may represent a novel approach for the treatment of epilepsy patients, particularly for

pharmaco-resistant and genetic forms of the disease. Nonetheless, considering all the

aforementioned aspects of NPY signaling, the study of possible NPY applications as a

therapeutic molecule is not devoid of critical aspects. The present review will summarize

data related to NPY biology, focusing on its anti-epileptic effects, with a critical appraisal

of key elements that could be exploited to improve the already existing NPY-based gene

therapy approaches for epilepsy.

Keywords: viral vectors, epilepsy, gene therapy, Y2 receptor, NPY

NPY DISCOVERY, EVOLUTION, AND FUNCTION

Described in 1982, neuropeptide Y (NPY) is a 36-aminoacid peptide that shares high homology
with its family members pancreatic peptide (PP) and peptide YY (PYY). The NPY ancestral
gene appeared in vertebrates, evolving from an ortholog NPY-like system that regulates energy
homeostasis in invertebrates acting on growth and reproduction (De Jong-Brink et al., 2001;
Kooijman and Troost, 2007; Gershkovich et al., 2019). The family of Y peptides probably originated
through a chromosome quadruplication event that took place during jawed vertebrate emergence
(Larhammar and Salaneck, 2004).

NPY has a widespread expression throughout the central (CNS) and peripheral nervous system
(PNS) and it is typically co-released with other neurotransmitters. An unusually broad repertoire of
receptor subtypes mediate its actions, each activating specific signaling pathways in different tissues
and cellular sub-regions (Leblanc et al., 1987; Keast, 1991; Dumont et al., 1992; Elfvin et al., 1997;
Cerdá-Reverter and Larhammar, 2000; Wai et al., 2004).
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During evolution, the NPY-like system has increased the
complexity of its actions, with effects that in humans range from
cell proliferation to the control of energy metabolism, pain and
neuronal activity (Kuo et al., 2007; Tilan and Kitlinska, 2016).
NPY is involved in cardiovascular and metabolic diseases, as well
as in respiratory and neurologic disorders (Pedrazzini et al., 2003;
Vezzani and Sperk, 2004; Atanasova and Reznikov, 2018), acting
as a paracrine hormone in the periphery and behaving like a
neuromodulator in the CNS.

In the CNS, NPY exerts its modulatory action both at cellular
(excitability, neurogenesis) and at circuit level (food intake,
stress response, and pain perception). It is expressed in different
areas of the brain, from the neocortex to the posterior root of
spinal nerves, usually in GABAergic interneurons, but also in
long projecting catecholaminergic neurons; e.g., in the brainstem
and in certain hypothalamic nuclei (Chronwall et al., 1985; de
Quidt and Emson, 1986; Silva et al., 2005a; Benarroch, 2009). In
the mesial temporal lobe, NPY is widely expressed in different
subnuclei of the amygdala, where it is thought to exert a potent
anxiolytic effect (Tasan et al., 2010; Wood et al., 2016), and in the
hippocampus, where it displays an inhibitory action on excitatory
synaptic transmission, mostly by reducing glutamate release
(Colmers et al., 1985; Klapstein and Colmers, 1992; Greber et al.,
1994; Mcquiston and Colmers, 1996). It is worth noting that,
coherently with its homeostatic role, NPY projecting neurons
are also close to circumventricular organs and sensory/secretory
blood-brain interfaces (Wagner et al., 2015).

GENE STRUCTURE

The human NPY gene (∼8 kb) is located on chromosome
7p15 (genomic coordinates (GRCh38): 7:24,284,189-24,291,861).
Regulatory elements have been found within 530 bases from
the transcription start site and further regulatory sequences
enhancing transcription and mRNA stability may be present
up/downstream that region or even inside introns (Waldbieser
et al., 1992; Waschek, 1995; Zhou et al., 2008). Single nucleotide
polymorphisms (SNPs) in the coding region may increase NPY
synthesis (Mitchell et al., 2008). The full length mRNA is 551 bp
long (Minth et al., 1984). After translation in the endoplasmic
reticulum, upon signal peptide truncation, NPY is directed to the
secretory pathway.

