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Accurate molecular concentrations are essential for reliable analyses of biochemical
networks and the creation of predictive models for molecular and systems biology,
yet protein and metabolite concentrations used in such models are often poorly
constrained or irreproducible. Challenges of using data from different sources include
conflicts in nomenclature and units, as well as discrepancies in experimental procedures,
data processing and implementation of the model. To obtain a consistent estimate
of protein and metabolite levels, we integrated and normalized data from a large
variety of sources to calculate Adjusted Molecular Concentrations. We found a high
degree of reproducibility and consistency of many molecular species across brain
regions and cell types, consistent with tight homeostatic regulation. We demonstrated
the value of this normalization with differential protein expression analyses related to
neurodegenerative diseases, brain regions and cell types. We also used the results
in proof-of-concept simulations of brain energy metabolism. The standardized Brain
Molecular Atlas overcomes the obstacles of missing or inconsistent data to support
systems biology research and is provided as a resource for biomolecular modeling.

Keywords: molecular concentrations, neuroproteomics, quantitative resource, data integration, mouse brain,
systems modelling and simulation, differential protein expression, meta-analysis

INTRODUCTION

A deeper understanding of the functions of biomolecular networks requires more accurate and
reproducible proteomic and metabolomic concentration profiles. Decades of accumulated data
have fed this demand, but the disparity of experimental methods and apparent discrepancies in
results have hampered progress and many biological conditions still lack quantitative proteomic
and metabolomic characterization.

Studies that reconstruct and simulate molecular systems usually rely on knowledge from various
sources but there are not many studies which provide extensive comparison of newly generated
data to existing independent sources or integrate and re-analyze data of different provenance (Ho
et al., 2018; McKenzie et al., 2018). Consequently, modeling faces the challenge of integrating non-
homogeneous data from different experimental protocols, species, ages, cell types and even tissues,
as well as measured levels of detail. In fact, systematic errors arising from various experimental
procedures can affect the quality of the data, models and simulations, leading to inconsistencies
and debates about the biology of the processes and interpretation of observations. An integrated

Frontiers in Molecular Neuroscience | www.frontiersin.org 1 November 2021 | Volume 14 | Article 604559

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/journals/molecular-neuroscience#editorial-board
https://www.frontiersin.org/journals/molecular-neuroscience#editorial-board
https://doi.org/10.3389/fnmol.2021.604559
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnmol.2021.604559
http://crossmark.crossref.org/dialog/?doi=10.3389/fnmol.2021.604559&domain=pdf&date_stamp=2021-11-10
https://www.frontiersin.org/articles/10.3389/fnmol.2021.604559/full
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-neuroscience#articles


fnmol-14-604559 November 5, 2021 Time: 15:18 # 2

Shichkova et al. Brain Molecular Atlas

resource is therefore desirable to enhance multiscale analysis of a
system and assist subsequent experimental design.

We sought to estimate concentrations of proteins and
metabolites in the brain from a multitude of studies, with the goal
of providing data of sufficient quality for use in simulations and
as a reference for comparison in future studies. The integrated
data give a quantitative overview across different brain regions,
cell types, organelles, species, ages and conditions, and can
serve as a navigator for brain researchers to find new targets
for their studies.

There are significant obstacles in obtaining comparable
multiscale absolute quantification protein data due to
confounding variables resulting from different experimental
subjects and approaches. Proteomic quantification methods
usually require preselection of specific protein targets to be
measured because of logistical issues in experimental setup
(Remes et al., 2020). Even though the literature describes many
comprehensive transcriptomics data sets (Cahoy et al., 2008;
Tasic et al., 2016; McKenzie et al., 2018; Zeisel et al., 2018), due
to regulatory mechanisms and turnover, protein levels are not
always well-correlated with gene expression (Vogel et al., 2010;
Schwanhäusser et al., 2011; Edfors et al., 2016; Silva and Vogel,
2016; Li et al., 2017; Mandad et al., 2018; Eraslan et al., 2019).
This complicates the use of transcriptomics data in biochemical
simulations. Nonetheless, gene expression can help infer protein
level estimates, when other measurements are not available.

The final product of the pipeline developed in this work is
a normalized molecular concentration database called the Brain
Molecular Atlas (also referred to as Molecular Atlas). We found
a high degree of data reproducibility across studies, as well as
consistency among brain regions. We demonstrate its potential
for creating more accurate representations of biomolecular
systems that are simulation-ready.

