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The neuromuscular junction (NMJ) is a highly specialized synapse between a motor
neuron nerve terminal and its muscle fiber that are responsible for converting electrical
impulses generated by the motor neuron into electrical activity in the muscle fibers.
On arrival of the motor nerve action potential, calcium enters the presynaptic terminal,
which leads to the release of the neurotransmitter acetylcholine (ACh). ACh crosses the
synaptic gap and binds to ACh receptors (AChRs) tightly clustered on the surface of
the muscle fiber; this leads to the endplate potential which initiates the muscle action
potential that results in muscle contraction. This is a simplified version of the events in
neuromuscular transmission that take place within milliseconds, and are dependent on
a tiny but highly structured NMJ. Much of this review is devoted to describing in more
detail the development, maturation, maintenance and regeneration of the NMJ, but first
we describe briefly the most important molecules involved and the conditions that affect
their numbers and function. Most important clinically worldwide, are myasthenia gravis
(MG), the Lambert-Eaton myasthenic syndrome (LEMS) and congenital myasthenic
syndromes (CMS), each of which causes specific molecular defects. In addition, we
mention the neurotoxins from bacteria, snakes and many other species that interfere
with neuromuscular transmission and cause potentially fatal diseases, but have also
provided useful probes for investigating neuromuscular transmission. There are also
changes in NMJ structure and function in motor neuron disease, spinal muscle atrophy
and sarcopenia that are likely to be secondary but might provide treatment targets. The
NMJ is one of the best studied and most disease-prone synapses in the nervous system
and it is amenable to in vivo and ex vivo investigation and to systemic therapies that can
help restore normal function.

Keywords: neuromuscular junction, myasthenia gravis, congenital myasthenic syndromes, spinal muscular
atrophy, sarcopenia, MuSK, DOK?7, Agrin

INTRODUCTION

The neuromuscular junction (NMJ) is a simple synapse between the motor nerve terminal and the
surface of a muscle fiber sarcolemma, but is nevertheless complex in its structure and function.
Most of what we know about development of the NMJ comes from work in rodents, particularly
mice and evidence from work on human muscle is sparse. During development, nascent skeletal
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muscle fibers express AChRs on their surface and the axons of
motor neurons are guided to innervate the fibers, leading to the
clustering of AChRs at high density underneath the motor nerve
terminals. Despite being functionally active in the embryonic
stage, NM]Js undergo complex postnatal maturation during the
first weeks of life that consist of an increase in size, morphological
changes and the development of invaginations in the subsynaptic
sarcolemma. The apparent macroscopic stability of the NM]J
during adulthood hides numerous mechanisms that allow the
homeostasis of the neuromuscular synapse in health and disease.
This review covers the molecular mechanisms underlying the
development and homeostasis of the NMJ and their contribution
to health and disease.

THE ORGANIZATION OF THE NMJ

The NM]Js are very small structures (~30 pm long) compared
to the length of the muscle fibers they innervate which can
be anything from less than a cm (e.g., intercostal muscle) to
more than 20 cm (e.g., sartorius, the long muscle of the thigh).
Typically, each skeletal muscle fibers has a single NMJ where
the motor axon joins the muscle fiber. The most common
classification divides the NMJ into a presynaptic terminal, a
postsynaptic muscle membrane and the space that lies between
called the synaptic cleft. The classic morphology of the NMJ in
murine animal models is described as a pretzel-shaped structure
(Figure 1). The human NMJs are typically smaller, less complex,
and more fragmented than those widely studied in murine
animal models (Jones et al., 2017), although they exhibit a higher
degree of postsynaptic membrane folding than any other species
(Slater, 2017).

Presynaptic Terminal

Motor nerves travel from the spinal cord to skeletal muscles
where they divide into terminal branches and subsequently form
synaptic boutons that contact the muscle surface (Desaki and
Uehara, 1981). Synaptic boutons are small protuberances found
at the terminal end of motor axons. They are filled with synaptic
vesicles containing the neurotransmitter ACh ready for vesicle
exocytosis. The nerve terminal has complex machinery in place
to allow the synthesis, exocytosis and recycling of these synaptic
vesicles (Lai et al., 2017). Non-myelinating Schwann cells called
perisynaptic or terminal Schwann cells (tSCs) cover the NM]J,
and there is increasing evidence that they contribute to synapse
formation, maintenance and repair (Feng and Ko, 2008).

Synaptic Cleft

The synaptic cleft is the gap between the presynaptic terminal
and the postsynaptic muscle membrane, which is filled with
a specialized form of extracellular matrix called synaptic basal
lamina (Sanes, 2003). This matrix is crucial for the alignment,
organization and structural integrity of the NMJ. The main
components of the basal lamina include laminins and different
types of collagens (Shi et al., 2012). In particular, it is of relevance
that the enzyme acetylcholinesterase (AChE), which terminates
synaptic transmission by breaking down acetylcholine, is

FIGURE 1 | Fluorescence and electron microscopy images of the NMJ.

(A) Fluorescence microscopy image of the NMJ showing the nerve terminal
(green) innervating the muscle endplate (red) stained with fluorescently
conjugated a-bungarotoxin that binds to the AChRs. (B) Super-resolution
confocal microscopy image of the NMJ showing the postsynaptic muscle
membrane and the junctional folds at the top of which AChRs are
concentrated (image provided by Dr. J. Cheung). (C) Electron microscopy
image of the NMJ. The presynaptic nerve terminal is filled with synaptic
vesicles containing acetylcholine (*). The postsynaptic muscle membrane
exhibits a high degree of folding which extends into the muscle sarcoplasm
(arrows) in order to increase the total endplate surface. The NMJ is covered by
terminal Schwann cells. Used with permission from Slater (2017).

attached to the basal lamina thanks to ColQ, an NM]J-specific
collagen-like tail (Ohno et al., 1998).

Postsynaptic Muscle Membrane

The postsynaptic membrane is a specialized structure with a high
degree of folding, as shown by electron microscopy studies (De
Harven and Coers, 1959). Motor nerve terminals are embedded
in the muscle in a gutter or primary cleft. Furthermore, there are a
series of invaginations of the muscle membrane that extend into
the sarcoplasm called secondary junctional folds. They increase
the overall surface of the postsynaptic membrane, and the AChRs
clustered at high density on the crest of these folds, juxtaposed to
the presynaptic active zones. At the bottoms of the folds, voltage-
gated Na+ channels are concentrated to facilitate the excitability
of the postsynaptic membrane.

NEUROMUSCULAR TRANSMISSION

The enzyme choline acetyltransferase (ChAT) synthesizes
acetylcholine (ACh) from acetyl coenzyme A (AcCoA) and
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choline (Nachmansohn and Machado, 1943). Subsequently,
acetylcholine is packed into synaptic vesicles thanks to the
vesicular acetylcholine transporter (VAChT) (Roghani et al.,
1994). Pools of synaptic vesicles accumulate in the presynaptic
terminal near release sites termed active zones (Sudhof, 2012).
Upon arrival of an action potential, voltage-gated calcium
channels (VGCCs) open and Ca?™ inflow triggers vesicle fusion
to the plasma membrane and exocytosis through the Soluble
N-ethylmaleimide-sensitive factor Attachment protein Receptor
(SNARE) complex (Baker and Hughson, 2016). ACh released by
the presynaptic terminal binds to the ACh binding site located at
the o and either 8 or e-subunits interfaces of the AChR. Upon
ACh binding, the AChR subunits undergo a conformational
change to open the channel creating a pore (Miyazawa et al.,
2003). This event allows the influx of positively charged ions to
move across the channel generating a change in the membrane
potential that triggers an endplate potential (EPP). In a healthy
individual, the depolarization of the postsynaptic membrane
generated by the EPP is greater than the threshold needed to
activate the Na, 1.4 voltage-gated sodium channels and generate
an action potential. The action potential spreads from the motor
endplate to the rest of the sarcolemma, resulting in contraction of
the muscle (Engel et al., 2015).