PEPTIDE TRAFFICKING, PROCESSING
AND RELEASE

While trafficking inside dense core vesicles (DCVs), the full
coding sequence of NPY, prepro-NPY, is sequentially split
into three fragments (Figure 1A): (1) an N-terminus 28-
amino acid (aa) signaling peptide, (2) the mature 36 aa,
4.2 kDa, peptide (NPY1−36), and (3) a 30-aa C-terminal
flanking peptide of neuropeptide-Y (CPON). A glycine-lysine-
arginine (G-K-R) site in proximity of the C-terminus of the
mature 36 aa peptide is crucial for CPON cleavage by pro-
hormone convertases and for the amidation of the mature

NPY, performed by carboxypeptidase E and peptidyl-glycin-
α-amidating monooxygenase. The CPON structure is highly
conserved during evolution (Cerdá-Reverter and Larhammar,
2000). It has been suggested that it may play a role in epilepsy
control, but current data do not confirm this hypothesis (Soud
et al., 2019).

NPY and CPON containing DCVs are released upon calcium
influx. The need of a long, high frequency firing rate for
NPY release (Lundberg et al., 1986; van den Pol, 2012)
has been questioned by evidence that NPY is released by
hippocampal neurons even during physiological synaptic activity
(Li et al., 2017).

METABOLISM

Once released in the extracellular space, mature NPY can bind
to its receptors and activate signal transduction (Walther et al.,
2011) or be metabolized, either close or far away from its
release site, in the cerebrospinal fluid or in the blood. Proteolytic
processing can alter the NPY signaling at either the N-terminal
or C-terminal portion of the peptide and usually results in a
modification of receptor binding affinity or inactivation followed
by complete degradation, depending on a number of peptidases
with compartment-dependent concentration and activity (Allen
et al., 1987; Wagner et al., 2015).

Themost common pathway of NPYmetabolism is N-terminal
cleavage by dipeptidyl peptidase IV (DP4) which is responsible
for the formation of NPY3−36, followed by C-terminal processing
by enzymes like kallikrein, cathepsins or angiotensin-converting
enzyme (ACE) that in turn yield inactive NPY fragments.
Aminopeptidase (AmP) instead produces NPY2−36, catalyzing
a less efficient cleavage within the N-terminal region compared
to DP4, which results in a lower relative concentration
of this metabolite (Abid et al., 2009). Both NPY3−36 and
NPY2−36 display a decreased affinity for Y1 receptors, therefore
preferentially binding to other (Y2 and Y5) receptor subtypes
(Grandt et al., 1996; Hubers et al., 2018; Yang et al., 2018).

After inactivation, other plasmatic peptidases catalyze the
metabolism of smaller fragments, with the kidney playing a
major role in residual NPY metabolism (Satoh et al., 1999).
The estimated plasma half-life in human and animal studies is
between 5 and 20min (Pernow et al., 1986; Potter, 1987).

NPY RECEPTORS

The NPY system is not only multi-ligand, as described above,
but also multi-receptor, and this makes it a complex target for
therapeutic applications.

In fact, five different NPY receptors are expressed in
mammals: Y1, Y2, Y4, Y5, and y6. While Y1, Y2, Y4, and Y5 are
functional in all mammals, y6 is a pseudogene in humans and
other primates and is missing also in the rat genome (Larhammar
and Salaneck, 2004). NPY displays an especially high affinity
for the Y1, Y2, and Y5 receptor subtypes: even if structurally
different, these three receptors can respond to the same ligands.
Y1 and Y4 form a receptor superfamily, while Y2 and Y5 have
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FIGURE 1 | Neuropeptide Y processing and its potential role in the epileptic hippocampal network. (A) Schematic representation of NPY intracellular processing and

extracellular metabolism. (B) Illustration of hippocampal formation rearrangements after an epileptic insult. Red dots represent synapses newly formed by the mossy

fiber sprouting in the inner molecular layer that contain NPY and pre-synaptic Y2 receptors. DG, dentate gyrus; CA3/CA1, Cornu Ammonis; OML, outer molecular

layer; IML, inner molecular layer; GCL, granule cell layer.

distinct, individual features (Larhammar and Salaneck, 2004).
NPY receptors (YRs) have different affinities for the Y family
hormone ligands, with Y4Rs binding preferably PP and Y2Rs
binding NPY and N-terminally truncated peptides with similar
affinity (Lindner et al., 2008). The genes encoding for NPY
receptors are located on human chromosome 4 and probably
arose by a duplication event from an ancestral NPY/PYY-
binding receptor. All NPY receptors are widely expressed in
the mammal brain, Y2 being the most abundant (Dumont
et al., 1998). High levels of NPY binding can be revealed in
the cortex, hippocampus, amygdala, striatum and cerebellum
(Dumont et al., 1993).