As a case study, we present an analysis of molecular profiles
associated with Alzheimer’s (AD) and experimental autoimmune
encephalomyelitis (EAE) diseases. In a second demonstration,
we apply the Molecular Atlas to the examination of energy
metabolism-related processes. Although studied for decades, this
field is in need of improved detailed models as there are ongoing
debates about energy metabolism mechanisms and even which
homeostatic processes are mediated by well-known pathways
(Baeza-Lehnert et al., 2019; Gerkau et al., 2019).

MATERIALS AND METHODS

There are two sections of the Brain Molecular Atlas, one
corresponding to protein and the other to metabolite
concentrations. The scope of the data for the Brain Molecular
Atlas, as well as data integration procedures are shown in
Figure 1. The data integration pipeline for each section consists
of the following phases: data mining, nomenclature alignment,
and concentrations estimation, which involve calculations
of molar concentrations and subsequent normalization,
followed by validation.

Primarily mouse data were supplemented with rat and human
data to get higher coverage of different experimental conditions,

ages, brain regions and organelles. These species were chosen due
to their importance for a wide range of neuroscience studies.
Most of the data describe healthy states. Additional data on
AD and EAE were collected for evaluation of the discriminative
power of the estimated molecular concentrations procedure and
can be accessed in the “condition” column in Supplementary
Data Sheets 1-4.

The code is available from the repositories https://github.com/
BlueBrain/MADIP (for the data processing) and https://github.
com/BlueBrain/BrainMolecularAtlas (for generating the figures)
to support transparency, reproducibility and analysis of the new
data. A detailed description of the data integration pipeline can
be found in the Supplementary Presentation.

Data Mining
The first step of the data integration pipeline is data acquisition.
Although there are many initiatives to automate data collection
(Breckels et al., 2016), most of them are applicable only for
specific domains, types of data (Wang et al., 2012) or particular
organisms (Wilhelm et al., 2014). Our strategy for data collection
consisted of several steps.

Proteins
We manually searched for large-scale mass-spectrometry based
studies in PubMed and ProteomeXchange repositories (Deutsch
et al., 2019). Decisions on whether to include or exclude brain
protein quantification data sources for the selected species of
interest (mouse, rat, human) were made based on the following
criteria: (1) absolute versus relative quantities reported, where
we only chose the former, because the absolute quantification
is particularly important for the research on the modeling and
simulation of the molecular processes (for instance, this resulted
in the exclusion of valuable data from Yu et al. (2020) reporting
relative scaled abundances); (2) reported protein levels are LFQ,
iBAQ, TMT-based abundances or concentrations, because the
desired common unit of molar concentrations could be obtained
from these data. This culling process resulted in the inclusion of
fewer than 5% of all papers that we initially considered. From
the hundreds of studies primarily identified this way, we selected
only 22 the most relevant studies resulting in 25 datasets for
integration in our database (Geiger et al., 2013; Han et al., 2014;
Sharma et al., 2015; Wiśniewski et al., 2015; Jean Beltran et al.,
2016; Carlyle et al., 2017; Hosp et al., 2017; Itzhak et al., 2017;
Chuang et al., 2018; Duda et al., 2018; Fornasiero et al., 2018;
Hamezah et al., 2018, 2019; Krogager et al., 2018; Zhu et al., 2018;
Davis et al., 2019; Fecher et al., 2019; Guergues et al., 2019; Hasan
et al., 2019; McKetney et al., 2019; Bai et al., 2020; Kjell et al.,
2020). Additional information on each of those is summarized
in the Supplementary Table 1.

Metabolites
Metabolite concentrations had to be collected from many
different sources. Due to experimental complications, metabolic
studies usually provide data for only subsets of around 10-
30 target molecules. Automation of data mining is therefore
required to achieve higher coverage of the metabolite landscape
of the NGV system. We identified metabolic pathways of key
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FIGURE 1 | Data scope overview and integration pipeline. (A) Scope and potential applications of data integrated in the Brain Molecular Atlas. (B) General pipeline
for the Brain Molecular Atlas data integration. (C,D) Detailed pipeline for calculating protein (C) and metabolite (D) concentrations. Abbreviations: ER = endoplasmic
reticulum, LFQ = label-free quantification; TMT = tandem mass tag; SILAC = stable isotope labeling by/with amino acids in cell culture; iBAQ = intensity-based
absolute quantification; RPKM = reads per kilobase million; TPM = transcripts per kilobase million; RTP = RNA to protein ratio estimator; CID = compound ID number.