Importantly the NMJ is an all-or-none synapse. If the
endplate potential does not reach the threshold for opening of
sodium channels, or if there are insufficient sodium channels in
the postsynaptic folds to generate an action potential, muscle
contraction does not occur. In health, the EPP is more than
sufficient to reach threshold, and the sodium channels are
concentrated at the depths of the postsynaptic folds where they
can be efficiently opened by the voltage change. This is the
margin of safety, or safety factor of neuromuscular transmission,
which allows the NMJ to continue to function under various
physiological conditions and stresses. In disease, this margin of
safety can be reduced at individual endplates, or many of them,
leading to reduced neuromuscular transmission and muscle
weakness (Wood and Slater, 2001). These concepts are crucial in
understanding the diseases that cause muscle weakness (Table 1).
Much of what is summarized below is covered in detail by other
authors in this Special Issue (Cao et al., 2020; Takamori, 2020).

DISORDERS OF THE NMJ

Venoms and Neurotoxins
Much of what we first learnt regarding the molecules at NMJ
that are essential for its function, and also targets in disease
came from the study of specific neurotoxins, particularly those
from snake venoms on transmission at the NMJ (Vincent, 2020).
Envenomation by snake bite is a very important disease globally
and leads to a variety of symptoms of which, since the NMJ is
accessible to the systemic circulation, defects in transmission are
often early with respiratory failure (Warrell, 2010, 2019).
Botulism is an important presynaptic disorder, which is caused
by a toxin produced by the anaerobic bacterium, Clostridium
botulinum. The botulinum toxin (Botox) is a proteolytic enzyme
that gets transported into the motor nerve and other nerve

terminals, cleaves SNARE proteins, preventing vesicle fusion
and ACh release (Schiavo et al., 2000). Tetanus toxin produced
by Clostridium tetani is also taken up by presynaptic motor
nerve terminals but travels retrogradely, via the motor neuron
cell body, to the inhibitor nerve terminals of the spinal cord
where it prevents the release of GABA and glycine leading to
painful muscle spasms. Each of these conditions can be life-
threatening due to muscle paralysis or, in the case of tetanus
toxin, uncontrolled muscle contractions.

Myasthenia Gravis

Autoantibodies against the muscle acetylcholine nicotinic
receptor (AChR) cause myasthenia gravis (MG), the most
common disorder of neuromuscular transmission, which is
characterized by fatigable muscle weakness (Lindstrom et al.,
1976; Vincent and Newsom-Davis, 1985). The AChR antibodies
are predominantly IgG1 and IgG3 subclasses and lead to loss of
AChRs by two main mechanisms; mainly complement activation,
cross-linking and internalization of AChRs (Le Panse and Berrih-
Aknin, 2013). Classic treatment is with immunosuppressive
drugs and cholinesterase inhibitors to prevent the breakdown of
ACh by AChE; this leads to longer duration of ACh in the synapse
leading to larger and slightly prolonged EPPs.

Interestingly, there are patients in rare occasions with
autoantibodies against the fetal y-subunit of the AChR, which
is present prenatally but largely replaced by the g-subunit before
birth at approximately 33 weeks (AChR y-to-g switch) (Missias
etal.,, 1996). As a result, these antibodies have little effect in adults
but they can cause neonatal myasthenia (Vernet-Der Garabedian
et al., 1994) or arthrogryposis multiplex congenita (Oskoui et al.,
2008) via maternal transfer to the fetus.

Around 10-20% of MG patients are seronegative for AChR
antibodies but a variable proportion (0-70%) have antibodies
to the Muscle-Specific Kinase (MuSK) (Hoch et al., 2001).
MuSK autoantibodies are predominantly of the IgG4 subtype
and impair agrin signaling by disrupting the interaction of
MuSK with the low density lipoprotein receptor-related protein-
4 (LRP4) (Koneczny et al., 2013). MuSK-MG has distinct clinical
features and response to treatment, including the worsening of
symptoms with anticholinesterase therapy (Evoli et al., 2003).
The clinical features of this form of MG and the mechanisms
by which the antibodies act can be found in Cao et al,
this volume (Cao et al, 2020). MG patients seronegative for
MuSK and AChR antibodies by radioimmunoprecipitation assay
(RIA) may have antibodies to clustered AChRs by cell-based
assay (CBA) (Leite et al., 2008). These antibodies have similar
pathogenic mechanisms to AChR antibodies detected by RIA
(Jacob et al., 2012). They can be useful in clinical practice,
especially in children, for planning treatment and to distinguish
from congenital myasthenic syndromes (CMS) (Rodriguez Cruz
et al, 2015). LRP4 antibodies have also been reported in
seronegative MG (Zhang et al., 2012), but the detection rates are
highly variable between studies, and some cases are also positive
for AChR and MuSK antibodies (Higuchi et al., 2011). A further
uncertainty comes from studies showing LRP4 antibodies in
some patients with amyotrophic lateral sclerosis (Tzartos et al.,
2014). Finally, autoantibodies to other immunogenic targets such
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TABLE 1 | Disorders of neuromuscular transmission.

Venoms and Neurotoxins

Snake bite

Botulism

Tetanus
Myasthenia gravis

AChR antibodies

MuSK antibodies

Antibodies to clustered AChRs

LRP4 antibodies

Lambert-Eaton Myasthenic Syndrome

VGCC antibodies

CMS subtype Gene Inheritance
Proteins with defined NMJ function

Presynaptic

Choline O-Acetyltransferase CHAT AR
Unconventional myosin 9 MYO9 AR
PREPL PREPL AR
Vesicular ACh transporter (VAChT) SLC18A3 AR
High-affinity choline transporter 1 (ChT) SLC5A7 AR
Synaptosome Associated Protein 25 SNAP25B AD
Synaptotagmin 2 SyT2 AD
Munc13-1 UNC13-1 AR
Rabphilin 3A RPH3A AR
Synaptobrevin 1 VAMP1 AR
Synaptic

Collagen Type Xill Alpha 1 Chain COL13A1 AR
Endplate AChE deficiency CcoLQ AR
Laminin a5 deficiency LAMAS AR
Laminin B2 deficiency LAMB2 AR
Postsynaptic

Agrin (neuronal) AGRN AR
Primary AChR deficiency CHRNA, CHRNB, CHRND, CHRNE AR
Slow channel syndrome CHRNA, CHRNB, CHRND, CHRNE AD
Fast channel syndrome CHRNA, CHRNB, CHRND, CHRNE AR
Low conductance syndrome CHRNE AR
Escobar syndrome CHRNG AR
DOK7 DOK7 AR
LRP4 LRP4 AR
MACFA1 MACF1 AR
MuSK MUSK AR
Plectin deficiency PLECT AR
Rapsyn RAPSN AR
Na* channel myasthenia SCN4A AR
Ubiquitously expressed proteins

ALG2 ALG2 AR
ALG14 ALG14 AR
DPAGT1 DPAGT1 AR
GFPT1 GFPT1 AR
GMPPB GMPPB AR
SLC25A1 SLC25A1 AR

ALG2, Alpha-1,3/1,6-Mannosyltransferase; ALG14, UDP-N Acetylglucosaminyltransferase Subunit; DOK?7, Docking protein 7; DPAGT1, Dolichyl-Phosphate
N-Acetylglucosaminephosphotransferase 1; GFPT1, Glutamine-Fructose-6-Phosphate Transaminase 1, GMPPB, GDP-Mannose Pyrophosphorylase B; LRP4, LDL

Receptor Related Protein 4; MACF1, microtubule actin cross linking factor 1; MuSK, Muscle specific kinase; PREPL, Prolyl Endopeptidase-Like gene.

Frontiers in Molecular Neuroscience | www.frontiersin.org

December 2020 | Volume 13 | Article 610964


https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-neuroscience#articles

Rodriguez Cruz et al.