Specific binding to Y1 receptors can be visualized in different
layers of the cortex, in the CA1 and CA3 stratum radiatum,
oriens, in the dentate gyrus of the hippocampus in the amygdala,
striatum, cerebellum and, at lower levels, in some thalamic,

hypothalamic and brainstem nuclei (Dumont et al., 1990, 1993;
Aicher et al., 1991; Cabrele and Beck-Sickinger, 2000; Kopp
et al., 2002). Outside the CNS, Y1Rs are also found in the
adipose tissue and in vascular smooth muscle cells (Castan et al.,
1993; Lindner et al., 2008). Y1Rs are mainly localized post-
synaptically in neurons of the hippocampus (especially in CA3,
CA1 and dentate gyrus), striatum and cortex (Wahlestedt et al.,
1986; Caberlotto, 1997; Kopp et al., 2002), with a prominent
somatic and dendritic localization (Kopp et al., 2002). However,
some studies also suggest a pre-synaptic localization (Colmers
et al., 1987, 1988; Flood and Morley, 1989; Pickel et al., 1998;
Brumovsky et al., 2002; Glass et al., 2002; Kopp et al., 2002;
Stanić et al., 2006; Li et al., 2017). Albeit NPY and Y1R
scarcely co-localize (Stanić et al., 2011), the presence of Y1R
on the cell soma of NPY-containing hilar interneurons and
cultured hippocampal neurons is suggestive of a possible role
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of these receptors in an autoinhibitory feedback (St-Pierre et al.,
2000; Paredes et al., 2003).

Together with Y5Rs, Y1Rs play an important role in regulating
feeding behavior and energy homeostasis (Baldock et al., 2007;
Nguyen et al., 2012). Y1R-mediated antidepressant and anxiolytic
effects have been described in rodents (Wahlestedt et al.,
1993; Verma et al., 2012), while the role in epilepsy remains
controversial (see below). The anxiolytic effect of NPY in the
basolateral amygdala has been attributed to the activation of Y1Rs
(Sajdyk et al., 2004; Giesbrecht et al., 2010).

Y2Rs are expressed in many brain regions, including the
hippocampus, thalamus, hypothalamus and cortex; in the
peripheral nervous system, Y2Rs are found in parasympathetic,
sympathetic and sensory neurons; finally, they are also present
in the intestine and in certain blood vessels (Wahlestedt et al.,
1986; Stjernquist and Owman, 1990; Gehlert et al., 1992;
Dumont et al., 1993; Rettenbacher and Reubi, 2001). In the
hippocampus, Y2 receptors are particularly enriched in the
CA1 and CA3 areas, respectively in the stratum radiatum and
in the pyramidal cell layer (Colmers et al., 1987, 1988, 1991;
Monnet et al., 1992). Expression of Y1 and Y2 receptors is often
complementary. For example, high levels of Y2Rs are detectable
in the stratum oriens and radiatum of CA1-CA3, where Y1
receptor levels are relatively low, while the opposite is true in
the dentate gyrus molecular layer (Stanić et al., 2011). Y2Rs are
highly expressed in the terminal regions of mossy fibers and
Schaffer collaterals (Jacques et al., 1997), where they act pre-
synaptically by inhibiting calcium-mediated neurotransmitter
release (Klapstein and Colmers, 1993). While NPY and a Y2R
selective agonist inhibit evoked EPSPs on CA1 pyramidal cells,
a Y2R selective antagonist is able to block the inhibitory action of
NPY on glutamate release (El Bahh et al., 2002).

Y2Rs are expressed by both GABAergic and glutamatergic
terminals (Stanić et al., 2006, 2011) and may therefore inhibit
the release of both neurotransmitters, in particular under chronic
epileptic conditions (Martire et al., 1993; Greber et al., 1994;
Klapstein and Colmers, 1997; Vezzani and Sperk, 2004; Silva
et al., 2005b). This makes Y2Rs an interesting target in epilepsy
(Vezzani and Sperk, 2004). Y2Rs can also be localized along the
course of axons in fiber tracts (in Schaffer collaterals, the fimbria
and the stria terminalis (Dum et al., 2017)). These receptors are
functionally coupled with G-protein signaling and show high
affinity for their ligand (Dum et al., 2017), leaving open the
possibility of a modulation through NPY volume transmission.