interest as follows: glycolysis, glycogenolysis, pentose phosphate
pathway, the tricarboxylic acid (TCA) cycle, the electron
transport chain of oxidative phosphorylation, and the glutamate-
glutamine cycle. Further, we collected the biochemical reactions,
metabolites and enzymes which constitute these pathways. We
then generated PubMed queries (the list of main metabolites

and energy-metabolism related enzymes combined with the list
of cell types, subcellular locations and methods) to get more
precise matches for kinetics of processes and concentrations of
molecules related to brain and the species of interest (mouse, rat,
or human). An example of a query is: “(mouse OR rat OR human)
AND (brain OR glia OR astrocyte OR neuron) AND hexokinase
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AND (quanti∗ OR measur∗ OR estimat∗) AND ((concentration
NOT attention) OR level).” We performed automatic PubMed
searches and text mining using R package Adjutant (Crisan et al.,
2019), which resulted in 5405 hits. We next performed text corpus
generation (bag-of-words), dimensionality reduction (tSNE) and
unsupervised clustering (HDBSCAN) with the same R package
to support navigation of that large number of hits. Representative
PubMed mining results are shown in Supplementary Figure 1,
where cosine similarity of clusters is a measure for associations
of topics. The automated data mining can be reproduced using
the code accompanying this paper to obtain the list of initial
search hits, which are also available (with corresponding queries)
as Supplementary Table 3. Then we manually analyzed papers
for the topics of highest interest, and combined this data with
the information from the set of large-scale studies, databases and
other studies which were found by manual search. This resulted
in selection of data from only 41 sources (references are available
from the Supplementary Table 1 and Supplementary Data Sheet
5). The low percentage of included hits is mainly due to the
fact that the automatically found publications frequently featured
quantitative data and concentrations as part of the methods
section rather than measured results.

Nomenclature Alignment
Proteins
The multitude of gene and protein identifiers dictates the
need for performing nomenclature alignment to resolve naming
inconsistencies. Most studies reported both gene names and
UniProt accession numbers (The UniProt Consortium, 2017),
but a few of the analyzed studies gave only one or the
other. In some cases, UniProt identifiers become obsolete
and require mapping to the current version. Moreover, it
is very typical for proteomics studies to report multiple
UniProt numbers per single entry, as provided by proteomic
mass-spectrometry annotation algorithms. Synonymous gene
names are equally problematic. Orthologous gene names from
different species are another challenging problem in data
integration. Since nomenclature misalignment complicates the
discoverability and comparability of the data, we generated a
consistent list of genes and proteins with the mouse gene
nomenclature as a reference and queried UniProt (The UniProt
Consortium, 2017) and Mouse Genome Database (Bult et al.,
2019) to resolve the nomenclature conflicts.

To avoid introducing additional gene and protein identifiers,
we sought the most common name for every gene for
which we had corresponding protein concentration data (and
most common UniProt identifiers). In uncertain situations, we
preferred mouse identifiers, because the mouse is the main genus
of interest for us. In much of the raw data, multiple synonymous
gene names were given per data entry. For example, gene
names SPRYD7 and 6330409N04RIK (SPRY domain-containing
protein 7) are listed in Geiger et al. (2013), Wiśniewski et al.
(2015) and cultured cell data from Sharma et al. (2015), while
11 other datasets report it by the name SPRYD7. Interestingly,
the isolated cell data from Sharma et al. (2015) is among the
latest. This can be explained by automated annotation procedures

used in proteomics pipelines. Moreover, in one of the most recent
studies (Hasan et al., 2019) only UniProt IDs are given, and the
protein of corresponding gene is reported under the UniProt
identificator Q3TFQ1.

We used synonymous gene names to build a graph in which
gene names are the vertices. Gene names that are listed together
for the same entry are connected by edges. When two or more
data entries share one or a few common gene names and
possibly some other gene names, and there are no other entries
that have any of these gene names, these two subgraphs will
form a connected component of the graph. We consider nodes
of every connected component as potential synonyms. In the
same way, the graph of synonyms was built using the UniProt
database entries for mouse, rat and human, listing multiple
gene names and UniProt protein accession identifiers. For every
connected component in the names graph, we assigned the
most frequent gene name. This produced a dictionary with gene
name mapping. To identify mis-mapping due to the observed
ambiguities in gene names given in the source data, we cross
validated the original gene names and their matches, with the
corresponding UniProt accession numbers. We identified several
cases of non-synonymous gene names reported for the same
entry. UniProt-derived synonyms were used for this step. Some
nomenclature conflicts found by manual checks were resolved
with the use of the Mouse Genome Database and UniProt,
the most common gene names were kept as final identifiers
in the integrated Molecular Atlas. In a similar manner, we
performed the nomenclature alignment for UniProt accession
identifiers reported in the raw data. More details can be found in
Supplementary Presentation and the commented source code.