Molecular Mechanisms of the NMJ

as agrin (Gasperi et al., 2014), COLQ (Zoltowska Katarzyna et al.,
2014) and cortactin (Gallardo et al., 2014) have been described.
However, their pathogenic contribution and overall importance
in clinical diagnosis require further study.

Lambert-Eaton Myasthenic Syndrome
(LEMS)

This disease is rarer than MG and is caused by autoantibodies
against P/Q type VGCCs on the presynaptic terminal at the
NM]J (Eaton and Lambert, 1957; Lennon et al., 1995). Half of
LEMS patients have an associated tumor, typically small-cell lung
carcinoma (SCLC), which also expresses functional VGCC. The
pathogenic mechanism is from cross-linking and internalization
of the VGCCs by antibodies leading to reduced expression on
the presynaptic nerve terminal (Nagel et al., 1988). This results
in the functional loss of VGCC in active zones, reduced Ca?™
entry during depolarization and a subsequent decrease in quantal
content and ACh release. Complement-dependent mechanisms
don’t appear to be relevant, though it is not clear why not.

CMS

Congenital myasthenic syndromes are a group of inherited
disorders caused by mutations in genes encoding for proteins
that are essential for the integrity of neuromuscular transmission
(Rodriguez Cruz et al., 2018). Over the years, deciphering the
underlying pathogenic mechanism of CMS has helped to improve
our understanding of the NM]J and refine therapeutic strategies
with other drugs like 3,4-Diaminopyridine, B2—adrenergic
agonists, and open-channel blockers fluoxetine and quinidine
(Harper et al., 2003; Lashley et al., 2010). At present, mutations
in more than 30 different genes are known to cause CMS.
Most common classification is based on the location of the
mutated protein (presynaptic, synaptic and postsynaptic). All
CMSs present with fatigable muscle weakness, but age at onset,
symptoms, distribution of weakness, and response to treatment
vary, depending on the molecular mechanism resulting from
the genetic defect. Future therapies may include the use of
novel and more specific B2—adrenergic agonists, modulation of
the Agrin-LRP4-MusK-DOK?7 pathway and gene replacement
therapy (Arimura et al.,, 2014).

Other Neuromuscular Disorders Where
the NMJ Is Involved

There is increasing evidence that muscle endplates may also
be affected in motor unit disorders that are not believed to
primarily affect the NM]J, including spinal muscular atrophy
(SMA) and amyotrophic lateral sclerosis (ALS). SMA is an
autosomal recessive disease caused by insufficient levels of
survival motor neuron (SMN) protein that results in progressive
loss of lower motor neurons, denervation and muscle atrophy
(Ahmad et al., 2016). Studies in animal models of SMA have
shown that earliest structural defects appear distally at the NM]J
during postnatal maturation, even in the absence neuromuscular
transmission failure or motor neuron loss (Kariya et al., 2008;
Lee et al,, 2011). Furthermore, patients with types 2 and 3 SMA
suffer from objective motor fatigue (Wolfe et al., 2016) and 3Hz

repetitive nerve stimulation shows pathological decrement in half
of them (Wadman et al., 2012). Open pilot studies have reported
the benefit of salbutamol in SMA patients (Pane et al., 2008). It is
thought that salbutamol increases SMN mRNA and protein levels
in SMA fibroblasts (Angelozzi et al., 2008) and patients (Tiziano
etal.,, 2019) by promoting exon 7 inclusion in SMN2 transcripts.
However, given the remarkable effect of f2—adrenergic agonists
in CMS (Lashley et al., 2010; Rodriguez Cruz et al., 2015), the
effect seen in SMA patients could be at least partly related to an
improvement in the NMJ function and structure.

There are several studies suggesting that ALS is a distal
axonopathy where pathological changes start preclinically with
denervation of the muscle endplates and then proceed in a
“dying back” pattern that results in motor neuron loss (Fischer
et al., 2004; Gould, 2006). While evidence supporting this
hypothesis comes mainly from SODI-ALS mouse models, a
recent investigation suggests a direct link between NM] signaling
pathways and FUS (Picchiarelli et al., 2019), an ALS-associated
gene whose dominant mutations cause aggressive forms of
the disease. Recent studies have shown that modulation of
agrin signaling by AAV-DOK?7 gene therapy (Miyoshi et al.,
2017) and MuSK stimulation (Cantor et al., 2018) can increase
motor activity and lifespan of the SODI-G93A ALS mouse
model by slowing muscle denervation. Other disorders where
NM]J structural defects could play a role comprise autosomal
dominant Emery-Dreifuss muscular dystrophy (AD-EDMD)
(Méjat et al, 2009) and some forms of Charcot-Marie-
Tooth disease (CMT) (Sleigh et al., 2014). Finally there are
some congenital myopathies with secondary neuromuscular
transmission abnormalities (Rodriguez Cruz et al., 2014) where
achieving a precise diagnosis is important as patients could
benefit from symptomatic treatment with anticholinesterases.

Ageing and Sarcopenia

The progressive decline in muscle mass and function related
to ageing is known as sarcopenia. The mouse NMJ undergo
dramatic structural changes with ageing in the form of increased
fragmentation of endplates (Valdez et al, 2010). It is thought
that this could be secondary to degeneration and regeneration
of muscle fibers at the neuromuscular synapse (Li et al., 2011).
Interestingly, overexpression of neurotrypsin in motoneurons
destabilizes NM]Js by increasing the proteolytic cleavage of
agrin (Bolliger et al., 2010) and installs a phenotype compatible
with sarcopenia in young adult mice (Biitikofer et al., 2011).
Stabilization of the NM]Js could represent a potential therapy for
sarcopenia as shown by the injection of a soluble fragment of
neuronal agrin (NT- 1654) in neurotrypsin overexpressing mice
(Hettwer et al., 2014). Another study showed that sarcoglycan
alpha reduces NM]J decline in aged mice by stabilizing LRP4
(Zhao et al.,, 2018). Remarkably, caloric restriction and exercise
was shown to mitigate age-related changes in mouse NM]Js, which
opens the door to non-pharmacological interventions (Valdez
et al., 2010). These observations have linked sarcopenia with
the deterioration of the NMJ structure. However, a recent study
showed that human NMJs, in contrast to mice, are remarkably
stable throughout adult life with lack of age-related remodeling
signs in the muscles tested (Jones et al, 2017). Therefore,
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there may be significant variability in age-related events among
muscles. Furthermore, a key question that remains unanswered
is whether the age-related NM]J decline contributes to or results
from sarcopenia.

MOLECULAR MECHANISMS INVOLVED
IN SYNAPSE FORMATION AND
MAINTENANCE

Multiple mechanisms govern the assembly and homeostasis of
the neuromuscular synapse as described earlier. This section will
cover in greater detail the best-defined pathways and the clinical
impact when perturbed. First, it is worth visualizing the NM]J in
relation to the muscles that it regulates to understand that this
tiny synapse has to function correctly to control the timing and
efficiency of that muscle (Figure 1).

The Agrin-LRP4-MuSK Signaling
Pathway

The agrin signaling pathway is essential for both NMJ formation
(DeChiara et al., 1996; Gautam et al., 1996; Okada et al.,
2006; Weatherbee et al.,, 2006) and maintenance (Kong et al,
2004; Barik et al., 2014; Tezuka et al, 2014; Eguchi et al,
2016; Figure 2). Several genetic and autoimmune disorders
affecting this pathway are known to cause disease (Liyanage
et al, 2002). Agrin is a large proteoglycan (>200 KDa)
with multiple domains that binds to laminins through the
N-terminal domain, and to LRP4 and a-dystroglycan via its
C-terminus (Figure 3A). A neuronal isoform of agrin, generated
by alternative splicing to introduce eight additional amino
acids at the Z site, is secreted from the presynaptic terminal
into the basal lamina as the first step in the AChR clustering
pathway (Ferns et al., 1993). Following its release, agrin binds
to LRP4 on the postsynaptic muscle membrane, and this,
in turn, activates MuSK (Zhang et al, 2008). LRP4 is able
to self-associate and interact with MuSK independently of
agrin (inactive state) but is not capable of activating MuSK
(Kim et al., 2008).