Y5Rs are mainly found in the hypothalamus and in the
hippocampus (in the pyramidal cell layer of the CA2 region,
with lower concentrations in the hilar region of the dentate
gyrus and in the CA3 subregion), where they participate in
the modulation of hippocampal excitability (Gerald et al.,
1996; Dumont et al., 1998; Guo et al., 2002). Together with
Y1Rs, Y5Rs contribute to the regulation of food intake and
energy homeostasis, but they also display anticonvulsant effects
(Woldbye et al., 1997; Criscione et al., 1998; Nanobashvili et al.,
2004). Y5R KO mice display a reduced NPY-mediated inhibition
of glutamatergic synaptic transmission and are therefore more
susceptible to kainate-induced seizure mortality (Marsh et al.,
1999; Baraban, 2004).

NPY receptors are G protein-coupled receptors (GPCRs)
with seven transmembrane domains, acting preferentially via
hetero-trimeric Gi/o proteins (Michel et al., 1998). They can
trigger a variety of intracellular responses, including inhibition of
adenylyl cyclase, regulation of potassium and calcium channels
and activation of the mitogen-activated protein kinase (MAPK)
cascade in some cell types (Howell et al., 2005; Lu et al., 2010;
Thiriet et al., 2011; Shimada et al., 2012). Binding of the ligand to
the receptor stabilizes an active receptor conformation, essential
for inducing intracellular signal transduction. NPY binding
modes vary with individual receptors, with different amino acids
impacting anchoring, affinity and binding (Beck-Sickinger et al.,
1994; Merten et al., 2007; Walther et al., 2012; Pedragosa-Badia
et al., 2013; Kaiser et al., 2015; Yang et al., 2018). NPY peptides
reach the receptors by lateral diffusion, after being pre-associated
with the membrane through their C-terminal domain (Lerch
et al., 2004; Thomas et al., 2005) that is also essential for the
binding of NPY to specific receptors, in particular Y2 (Beck-
Sickinger et al., 1994).

NPY receptors are predominantly expressed at the cell surface
and sequence motifs essential for endoplasmic reticulum export
and delivery to the membrane have been identified, particularly
in the C-terminal portion of the protein (Walther et al.,
2011, 2012). Y2Rs display desensitization (Ziffert et al., 2020a)
but can undergo arrestin beta3-dependent and independent
internalization only when exposed to high concentrations of
agonist (Lundell et al., 2011; Walther et al., 2011). The low rate of
Y2R internalization may depend on the presence of a N-terminal
extracellular domain rich in acidic/anionic residues (Parker et al.,
2001; Gicquiaux et al., 2002).

NPY AND EPILEPSY

A consistent amount of data demonstrates the functional
involvement of the NPY system in epilepsy. This statement is
supported by two lines of evidence: (1) the epileptogenic process
and epilepsy itself modify the expression pattern of the genes
encoding NPY and its receptors; (2) acting as neuromodulators,
NPY peptides control network excitability and homeostasis.

NPY expression is increased both in rodent and human
hippocampal sections from temporal lobe epilepsy (TLE) surgical
samples (Sperk et al., 1992; Furtinger et al., 2001), despite the
strong loss of hilar GABAergic interneurons that physiologically
express NPY. This is because the excitatory granule cells, which
in epilepsy give rise to mossy fiber sprouting (MFS), have been
demonstrated to ectopically produce and release NPY (Mathern
et al., 1995;McCarthy et al., 1998).MFS, the aberrant sprouting of
granular axons that recurrently innervate granule cell dendrites
in the molecular layer generating an auto-excitatory loop
(Figure 1B), is a marker of TLE, even if its pathophysiological
role is still controversial (Cavarsan et al., 2018).

In patients with hippocampal sclerosis, another common
pathological trait of TLE, a shift toward higher Y2 receptor
density is observed in the CA1, CA3, in the hilar region and in
the inner molecular layer of the hippocampus (Furtinger et al.,
2001). This receptor up-regulation may support a persistent Y2R
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signaling, because it has been recently shown that Y1, but not
Y2, receptors are rapidly internalized and recycled after binding
to their ligand (Ziffert et al., 2020a,b). As noted above, increased
Y2Rs signaling may imply an anti-epileptic effect (El Bahh et al.,
2005). In fact, Y2R knockout mice are totally insensitive to
the anti-epileptic actions of NPY, both in vitro and in vivo
(Woldbye et al., 2005).