For studies which contained only genes or only UniProt
identifiers, we queried the UniProt database to acquire missing
information. We consider gene names as the main identifiers
of the Brain Molecular Atlas, even though this leads to
the merging of information associated with different protein
isoforms. UniProt accession identifiers are available for reference
and transparency in Supplementary Data Sheets 1-4.

Metabolites
We utilized the PubChem compound Identifier (Kim et al.,
2019) to resolve nomenclature inconsistencies. In some cases,
we also had to do manual data curation to resolve ambiguity in
names of molecules.

Concentration Estimations
Proteins
We applied experimental data- and unit-dependent processing
procedures as outlined in Figures 1B-D and as detailed below. In
addition to concentrations reported in mol/g protein and molar
units, we included protein concentration estimates which rely on
the recent high-throughput labeling [tandem mass tag (TMT)
and stable isotope labeling by amino acids in cell culture (SILAC)]
or label-free mass-spectrometry based proteomics studies. These
strategies are untargeted, involving both identification and
quantification of proteins. Depending on the methods used by
each study, protein levels are reported as TMT-, SILAC-, LFQ-
intensities, intensity-based absolute quantification (iBAQ) values,
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concentrations in mol/g protein and in molar units. TMT is a
chemical labeling approach (Thompson et al., 2003), that has
high sensitivity and allows detection of proteins, which are
present at the low abundances. SILAC is an efficient metabolic
labeling technology (Ong et al., 2002) involving the use of heavy
isotopes of amino acids being incorporated into cell proteins. The
techniques which do not require labeling steps are referred as
label-free (LFQ) (Chelius and Bondarenko, 2002; Bantscheff et al.,
2007; Ning et al., 2012; Cox et al., 2014; Ankney et al., 2018).
They are widely used, rapid and relatively inexpensive. On the
downside, LFQ experiments show high risk of bias and require
tight control. Various algorithms are available to analyze the data
from label-free studies and quantify protein levels. One of the
protein abundance measures is called iBAQ, and it is calculated as
summed intensities of peptides of a particular protein, divided by
the number of peptides that theoretically can be produced from
this protein (Schwanhäusser et al., 2011).

Protein concentrations can be estimated from the mass-
spectrometry data even if it does not feature spike-in standards
with the widely used “proteomic ruler” approach or total
protein mass approach (Wiśniewski et al., 2014) in cases when
there is not enough data on histone levels. While there are
some software solutions to determine protein concentrations
in this regard (Tyanova et al., 2016), we implemented in
Python the main principles and formulas of the total protein
mass approach in order to combine concentration calculations
with other analyses in the same pipeline. We adapted this
approach to calculate concentrations using mass-spectrometry
based data mostly with normalization based on the number of
theoretical peptides calculated from UniProt protein sequences
by enzyme specificity for particular amino acids. Molecular
weights of proteins were taken from the original data or
queried from UniProt in cases when they were not available
from the source data. UniProt protein sequences and molecular
weights were queried with the use of methods reported in
the literature (Cokelaer et al., 2013; Tange, 2020). Molecular
weights of proteins were used as part of scaling calculated
protein concentrations. For LFQ, TMT, SILAC data, we used
the number of theoretical peptides as an additional correction.
Within iBAQ data, signals were already scaled to the number
of peptides. The data from Wiśniewski et al. (2015), Duda et al.
(2018) were reported in the units of concentrations, which were
calculated by the sources analogously with adaptation of the total
protein approach.

For concentration estimations based on the data from Geiger
et al. (2013), Han et al. (2014), Sharma et al. (2015), Carlyle
et al. (2017), Hamezah et al. (2018), Hamezah et al. (2019),
Krogager et al. (2018), Zhu et al. (2018), Fecher et al. (2019),
Guergues et al. (2019), McKetney et al. (2019), Kjell et al.
(2020), we programmatically obtained numbers of theoretical
peptides by enzyme specificity for particular amino acids for
every experiment using protein sequences from UniProt. Peptide
counts were used as detectability scaling. Concentrations were
also estimated for the data from Jean Beltran et al. (2016), Hosp
et al. (2017), Chuang et al. (2018), Fornasiero et al. (2018), Davis
et al. (2019). The procedure here was very similar to the LFQ data
cases, but we did not do the scaling by number of theoretical

peptides working with iBAQ data which by definition has this
type of normalization.