MuSK is made up of three IgG-like domains, a frizzled domain
(FzD), a short transmembrane (TM) and a juxtamembrane
(JMR) region, a kinase domain (KD), and a short C-terminal
tail (Hubbard and Gnanasambandan, 2013; Figure 3B). MuSK
kinase activity is strictly regulated to limit ligand-independent
activation primarily through the juxtamembrane region and
the activation loop (Till et al., 2002). The interaction between
the juxtamembrane region and the kinase core inhibits
kinase activity. The activation loop adopts a pseudo-substrate
conformation that occupies the active site cleft of the kinase
domain and impedes ATP binding thus blocking kinase
activation (Till et al., 2002). Also, MuSK activation is regulated
by the muscle tyrosine phosphatase Shp2 (Madhavan et al., 2005).
All of these regulatory mechanisms seem critical for the control
of postsynaptic differentiation at the NMJ (Madhavan and Peng,
2005), but they are by no means the only molecules involved, and
more could be identified in the future.

The formation of a tetrameric complex between agrin and
LRP4 increases the binding of LRP4 to the first IgG-like domain
of MuSK (Zong et al.,, 2012), leading to MuSK activation via
dimerization and trans-autophosphorylation of specific tyrosine
residues within the cytoplasmic region (Schlessinger, 2000).
Phosphorylation of Tyr553 destabilizes the juxtamembrane
conformation that prevents the phosphorylation of the activation
loop and the creation of an active binding site for downstream
of kinase-7 (DOK7), a cytoplasmic adaptor of MuSK with
a phosphotyrosine binding domain (PTB). The subsequent
transphosphorylation (Tyr750, Tyr754, and Tyr755) of the
activation loop results in full kinase activation.

Intracellular Pathways Downstream of

MuSK

The agrin-LRP4-MuSK signal is propagated downstream leading
to the clustering of AChRs by the scaffold protein rapsyn.
However, how the signal is transduced from MuSK to rapsyn is
not understood, with the exception of the key adapter protein
DOK?7, which is required for full MuSK activation (Inoue et al.,
2009). DOK?7 is composed of an N-terminal pleckstrin homology
(PH) domain, a phosphotyrosine-binding (PTB) domain and a
C-terminal domain (Cossins et al., 2012; Figure 3C). Mutations
in DOK7 underlie a NM]J synaptopathy and comprise a major
form of CMS (Beeson et al., 2006).

Structural studies have shown that the PH/PTB domains
also mediate DOK7 dimerization, which is necessary to activate
MuSK in vivo (Bergamin et al, 2010). Interestingly, over-
expression of DOK7 in cultured myotubes in the absence of
agrin results in full MuSK activation and clustering of AChRs
(Inoue et al., 2009), which suggests that DOK7 regulates synapse
formation and maintenance by controlling MuSK activity. The
C-terminal region of DOK7 has two tyrosine residues, Y396 and
Y406, which are phosphorylated by agrin stimulation (Hallock
et al.,, 2010). These residues and their surrounding sequences
form Src homology2 (SH2) target motifs that recruit adaptor
proteins Crk and Crk-L via their SH2 domains. More recently,
adaptor proteins Sorbsl and -2 have been found to interact
with Crk-L and be necessary for AChR cluster formation
(Hallock et al, 2016). In vitro phosphorylation assays and
murine studies have shown that DOK7 C-terminal domain plays
a key, but not essential, role in MuSK activation and NM]J
development (Ueta et al., 2017). Similarly, patients with DOK7-
CMS homozygous for c¢.1124_1127dupTGCC, which results in
a truncated form of DOK7 lacking the SH2 target motifs, have
impaired yet active NM]Js. However, the selective inactivation
of Crk and Crk-L in skeletal muscle causes severe NM]J defects
in mice, which suggests that DOK7 could act by two distinct
pathways mediated by the N-terminal and C-terminal domains,
respectively (Hallock et al., 2010).

Additional  players identified in myotubes include
Dishevelled-1 (Dvll) and Tidl, two non-catalytic adapter
proteins binding MuSK and contributing in a poorly understood
way to AChR clustering. Dvl1 was found to interact with MuSK
and regulate AChR clustering through its interaction with
downstream kinase PAK1 (Luo et al., 2002) suggesting that agrin

Frontiers in Molecular Neuroscience | www.frontiersin.org

December 2020 | Volume 13 | Article 610964


https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-neuroscience#articles

Rodriguez Cruz et al.

Molecular Mechanisms of the NMJ

ACh-CdK5

pathway
(Dispersion)

Synaptic .
visicﬁas Ag rl n'M US K
athwa
(Clsstteriyng)

ACh ® o I <
P Ty
111632* -&.J .“‘.Jr:"" o Endocytosis
Calpain
@@
p35 pzs\

aNestin

Cdk5 T

nucleus

& Crk/CrkL
Transport /

Recycling / 4

New synthesis
mm CaMKIl/ PKC
Myogenin
Synapse-specific
Extrasynaptic

transcription

FIGURE 2 | Schematic representation of the AChR clustering and dispersal pathways. Upon the release of agrin by the nerve terminal, agrin binds to LRP4 resulting
in MuSK activation (Kim et al., 2008) and recruitment of DOK7 and Crk/CrkL (Okada et al., 2006) that further stimulates MuSK activation. The signal is propagated
downstream, which results in the clustering of the AChRs by the cytoplasmic anchoring protein rapsyn. By contrast, ACh disperses AChR clusters not stabilized by
agrin signaling. A cyclin-dependent kinase (CdK5) mechanism is thought to drive this pathway through the interaction of rapsyn and the calcium-dependent protease
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may share the signaling pathways of Wnt, which are critical for
diverse developmental processes (Komiya and Habas, 2008).
However, Dvll-deficient mice did not show apparent NMJ
abnormalities (Lijam et al,, 1997) although this could be due
to functional redundancy among different Dvl genes. Rac and
Rho are monomeric G proteins that link extracellular signals to
dynamic changes in the organization of the actin cytoskeleton
(Hall, 1998). Rac and Rho play a role in the coupling of agrin
signaling to AChR clustering, and in addition, co-expression
of constitutively active forms of Rac and Rho can induce the
formation of mature AChR clusters when agrin is not present
(Weston et al., 2003).

Rapsyn and Other AchR-Related

Proteins

RAPSN encodes the 43 kDa receptor-associated scaffold protein
of the synapse or rapsyn, which is essential for the postsynaptic
specialization of the NMJ (Gautam et al, 1995). Rapsyn is
enriched at the postsynaptic membrane, acting as a linker

between the AChRs and the cytoskeleton via the dystrophin-
associated glycoprotein complex (Apel et al., 1995; Moransard
et al, 2003). Early cross-linking studies showed that rapsyn
is located in close proximity to the AChR-f subunit (Burden
et al,, 1983). Subsequently, other AChR subunits have been
found to interact with rapsyn in heterologous cell systems
(Lee et al., 2010). However, the lack of a crystallographic
structure means that the detailed composition of the AChRs-
rapsyn network is not well understood (Zuber and Unwin,
2013). Rapsyn is composed of an N-terminal myristoylation
moiety (N-Myr) necessary for submembrane localization; seven
tetratricopeptide (TRP) domains responsible for rapsyn self-
association (Ramarao et al., 2001; Lee et al., 2008); a coiled-coil
domain that binds to the cytoplasmic loops of AChRs (Lee
et al, 2008), and a RING-H2 domain that links rapsyn to
the cytoskeleton through its interaction with the dystroglycan
complex (Figure 3D; Apel et al, 1995). RAPSN mutations
identified in humans are found along the length of the gene
and the common p.N88K is located within the TRP domains
(Cossins et al., 2006).
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composed of a N-terminal myristoylation moiety (N-Myr) necessary for submembrane localization; seven tetratricopeptide (TRP) domains responsible for rapsyn
self-association and MuSK binding (Ramarao et al., 2001; Lee et al., 2008); a coiled-coil domain that binds to the cytoplasmic loops of AChRs (Lee et al., 2008), and
a RING-H2 domain that interacts with the dystroglycan complex and links with the cytoskeleton (Apel et al., 1995).