As opposed to Y2 receptor up-regulation in the epileptic
hippocampus, it has been shown that Y1 receptor mRNA and
binding actually decrease in kindled rats (Gobbi et al., 1998) and
in intra-hippocampal kainate-treated mice (O’Loughlin et al.,
2014). A reduced density of Y1Rs has been also demonstrated in
human patients with hippocampal sclerosis, indicating a reduced
expression of the receptor or a loss of Y1R-expressing neurons
(Kofler et al., 1997; Furtinger et al., 2001). In addition, as
mentioned above, Y1Rs are rapidly internalized after binding
to NPY (Ziffert et al., 2020a,b). Y1R may be responsible of
unfavorable effects in epilepsy, because administration of Y1R
antagonists produces antiepileptic effects in animal models
(Gariboldi et al., 1998; Vezzani et al., 2000) and Y1 KO mice
display reduced mortality rate upon NPY administration (Lin
et al., 2006). Thus, their reduced density and signaling may be
interpreted as an antiepileptic adaptive mechanism. It cannot
be excluded, however, that this adaptive downregulation could
be linked to epilepsy-induced depressive or anxious behavior,
described in patients and in animal models (Yilmazer-Hanke
et al., 2016; Vrinda et al., 2017; Zanirati et al., 2018).

Similarly, the decreased density of Y5R in epilepsy models
(Bregola et al., 2000) may represent a maladaptive alteration
because the pharmacological activation of Y5Rs has been
reported to exert antiseizure effects (Woldbye et al., 1997).

Expression levels of NPY-related genes may strongly
vary across species, with rats having higher expression of
both NPY and Y2 compared to mice (Nadler et al., 2007;
Károly et al., 2015). Discrepancy between rodents and
humans have been also found at the electrophysiological
level. In human slices, prepared from surgically resected
hippocampi of drug-resistant patients, NPY application
reduces both lateral perforant path-evoked excitatory response
in granule cells (Patrylo et al., 1999) and currents evoked
by medial perforant path stimulation (Ledri et al., 2015).
Conversely, experiments on hippocampal slices from an animal
model of epilepsy (pilocarpine-treated rats) show that NPY
does not affect the response of granule cells to perforant
path stimulation but reversibly inhibits recurrent synaptic
transmission of mossy fibers on granule cells themselves (Tu
et al., 2005).

Even if the precise mechanism of action of the NPY system
on the epileptic network has not been completely clarified, a
clear effect of the neuropeptide in inhibiting epileptiform activity
on human hippocampal sections challenged with [0] Mg2+/4-
amino-piridine has been demonstrated (Wickham et al., 2019),
further corroborating the idea that the anti-epileptic effect is
predominantly mediated by Y2. It has been shown indeed that
the effect of NPY administration can be abolished by treatment
with a specific Y2 receptor antagonist (Tu et al., 2005; Ledri et al.,
2015; Wickham et al., 2019).

An epileptic insult in the brain can result in a synchronous
activation of granule cells that fail to inhibit the propagation
of excitation from the entorhinal cortex to the hippocampus.
Subsequent compensation mechanisms might arise, and it is
tempting to speculate that granule cells, with the death of their
target inhibitory neurons, sprout their axons to the molecular
layer, increasing excitability but, at the same time, producing
synapses containing both NPY and Y2R at the presynaptic level.
Within this view, NPY would act as a compensatory negative
feedback, activated upon high frequency stimulation, where
NPY is released from granular axons and reduce the overall
hyperactivity of the local neuronal network. This hypothesis
is also in line with the discrepancies that have been observed
between mice and rats, with the latter showing higher recurrent
mossy fiber sprouting and displaying higher levels of NPY and Y2
immunoreactivity coupled with a stronger inhibitory effect upon
NPY application (Tu et al., 2005).

Taken together, these data suggest a significant involvement
of NPY in the epileptogenic process, supporting the idea that
both pharmacological and genetic approaches targeting the NPY
system may represent effective strategies for the treatment of
epilepsy. In the frame of this article, we will focus on the latter
(gene therapies).

EXPLOITING NPY IN GENE THERAPY

In the last two decades, a great effort has been devoted to
the development of gene therapy products for life-changing
treatments in epilepsy. In that context, one of themost prominent
strategies has been the direct infusion in epileptogenic areas
of recombinant adeno-associated vectors (rAAVs) designed to
modulate the NPY system (Table 1).