Studies in the past have shown that the phosphorylation
of the AChR-B subunit mediated by agrin helps to cluster
AChRs and anchor them at high density in the postsynaptic
membrane, by increasing the stoichiometry of rapsyn/AChR
complexes (Borges and Ferns, 2001; Borges et al., 2008). In line
with this, mice lacking AChR B-subunit tyrosine phosphorylation
develop simplified synapses, although NM] formation is not
compromised (Friese et al, 2007). A recent investigation
proposed that the RING-H2 domain of rapsyn contains E3 ligase
activity (Li et al., 2016). Another AChR-binding protein recently
identified is Vezatin, which is not essential for NM]J formation
but may play a role in the formation of postjunctional folds
(Koppel et al., 2019).

A dense network of microtubules (MTs) and actin filaments
(Dai et al., 2000; Schmidt et al., 2012) interact with the
subsynaptic muscle membrane. However, the downstream
signals that capture and stabilize microtubules at synaptic AChR
clusters are poorly understood. Microtubule actin cross-linking
factor 1 (MACF1) has been recently shown to concentrate at the

NM]J, where it binds to rapsyn and could serve as an organizer
for both actin and microtubule networks (Oury et al., 2019).
The study showed that expression at the postsynaptic membrane
of microtubule-associated proteins MAP1b, p-TUB, EBI, and
Vinculin is MACF1-dependent. MACF1 is not essential for the
NM]J formation but postnatal maturation is impaired in Macfl
mutant mice. Furthermore, two patients from different kinships
with CMS have been identified to carry missense variants in
MACFI (Oury et al., 2019). A second pathway for agrin-induced
recruitment of MTs to the postsynaptic membrane is via binding
of MTs to CLASP2/CLIP170 (Schmidt et al., 2012).

ACh-CDK5-Calpain Dispersal Pathway

Muscle depolarization induced by ACh is a negative signal
that decreases extrasynaptic AChR concentration by altering
the location and stability of AChRs and also by inhibiting
their transcription along the muscle fiber (An et al, 2010).
This is supported by the findings of increased endplate
bandwidth and excessive nerve branching in mice lacking choline
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acetyltransferase (ChAT), an enzyme required for ACh synthesis
(Misgeld et al., 2002). Thus, ACh disperses aneural clusters
of AChRs that are not stabilized by agrin signaling. A cyclin-
dependent kinase 5 (Cdk5) mechanism (Lin et al., 2005) is
thought to drive this pathway through to the interaction of rapsyn
and the calcium-dependent protease calpain (Chen et al., 2007;
Figure 2). Cdk5 null mice display an abnormally wide central
band of AChRs and agrin-induced AChR clustering is markedly
increased when Cdk5 activity is suppressed (Fu et al., 2005).
The binding of ACh to the AChRs results in increased calcium
influx into the postsynaptic membrane that activates calpain
activity. Calpain stimulates the cleavage of p35 to p25, a potent
co-activator of Cdk5 (Patrick et al., 1999). The ACh-mediated
increase in calpain/Cdk5 activity permits cytoskeletal remodeling
resulting in the dispersal of AChR clusters (Xie et al., 2006).
One study has implicated the intermediate filament protein
Nestin in the regulation of Cdk5 activity (Yang et al., 2011).
By contrast, agrin is thought to stabilize AChR clusters by
promoting the recruitment of calpain to rapsyn and inhibiting
calpain activity (Chen et al, 2007). In keeping with the key
role of calcium in the dispersion of AChRs, another study
showed that blocking dihydropyridine receptors (voltage-gated
L-type Ca’" channels) at the muscle membrane resulted in
increased MuSK expression, leading to a broad distribution
of AChRs and aberrant development of the neuromuscular
synapse (Chen et al.,, 2011). Finally, the suppression of AChR
transcription in extrasynaptic regions driven by ACh is thought
to be mediated by protein kinase C (PKC) and Ca2+/calmodulin-
dependent kinase II (CaMKII) signals resulting in myogenin
downregulation (Li et al., 1992; Macpherson et al., 2002). As
a helix-loop myogenic transcription factor, myogenin regulates
expression of AChRs and other muscle genes by binding
the E-boxes located in their promoter and enhancer regions
(Eftimie et al., 1991).

The N-Linked Glycosylation Pathway

The N-linked glycosylation pathway of proteins is a ubiquitous
process in eukaryote cells characterized by the sequential
attachment of sugar moieties to the lipid dolichol, which is
then transferred onto an asparagine residue in a nascent protein
(Figure 4). Next-generation sequencing has aided the discovery
of an unexpected relationship between myasthenic disorders
and defects in the early stages of the N-glycosylation pathway
(Senderek et al., 2011; Belaya et al., 2012; Belaya, 2015). This
highlights that genes with no defined role in neuromuscular
transmission can also impair the NM]J structure and function.
However, the reasons why defects in a ubiquitous process may
result in dysfunction largely restricted to the NM]J are not clear.
Glycosylation of AChR subunits is required for the correct
assembly of AChR pentamers and efficient export to the cell
surface (Gehle et al., 1997). Therefore, abnormal glycosylation
results in reduced numbers of AChRs at the muscle endplates,
which is most likely the primary mechanism causing impaired
neuromuscular transmission (Zoltowska et al., 2013). Other
key proteins in NM]J formation and maintenance are also
glycosylated, including agrin, dystroglycan, LRP4, MuSK, NCAM
and perlecan (Martin et al., 1999). Ultrastructural studies in

patients with CMS due to glycosylation defects have shown small
sized endplates with simplified postsynaptic regions and poorly
developed junctional folds (Belaya et al., 2012; Selcen et al.,
2013). In conclusion, while the role of these proteins in the
NM]J formation and maintenance is well established, the specific
function of adequate glycosylation of NM]J constituents awaits
further investigation.

EXTRACELLULAR ORGANIZERS

The synaptic basal lamina is a specialized form of extracellular
matrix containing numerous proteins that are essential for
the alignment, organization and maintenance of presynaptic
and postsynaptic structures (Sanes, 2003). One of the main
components are heterotrimeric proteins of high molecular weight
called laminins, which are formed by the incorporation of a,
B and y chains into a cruciform structure and typically self-
assemble (Mouw et al., 2014). Of relevance, it was found that
soluble laminin can stimulate AChR clustering via dystroglycan
independently of MuSK in cultured myotubes (Sugiyama et al.,
1997; Montanaro et al., 1998). Furthermore, myotubes cultured
on laminin-coated plates (in the absence of agrin) form complex
branched AChR clusters similar to those seen in vivo following
postnatal maturation. Conversely, this process is dependent
on MuSK activation (Kummer et al., 2004). Synaptic laminins
are also important for presynaptic differentiation as shown in
mice lacking laminin B2 (Noakes et al, 1995). Furthermore,
laminin a4 has been implicated in the maintenance of the NM]J
(Samuel et al., 2012). Overall these studies support the role
of laminin as extracellular organizers of the NMJ. Collagen
IV is the most abundant protein at the basal lamina. It self-
assembles into dimers and hexamers thanks to its globular
domains (Mouw et al., 2014). Laminin and collagen networks
are connected by Nidogen-2 (Fox et al., 2008; Mokkapati et al.,
2008), a non-collagenous glycoprotein, but also anchored to
the cytoskeleton by binding to laminin receptors integrin and
dystroglycan (Martin et al., 1996). The dystroglycan complex
is necessary for the organization and stabilization of the NM]J
as shown by the presence of disrupted NMJs in chimeric mice
lacking dystroglycan (Coté et al., 1999). Myotubes deficient in
dystroglycan are responsive to agrin, but AChR clusters are
significantly less stable (Jacobson et al, 2001). By contrast,
laminin-induced AChR clusters fail to form in the absence of
dystroglycan. Muscle agrin binds to the basal lamina via laminin
(Denzer et al., 1997) and a-dystroglycan (Sugiyama et al., 1994),
and this is important for the maintenance of the NMJ (Samuel
et al., 2012). It is important to highlight that this differs from
the role of neuronal agrin in AChR clustering (Ferns et al,
1996). Perlecan, another synaptic heparan sulfate proteoglycan,
is linked to both a-dystroglycan and ColQ (Peng et al., 1998).
Perlecan-null mice lack AChE at the NM] confirming its role
as an acceptor for collagen-tailed AChE (Arikawa-hirasawa
et al., 2002). In addition, muscle-derived COL13A1, which is
thought to regulate the maturation of the NMJ (Latvanlehto
et al, 2010), has been identified as a CMS-causative gene
(Rodriguez Cruz et al., 2019).
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ASSEMBLY AND FORMATION OF THE
NMJ

Given that the NM]J is clearly a target for a number of different
diseases, the majority of which involve changes in the number
or function of specific molecules, it is important to understand
fully the way in which this remarkable synapse develops and is
maintained. However, it is important to make clear that nearly all

current experimental data comes from the study of mice and that
observations cannot always be translated to the human NMJ or
indeed to other species and mammals (Table 2).

During development, the axons of motor neurons are guided
to innervate skeletal muscles (Wu et al, 2010) but it is
unclear whether motor neurons or muscles fibers determine
the exact location of the endplate band (Figure 5). In vivo
studies in mice have shown that small AChR clusters are
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TABLE 2 | Molecules identified in NMJ formation, maturation and maintenance and levels of evidence.

Molecule

Cellular level

Animal level

Human disease

NMJ formation

NMJ maturation

NMJ maintenance

* Agrin

B-catenin (muscle)
Calpain
CaMKII/PKC
Cdkb

Crk/CrkL
Dihydropyridine-R
* DOK7

Dvi1

* a-dystroglycan
Erm

FGF 7/10/22
GABP

* Laminin B2

* LRP4

*MuSK

Myogenin
* N-glycosylation

Nestin
PAKA1
Perlecan

Pro-BDNF

Rac and Rho

* Rapsyn

SIRP-a

Sorbs1 and Sorbs2
Tid1

* COL13A1
CLASP2/CLIP170
Ephexini

FGFBP1

GDNF
Neurofascin 155
Laminin a4

* Laminin a5

* MACF1

MHC1-I

NRG1-lll

Vezatin

* Agrin

a-dystrobrevin
a-syntrophin
CaMKIl

Ferns et al., 1993

Zhang et al., 2007

Chen et al., 2007
Macpherson et al., 2002
Fu et al., 2005

Hallock et al., 2010

N/A

Okada et al., 2006; Cossins
etal., 2012

Luo et al., 2002
Jacobson et al., 2001
N/A

Fox et al., 2007
Schaeffer et al., 1998
Nishimune et al., 2004
Zhang et al., 2008

Koneczny et al., 2013

Eftimie et al., 1991

Belaya et al., 2012;
Zoltowska et al., 2013

Yang et al., 2011
Luo et al., 2002
Peng et al., 1998

Yang et al., 2009
Weston et al., 2003
Cossins et al., 2006
Umemori and Sanes, 2008
Hallock et al., 2016
Linnoila et al., 2008
Latvanlehto et al., 2010
Schmidt et al., 2012
Shi et al., 2010

N/A

N/A

N/A

N/A

N/A

Qury et al., 2019

N/A

N/A

Koppel et al., 2019
Huzé et al., 2009

Grady et al., 2000
N/A
N/A

Bogdanik et al., 2011

Li et al., 2008
N/A
N/A
Fu et al., 2005

Hallock et al., 2010
Chen et al., 2011

Okada et al., 2006; Arimura
etal.,, 2014

Lijam et al., 1997

Coté et al., 1999
Hippenmeyer et al., 2007
Ohno et al., 1999
Schaeffer et al., 1998
Noakes et al., 1995

Weatherbee et al., 2006;
Yumoto et al., 2012

Chevessier et al., 2008;
Cole et al., 2008

Arnold and Braun, 1996
Issop et al., 2018

Yang et al., 2011
N/A

Arikawa-hirasawa et al.,
2002

N/A

N/A

Xing et al., 2019

N/A

N/A

N/A

Latvanlehto et al., 2010
Schmidt et al., 2012
Shi et al., 2010
Taetzsch et al., 2017
Nguyen et al., 1998
Roche et al., 2014
Nishimune et al., 2008
Nishimune et al., 2008
Oury et al., 2019
Tetruashvily et al., 2016
Lee et al.,, 2016

Koppel et al., 2019

Samuel et al., 2012; Tezuka
et al., 2014

Grady et al., 2000
Adams et al., 2000
Martinez-Pena et al., 2010

Huzé et al., 2009; Gasperi
etal., 2014

N/A
N/A
N/A
N/A
N/A
N/A
Beeson et al., 2006

N/A

Belaya, 2015

N/A

N/A

N/A

Matejas et al., 2010

Higuchi et al., 2011; Ohkawara
etal., 2013

Hoch et al., 2001; Chevessier
etal., 2004

N/A

Senderek et al., 2011; Belaya
et al., 2012; Cossins et al.,
2013; Belaya, 2015

N/A
N/A
N/A

N/A

N/A

Ohno et al., 2002
N/A

N/A

N/A

Logan et al., 2015
N/A

N/A

N/A

N/A

N/A

N/A

Maselli et al., 2017
Oury et al., 2019
N/A

N/A

N/A

Huzé et al., 2009

N/A
N/A
N/A

(Continued)
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TABLE 2 | Continued

Molecule Cellular level Animal level Human disease

* DOK7 Cossins et al., 2012 Eguchi et al., 2016 Beeson et al., 2006
Laminin a4 N/A Samuel et al., 2012 N/A

* LRP4 Shen et al., 2013 Barik et al., 2014 Ohkawara et al., 2013
* MuSK Koneczny et al., 2013 Kong et al., 2004 Hoch et al., 2001

* N-glycosylation

Belaya et al., 2012;
Zoltowska et al., 2013

Issop et al., 2018

Senderek et al., 2011; Belaya
et al., 2012; Cossins et al.,
2013; Belaya, 2015

NCAM N/A Rafuse et al., 2000 N/A
Neuregulin/ErbB N/A Lin et al., 2000; Fu et al., N/A
2005
Neurotrypsin N/A Bolliger et al., 2010 N/A
PKA/PKC N/A Martinez-Pena et al., 2013 N/A
Sarcoglycan-alpha N/A Zhao et al., 2018 N/A
Shp2 Madhavan et al., 2005 Dong et al., 2006 N/A
Src-family kinases Smith et al., 2001 N/A N/A
*Molecules with the strongest evidence are marked with an asterisk; N/A, not available.
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FIGURE 5 | Schematic representation of the mouse NMJ development. (A) Aneural AChR clusters are pre-patterned in the midbelly of the muscle fibers prior to the
arrival of the nerve terminal. (B) Upon innervation of the pre-patterned clusters in the synaptic region, they become enlarged while aneural clusters located in the
extrasynaptic region disappear. (C) As a result, AChR clusters are concentrated at a high density in the area underneath the nerve terminal maximizing the efficiency
of neuromuscular transmission. (D) Postnatal maturation of AChR clusters and plaque to pretzel transformation. (E) Fragmentation of AChR clusters with aging.

prepatterned in the middle region of the muscle prior to
the arrival of the motor axon via a process that requires
MuSK and rapsyn but is not dependent on agrin (Lin
et al, 2001). Furthermore, it has been shown that this

phenomenon also occurs

in mutant animals lacking motor

nerves, which suggests that pre-patterning is nerve-independent
and driven by a muscle-intrinsic program dependent on MuSK

(Yang X. et al., 2001).
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Subsequently, when the motor neurons innervate some of
the prepatterned AChR clusters, these become enlarged and
stable while aneural AChR clusters tend to disappear, so that
the NMJs are eventually formed in the central region of muscle
fibers. As mentioned above, neuronal agrin (McMahan, 1990)
drives the process by activating the LRP4-MuSK-Dok?7 pathway,
which is crucial for the clustering of AChRs underneath the
nerve terminal. By contrast, aneural clusters not stabilized by
agrin signaling are dispersed by a negative signal, believed to
be driven by the release of ACh from the presynaptic terminal
(Lin et al., 2005).