Early attempts in this direction explored the anti-seizure
potential of NPY overexpression mediated by rAAV serotype 2
(rAAV2) vector injection in the hippocampus (Richichi et al.,
2004) or piriform cortex (Foti et al., 2007) in the rat kainate
model of epilepsy. Importantly, Richichi et al. (2004) compared
the effects of serotypes AAV2 and chimeric AAV1/2, both
vectors with the human NPY gene driven by the neuron-specific
enolase promoter (pNSE). A long-term transgene expression,
confined in hilar interneurons, was observed with AAV2, while
more widespread expression in diverse subtypes of neurons was
observed with the AAV1/2 serotype, that also conferred a more
robust protection from epileptogenesis and chronic seizures. Y1
or Y2 double knockout mice, contrary to the wild type, did
not display any protection from seizure activity upon NPY gene
therapy, indicating that activation of one (most likely Y2) or
both of these receptor subtypes was essential for the NPY effect
(Lin et al., 2006). More recently, the AAV1/2 expressing-NPY
vector was infused into the thalamus or somatosensory cortex
in a rat model of genetic generalized epilepsy (GAERS, Genetic
Absence Epileptic Rats from Strasbourg), resulting in a reduced
seizure activity, in particular when injected in the thalamus
(Powell et al., 2018).

Some concerns on the potential for translatability to human
application were raised by Sørensen et al. (2008). These
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TABLE 1 | Comparison of different gene therapy strategies designed to modulate the NPY system, based on the use of recombinant adeno-associated vectors.

First author (year) Species Model of epilepsy Vector Time of vector

delivery

Transgene

Richichi et al. (2004) WT rats Intrahippocampal and

intracerebroventricular

kainic acid;

Kindling

rAAV2_NSE-NPY;

rAAV1/2-NSE-NPY

Before seizure onset Human pre-pro-NPY

Lin et al. (2006) WT mice;

Y1 -/- and Y2 -/- mice

Systemic kainic acid rAAV1/2_NSE-NPY Before seizure onset Human NPY cDNA

Foti et al. (2007) WT rats Intraperitoneal kainic

acid

rAAV2_CBA-NPY;

rAAV2_CBA-NPY13-36

Before seizure onset Full length and

NPY13-36 (Species not

specified)

Sørensen et al. (2008) WT rats None rAAV1/2_NSE-NPY N/A Human pre-pro-NPY

Noè et al. (2008) WT rats Electrically induced

status epilepticus

rAAV1/2_CBA-NPY After seizure onset Human pre-pro-NPY

Sørensen et al. (2009) WT rats Kindling rAAV1/2_NSE-NPY Before seizure onset Human pre-pro-NPY

Noè et al. (2010) WT rats Intrahippocampal

kainic acid

rAAV1_CBA-NPY;

rAAV1/2_CBA-NPY

After seizure onset Human pre-pro-NPY

Woldbye et al. (2010) WT rats Kindling;

Subcutaneous

kainic acid

rAAV1/2_NSE-NPY;

rAAV1/2_NSE-Y2

After seizure onset Human pre-pro-NPY

Full length mouse

Y2 receptor

Gøtzsche et al. (2012) WT rats Subcutanous kainic

acid

rAAV1/2_NSE-Y5;

rAAV1/2_NSE-NPY

Before seizure onset Human pre-pro-NPY

Full length mouse

Y5 receptor

Olesen et al. (2012b) WT mice Subcutaneous kainic

acid

rAAV1/2_NSE-Y1 After seizure onset Full length mouse Y1

receptor

Olesen et al. (2012a) WT mice Subcutaneous kainic

acid

rAAV1/2_NSE-Y5 After seizure onset Full length mouse Y5

receptor

Dong et al. (2013) WT rats Intrahippocampal

kainic acid

rAAV1/2_CMV-NPY Before seizure onset Full length NPY

(species not specified)

Zhang et al. (2013) WT rats Intracerebroventricular

kainic acid

rAAV1/2_NPY

(unknown promoter)

Before seizure onset Not specified

Nikitidou Ledri et al. (2016) WT rats Intrahippocampal

kainic acid

rAAV1/2_NSE-NPY;

rAAV1/2_NSE-Y2

Before seizure onset Human pre-pro-NPY

Full length mouse

Y2 receptor

Powell et al. (2018) GAERS (Genetic

Absence Epilepsy Rats)

None rAAV1/2_NSE-NPY N/A Human pre-pro-NPY

Melin et al. (2019) WT rats Intrahippocampal

kainic acid

rAAV1_CAG-NPY/Y2 Before seizure onset Human pre-pro-NPY

Human Y2 receptor

authors claimed an impairment of synaptic plasticity and the
attenuation of long-term potentiation of Schaffer collateral-CA1
synapses in naive rats upon unilateral vector injection in the
hippocampus, with consequent deficits of hippocampal-based
spatial discrimination learning (Sørensen et al., 2008). These
unexpected findings were contrasted by the authors themselves
in a following study that showed seizure protection with no
impact on working memory performance tasks in kindled rats
injected in both hippocampi with the AAV1/2-pNSE-NPY vector
(Sørensen et al., 2009).