Genes coding for components of the neuromuscular synapse
become increasingly expressed in subsynaptic nuclei, resulting
in the concentration of proteins required locally at the NM]J
(Schaeffer et al., 2001), whereas expression of these specific
genes is repressed at nuclei elsewhere along the muscle fiber.
Even before innervation, AChR gene expression is enriched in
the central region of embryonic skeletal muscles (Lin et al,
2001; Yang X. et al., 2001), which suggests that neuronal agrin
is dispensable for early transcriptional compartmentalization.
However, the area of AChR gene expression in muscles lacking
motor axons is wider than usual, pointing that neural signals
refine muscle-autonomous prepatterning (Yang X. et al., 2001).
One of these signals is likely to be agrin, since compartmentalized
expression in subsynaptic nuclei is severely affected in agrin
and MuSK deficient mice as shown by in situ hybridization
experiments to explore the distribution of AChR subunit mRNAs
(DeChiara et al.,, 1996; Gautam et al., 1996). This does not
occur in rapsyn deficient mice where AChR genes are selectively
expressed by synaptic nuclei in the absence of AChR clusters
(Gautam et al., 1995).

The communication between synaptic signals and targeted
transcription is thought to be mediated by specific promoter
elements in synaptic genes and E-twenty six (ETS) transcription
factors. In particular, the N-box, a six-base pair element, was
identified as a critical element in targeting the transcription of
AChR delta (Koike et al., 1995) and epsilon subunits (Duclert
et al., 1996). Disruption of this element in mouse models results
in widespread expression of the reporter gene throughout the
entire muscle fiber. This was further confirmed following the
report of CMS patients underlying mutations in a conserved ETS
binding site (N-box) in the promoter region of CHRNE encoding
the AChR epsilon subunit (Ohno et al., 1999; Abicht et al., 2002).
N-box motifs have also been reported to drive synapse-specific
expression of utrophin (Gramolini et al., 1999) and AChE (Chan
et al., 1999). ETS transcription factors identified in subsynaptic
gene expression include GABP (GA-binding protein) a-subunit
(Schaeffer et al., 1998) and Erm (Hippenmeyer et al., 2007).

Presynaptic differentiation begins after axon formation and
culminates with the assembly of the neuromuscular synapse and
the differentiation of a functional nerve terminal opposite the
specialized postsynaptic membrane, where presynaptic proteins
become concentrated. A relatively recent finding is that LRP4
works as a muscle-derived retrograde signal that controls the
early steps of presynaptic differentiation by binding to motor
axons and inducing clustering of synaptic vesicles and active zone
proteins (Yumoto et al., 2012). Interestingly, although MuSK

overexpression in Lrp4 mutant mice restored AChR clustering, it
failed to rescue presynaptic differentiation as motor axons kept
growing along the muscle and rarely contacted AChR clusters
(Yumoto et al., 2012). This finding suggests that, in addition to
its function as a co-receptor for agrin, LRP4 has additional roles
in NM]J formation that are independent of MuSK.

Other molecules identified as synaptic organizers of the
presynaptic terminal include p-catenin (Li et al., 2008), laminin
B2 (Nishimune et al., 2004), fibroblast growth factors (FGF) of the
7/10/22 subfamily (Fox et al., 2007), collagen IV (Fox et al., 2007)
and signal regulatory protein o (SIRP-a) (Umemori and Sanes,
2008). However, in the absence of these molecules, motor axons
manage to contact AChR clusters and differentiate considerably,
which suggests that they act at a later stage in presynaptic
differentiation compare to LRP4. Muscle-derived B-catenin, a
signaling protein involved in the canonical Wnt pathway, has
also been found to regulate motoneuron differentiation as mice
lacking muscle B-catenin exhibit AChR clusters distributed
throughout a wider region, mislocation of nerve branches and
neurophysiological abnormalities (Li et al., 2008). By contrast,
there are no obvious NM] defects in motoneuron-specific -
catenin-deficient mice. Laminin B2, a component of the basal
lamina, organizes active zones in motor nerve terminals by
binding directly to voltage-gated calcium channels (VGCC) that
are required for AChR release (Nishimune et al.,, 2004). It is
thought that this association leads to clustering of VGCC into
arrays, which in turn recruit and stabilize other constituents
of the presynaptic apparatus. In agreement with this, mice
lacking laminin B2 display structural abnormalities at the NMJ,
namely a decreased number of active zones (Noakes et al., 1995).
Furthermore, mutations in LAMB2 encoding laminin B2 cause a
severe form of synaptic CMS in humans (Maselli et al., 2009).

MATURATION OF THE NMJ

Neuromuscular junctions are functionally active in the
embryonic stage, but they undergo complex postnatal maturation
during the first weeks of life including synaptic elimination,
endplate remodeling, and the AChR gamma-to-epsilon switch.
During this period, the NM]J increases in size and the sarcolemma
develops invaginations called postjunctional folds that increase
total surface area. The morphology of the NM]J is changed
from oval to a more complex perforated plaque, which in
mice is described as pretzel-shaped, with a nearly contiguous
arrangement of AChRs.

During synapse elimination, all but one axon are gradually
withdrawn from multiply innervated muscle fibers, leaving a
single innervating axon at each NM]J (Lichtman and Colman,
2000). This is a competitive and asynchronous process taking
place at each endplate where more active synaptic sites destabilize
neighboring inactive synapses (Balice-Gordon and Lichtman,
1994; Keller-Peck et al., 2001). Although synaptic activity and
in particular spike timing seem to drive synaptic elimination
(Favero et al., 2012), it is now believed that all three components
of the NMJ contribute to this process (Lee, 2020). In particular,
tSCs have been found to participate in the pruning of developing
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synapses through the phagocytosis of immature axons and
the displacement of nerve terminals from each other and the
postsynaptic membrane (Smith et al., 2013).

A study has identified axon-tethered Neuregulinl (NRG1-III)
as a molecular determinant for tSC-driven synaptic plasticity
(Lee et al., 2016). NRGI1-III expression coincides temporally
with synapse pruning and transgenic manipulation of NRG1-
IIT levels in mice altered the motor input loss rate at NM]Js
during synapse elimination. However, it is still not clear how this
relates to motor neuron activity. Another study showed that loss
of glial Neurofascinl55 in mice delays developmental synapse
elimination by disrupting neuronal cytoskeletal organization
and trafficking pathways in motor axons (Roche et al., 2014).
On the muscle side, overexpression of glial cell line-derived
neurotrophic factor (GDNF) causes hyperinnervation of NMJs
in neonatal mice (Nguyen et al., 1998). Other candidates thought
to participate in the refining of the neuromuscular circuitry
include the major histocompatibility complex, class I (MHC-I)
(Tetruashvily et al., 2016), pro-brain-derived neurotrophic factor
(pro-BDNF) (Yang et al, 2009) and fibroblast growth factor
binding protein 1 (FGFBP1) (Williams et al., 2009).