In any event, the initial attempts of NPY gene therapy had
limited relevance for clinical translation: they were all carried
out before epilepsy onset, in a scenario that is obviously non-
reproducible in real patients and that did not take into account
the aberrant changes occurring during epileptogenesis, which
may significantly affect treatment effectiveness. In order to

overcome this limitation, Noè et al. (2008) tested the effect
of hippocampal injection of an AAV1/2 vector expressing
NPY after the establishment of epilepsy in rats and found
a decrease in seizure activity. Interestingly, this study also
demonstrated preserved levels of Y2R into the AAV-injected
hippocampus, with functional transport and high levels of
release of the recombinant NPY to nerve terminals upon
induction of neuronal depolarization. In a following report,
the same authors delivered NPY using rAAV1, and observed a
widespread transgene expression pattern throughout the injected
hippocampi and a potent effect on seizure reduction, with no
detectable evidence of immune response or cognitive impairment
(Noè et al., 2010).

NPY is directly involved in the regulation of brain excitability
by regulation of intracellular calcium and glutamate release,
mainly through binding to and activation of Y1, Y2, and Y5
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receptors (Berglund et al., 2003). As described above, whereas
converging evidence supports an anti-epileptic role of Y2 (and to
a lesser extent of Y5) receptors, the involvement of Y1Rs remains
debated, with some evidence of pro-epileptic effects. Therefore, a
simple increase inNPY levels may become a double-edged sword.

These considerations prompted alternative gene therapy
strategies, oriented not only at increasing NPY secretion into the
epileptic focus but, also, at re-shaping the NPY ligand-receptor
system by the delivery of genes encoding for the different NPY
receptors. To date, the only study performed to evaluate the
effects of a brain overexpression of Y1 in an animal model of
epilepsy indicates an increased susceptibility to kainate-induced
seizures (Olesen et al., 2012b), consistent with the mentioned
evidence of Y1R-mediated pro-epileptic effects (Gariboldi et al.,
1998; Benmaamar et al., 2003). One study proved seizure
reduction through the delivery in the rat hippocampus of an AAV
pool of vectors for the concomitant expression of both Y5 and
NPY (Gøtzsche et al., 2012), but no protective effect was observed
with the AAV-Y5 vector alone (Gøtzsche et al., 2012; Olesen et al.,
2012a). More robust and promising data have been obtained
by overexpressing Y2 receptors, i.e., by seconding the adaptive
up-regulation of these receptors observed in the epileptic tissue.
Y2Rs proved to be sufficient to suppress acute seizures even
when overexpressed alone, although the therapeutic outcome
significantly increased in the case of concurrent treatment with
an NPY expressing vector (Woldbye et al., 2010).

Attempts of combinatorial gene delivery have been
accomplished by using two separate rAAV vectors (Nikitidou
Ledri et al., 2016). This procedure, however, faces some
limitations, such as an unknown transduction efficiency of the
different vectors upon brain infusion or the potential obstacles
that a heterogeneous viral pool could face in case of clinical
application. In order to solve such issues, Melin et al. (2019) used
an AAV1-based vector specially designed for the concurrent
expression of both NPY and Y2 from a single viral construct,
injected into both dorsal and ventral hippocampus to target
the epileptogenic focus. This dual-gene vector delivery led to
a detectable overexpression of both NPY and Y2R within the
injected hippocampi, particularly pronounced into the dorsal
CA1 and CA3 regions, and resulted in a remarkable decrease of
EEG seizure frequency and duration in the kainic acid model of
TLE (Melin et al., 2019).

PROBLEMS AND OPPORTUNITIES

As described above, both NPY and its receptors display a
high degree of complexity, from synthesis, processing and
compartmentalized delivery or regulated secretion, to an
intricated variety of biological effects, both at local and global
circuit level. These elements have profound implications for
gene therapy.