The remodeling of the murine endplates during early
postnatal life results in a plaque-to-pretzel transition where
the NMJs become perforated and increasingly complex with
multiple branches innervated by a single axon (Slater, 1982).
Using cultured aneural myotubes on laminin-coated plates
that mimic the in vivo transformation, it was shown that
perforations in the AChR aggregates bear structures resembling
podosomes whose location and dynamics are spatiotemporally
correlated with changes in the topology of AChR clusters
(Proszynski et al., 2009). Podosomes are adhesive dynamic actin-
rich matrix remodeling organelles described in numerous cell
types. However, evidence for the relevance of podosomes in vivo
is scarce and specifically, there is no definitive proof of the
existence of synaptic podosomes at the NM]J in living organisms
(Bernadzki et al., 2014). Other actors thought to be involved
in the plaque-to-pretzel transition are synaptic laminins a4 and
a5 (Nishimune et al., 2008) and ephexinl (Shi et al., 2010).
The latter is a rho guanine nucleotide exchange factor (GEF)
involved in actin cytoskeletal dynamics. Adult ephexin1~/~ mice
present with severe muscle weakness, impaired neuromuscular
transmission and abnormal maturation of the NM]J into the
pretzel-like shape (Shi et al., 2010). Finally, being significantly
smaller and more fragmented than murine NMJs (Jones et al.,
2017), human neuromuscular synapses may undergo a different
process of postnatal maturation.

The adult nicotinic AChR is a pentameric complex composed
of four different transmembrane subunits (a-, 8-, 8-, and &/y-
subunits) (Karlin, 2002; Figure 4). During early postnatal life, the
fetal form of the AChR, containing a gamma subunit (2a:83:3:y)
is gradually replaced by an epsilon subunit-containing adult
form (20:83:3:¢), leading to increased calcium conductance of the
receptor (Missias et al., 1996). The half-life of synaptic AChRs
also increases during maturation as insertion of new AChRs and
the recycling of internalized AChRs maintain the high density
of AChRs at the crests of postsynaptic junctional folds (Bruneau
et al., 2005; Bruneau and Akaaboune, 2006).

MAINTENANCE OF THE NMJ

The apparent macroscopic stability of the NMJ conceals a
remarkable molecular dynamism where AChRs are continually
exchanged between synaptic and extrasynaptic regions to
maintain the high density of AChRs at the postsynaptic
membrane (Akaaboune et al., 2002). The homeostasis of the
neuromuscular synapse throughout life is essential for the NMJ
function, as inactivation of the underlying molecular mechanisms
results in synaptic disassembly (Tezuka et al., 2014).

It has been shown using postnatal knockdown experiments
that most molecules involved in synaptic formation such as
Agrin, MuSK and DOK?7 are later required for NMJ maintenance
(Kong et al, 2004; Barik et al., 2014; Tezuka et al, 2014;
Eguchi et al, 2016). They may also have distinct roles in
synapse formation and maintenance: for instance, the forced
expression of DOK7 in agrin deficient mice restores synapse
formation but NM]Js disappear rapidly after birth, which points
to an additional role of agrin distinct from MuSK activation in
postnatal maintenance (Tezuka et al.,, 2014). By contrast, other
molecules playing an important role in NM]J stabilization and
maintenance are dispensable during synapse formation: some
components of the dystrophin-glycoprotein complex (DGC)
(Ibraghimov-Beskrovnaya et al., 1992), src-family kinases (Smith
et al., 2001), NCAM (Rafuse et al., 2000), neuregulin (Schmidt
et al., 2011), and more recently, MACF1 (Oury et al, 2019).
There is also increasing evidence from clinical (Lashley et al.,
2010; Rodriguez Cruz et al., 2015) and experimental studies
(McMacken et al., 2019; Vanhaesebrouck et al., 2019) that g2-
adrenergic signaling could play a role in NMJ] homeostasis.
Furthermore, one study in mice proposed that sympathetic
neurons make close contact with NMJs (Khan et al., 2016).

The DGC complex links the cytoskeleton of muscle fibers to
the extracellular matrix (Ibraghimov-Beskrovnaya et al., 1992).
Mice lacking a-dystrobrevin, a cytoplasmic component of DGC,
show no abnormalities in NMJ morphology at postnatal day
7. However, by 1 month of age and independently of muscle
changes, AChRs became abnormally distributed with irregular
branch borders while the size, number and arrangement of
branches remained unaltered (Grady et al., 2000). Another
study showed that rates of AChR turnover were significantly
increased in mice lacking a-dystrobrevin compared to WT and
mdx mice (Akaaboune et al, 2002). In vitro, a-dystrobrevin
is dispensable for agrin-induced cluster formation but required
for maintenance of clusters following agrin withdrawal (Grady
et al., 2000). A similar phenotype was reported in a-syntrophin
null mice in the absence of myopathy (Adams et al., 2000).
The structural abnormalities seen in the mdx mouse model
of Duchenne muscular dystrophy (Sicinski et al., 1989) are
more profound with severe endplate fragmentation (Torres and
Duchen, 1987). However, these are found exclusively at NM]Js
on regenerated muscle fibers, which indicates that endplate
remodeling is related to muscle damage rather than dystrophin
deficiency (Lyons and Slater, 1991).

Src family kinases (src, fyn, and yes) have been implicated
in signaling pathways downstream of MuSK (Fuhrer and Hall,
1996). Studies in src=/~;fin™/~ and src™/~;yes/~ mutant
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mice showed normal NM]J development and agrin-induced
phosphorylation of the AChR-f8 subunit but AChR clusters
in mutant cell lines were significantly less stable following
agrin withdrawal (Smith et al, 2001). The neuronal cell
adhesion molecule (NCAM) is thought to participate in
the maturation of the presynaptic terminal as NCAM null
mice present delayed presynaptic structural maturation and
smaller endplates (Rafuse etal., 2000). Two serine/threonine
kinases, PKC and PKA, have been implicated in the regulation
of AChR dynamics at the adult NM] of living mice by
possibly acting on different receptor subunits and/or substrates
involved in the anchoring of AChRs (Martinez-Pena et al,
2013). In addition, Ca?*/calmodulin-dependent kinase II
(CaMKII) is thought to participate in the recycling of
AChRs necessary to maintain postsynaptic AChR density
(Ibraghimov-Beskrovnaya et al., 1992).

Finally, it is increasingly more evident that glial cells have
an important role in NMJ maintenance. Characterization of
NM]Js after genetic ablation of tSCs in adult mice shows NM]
fragmentation and neuromuscular transmission defects (Barik
et al., 2016). In adult frogs, selective ablation of tSCs results
in widespread retraction of existing synapses (Reddy et al.,
2003). One possible mechanism is through neuregulin/ErbB
signaling as ErbB2~/~ mice lack tSCs and postjunctional folds
and although they retain the ability to form neuromuscular
synapses, these fail to be maintained (Riethmacher et al., 1997;
Lin et al., 2000). Other study in frogs suggested that tSCs express
active agrin and enhance aggregation of AChRs on muscle fibers
(Yang J.E. et al., 2001).

REGENERATION OF THE NMJ

Injury to the nerve or muscle, lack of physical activity and
ageing can alter synaptic organization resulting in endplate
fragmentation, partial denervation and reduction in active zones
and AChR density (Stanley and Drachman, 1981; Lyons and
Slater, 1991; Valdez et al., 2010).

It is well known that mouse muscle endplates lose the
normal pretzel shape and become fragmented with multiple
spot contacts following muscle fiber damage (Lyons and Slater,
1991). One of the best examples is the mdx mouse model of
Duchenne muscular dystrophy (Sicinski et al., 1989). In 8-
week old mdx mice, muscle endplates from regenerating fibers
appear dramatically fragmented over an enlarged postsynaptic
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