The majority of data reported in the literature derive from
experiments performed with viral vectors constructed to express
pre-pro-NPY (Table 1). In this context, the use of the full length
NPY sequence may be advantageous, since it allows using the
endogenous cellular machinery to process and pack the pro-
peptide into vesicles, where the mature NPY is formed and then
stored. In this way stimulus-dependent release of the peptide

(e.g., at the onset of a seizure) can be preserved. Biosynthesis
and stimulus-dependent release of mature NPY have been indeed
shown ex vivo (Noè et al., 2008). While all this may occur in
cells that physiologically express NPY, NPY gene delivery alone
may not be sufficient for regulated release of the mature peptide
in cells lacking/under-expressing one or more of the regulatory
elements (e.g., processing enzymes, trafficking proteins) needed
in such a complex multi-step system. One option to circumvent
this problem could be linking the NPY gene sequence to the
sequence of the laminar protein fibronectin (FIB), which induces
a constitutive secretion as opposed to a regulated secretion (Foti
et al., 2007). Finally, even after release, the effects of peptidases
should be taken into account to understand and modulate
NPY signaling.

The modulation of YRs expression requires an even more
finely regulated sequence of events. Functional specificity of the
NPY system depends largely on receptors. In this context, the
processes of anterograde transport, internalization, recycling or
degradation have been thoroughly characterized for only a few
NPY receptors. These considerations lead to the suggestion that,
if no specific cell targeting strategy is employed, gene therapy-
induced overexpression of NPY or NPY receptors may be more
efficient in (or even restricted to) cells that physiologically or
pathophysiologically express them. The levels of released NPY
and the coupling between ligand and receptor are also crucial
for inducing the desired effect in the right cell target. It may be
possible to obtain a certain degree of receptor selectivity by using,
for example, N-terminally truncated forms of NPY (like NPY3−36

or NPY13−36 (Beck-Sickinger and Jung, 1995; Sajdyk et al., 2002;
Foti et al., 2007; Pedragosa-Badia et al., 2013) that could favor
Y2Rs dependent signaling.

OUTLOOK FOR HUMAN STUDIES USING
VIRAL VECTOR-BASED STRATEGIES

Despite this complexity, several anti-epileptic gene
therapy strategies proved successful in modulating the
inhibitory/excitatory balance within animal brain regions
involved in seizure onset by focal overexpression of NPY alone
or in combination with Y2 or Y5 receptors. Even if extended
long-time studies to exclude side effects or neuropathological
changes due to application of viral vectors still need to be
performed (optimally in non-human primates), these compelling
preclinical data may concretely prompt the design of a first-in-
human gene therapy trial in drug-resistant epileptic patients. As
an example, patients deemed suitable for surgical resection of a
clearly mapped epileptogenic region may be enrolled in a first
putative human study. This would allow to design a confined
(and presumably more effective) transgene expression within
the epileptogenic lesion only, while preserving the unaffected
brain tissue and thereby lowering the risk of unpredictable side
effects. In addition, should the treatment not prove to be effective
or well-tolerated, patients would undergo resective surgery as
originally planned.

Several issues should be taken into account in the study
design. For example, hippocampal sclerosis, if extensive, may
reduce vector diffusion and transduction efficacy, imposing
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a personalization of the dose. The choice of vector would
largely depend on the strategy employed to regulate the
expression of the therapeutic gene. As described in this review,
all studies on gene therapy-mediated overexpression of NPY
and/or its receptors in epilepsy models have been performed
by using AAV vectors. However, the limited cargo capacity of
AAVs may hinder their adaptability for clinical translation, in
particular when complex regulatory mechanisms must be set
in place. In fact, it would be desirable to regulate the levels of
transgene expression in a patient-tailored manner, in response
to endogenous and/or exogenous clues. While an endogenous
control of the transgene expression system that responds to
physiological stimuli (for example, glutamate accumulation)
would be preferable, the time needed for the biosynthesis and
delivery of the therapeutic protein(s) would be too long to
arrest an ongoing seizure. Therefore, a more concrete alternative,
although not applicable to the response to individual seizures,
but rather on a general control of seizure threshold, may rely on
the administration of external factors (i.e., specific molecules).
These elements could selectively activate or inhibit transgene
expression, by acting on specific regulatory sequences delivered
along with the therapeutic gene cassette, in the same viral

vector. This option, however, would require the exploitation
of neurotropic vectors capable to host much larger exogenous
DNA cargos, for example HSV derived vectors (Ingusci et al.,
2019a,b).

Once the remaining gaps in knowledge and hurdles for
gene therapy will be overcome, we may finally be able to treat
epilepsy by acting on endogenous systems of neuromodulation.
In a way, this is something that we may have already done,
unconsciously and much less finely, with certain anti-epileptic
drugs (Brill et al., 2006).
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