Formulas summarizing the calculation of concentrations are
based on Wiśniewski et al. (2014) and given by eqs. (1-4). First,
there are several protein-specific factors which affect protein
detectability by mass-spectrometry based methods. One of these
factors is the number of peptides which can be formed by
any given protein cleaved by the enzyme or enzymes used in
proteomic experiments. For tryptic peptides, we split sequences
by arginine and lysine into peptides and counted those that
had a length from 6 to 29 amino acids. The same logic was
applied to count theoretical peptides in experiments with the
lysC enzyme. Another factor which explains variable accuracy
in protein detectability is the molecular weight of the protein.
Next, according to the same reference (Wiśniewski et al., 2014),
total cellular protein concentration was considered to be 200 g/L,
and protein amount per cell was taken as 200 pg. Even though
these are commonly used estimates, the analysis would benefit by
replacing them with more cell type and tissue specific numbers.
However, this data is not always available. Further, protein copy
number can be estimated using mass-spectrometry signals, the
Avogadro constant and parameters described above. Likewise,
total cell volume and protein molar concentration can be further
derived as shown by eqs. (3, 4).

mwWeightNormSumIntens =

sum
(

LFQ
detectabilityFactorTheorPep

∗molWeight
)

(1)

copyNumber =
LFQ

detectabilityFactorTheorPep
∗

(protPerCell ∗ Avogadro/mwWeightNormSumIntens) (2)

totalVolume =

 sum
(
copyNumber ∗ molWeight

Avogadro

)
totalCellProtConc

 (3)

concentration =
copyNumber
totalVolume

/Avogadro (4)

where the variables are as follows: Avogadro - Avogadro constant;
concentration - molar protein concentration; copyNumber -
protein copy number; detectabilityFactorTheorPep - experimental
detectability number (number of theoretical peptides); LFQ
- value from label-free quantification; molWeight - protein
molecular weight; mwWeightNormSumIntens - weighted for
detectability normalized by molecular weight summed LFQ
values (see the formula above); protPerCell - protein amount per
cell; sum - summation; totalCellProtConc - total cellular protein
concentration; totalVolume - total cell volume.

We then added data from Itzhak et al. (2017), which is
provided in molar units, so we did not need to make estimates.
Concentrations were scaled to µM and median normalized using
housekeeping proteins data as described in Section “Results.”
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The next step of the data processing pipeline was to normalize
estimated protein concentrations by the median concentrations
of housekeeping proteins from healthy young to middle-
aged mice (and mice cell lines). We did not include in our
calculation the reference median value for normalization data
from Fecher et al. (2019), because it reported only concentrations
in mitochondria. However, this data was further normalized
using the reference median value to make it comparable with
other data. The list of housekeeping protein identifiers was
obtained from the Housekeeping Transcript Atlas (Hounkpe
et al., 2021). This approach allowed us to decrease the effect of
factors that cannot be easily controlled in the experiments, such
as sample preparation bias.

Metabolites
The second part of the Brain Molecular Atlas is composed
of metabolite concentrations, which were semi-automatically
collected from a variety of resources (Kauffman et al., 1969;
Tsuboi et al., 1969; Gibson and Blass, 1976; Sølling, 1979;
Anderson and Wright, 1980; Sabate et al., 1995; Pouwels and
Frahm, 1998; Lust et al., 2003; Patel et al., 2004; Cruz et al.,
2005; Cudalbu et al., 2005; Nakayama et al., 2005; Mogilevskaya
et al., 2006; Shestov et al., 2007; Wishart et al., 2007, 2009,
2012, 2018; Metelkin et al., 2009; Kulak et al., 2010; Choi
and Gruetter, 2012; Neves et al., 2012; Sugimoto et al., 2012;
Zheng et al., 2012, 2016; Duarte and Gruetter, 2013; Palm
et al., 2013; Kim et al., 2014; Lee et al., 2014; Wiebenga et al.,
2014; Berndt et al., 2015; Jolivet et al., 2015; Chen J. et al.,
2016; Chen W.W. et al., 2016; Robinson and Jackson, 2016;
Schwarz and Blower, 2016; Tretter et al., 2016; Hertz and
Rothman, 2017; McBean, 2017; Calvetti et al., 2018; De Feyter
et al., 2018; Flanagan et al., 2018; Liu et al., 2018; Ronowska
et al., 2018) that are listed with the metabolite levels in the
Supplementary Data Sheet 5. Depending on the initial data
type, appropriate transformations were applied to get molar
concentrations (Figure 1D). For instance, we used a rat brain
density value of 1.04 g/mL (DiResta et al., 1991) and molecular
weights of metabolites when dealing with ‘ng/g wet tissue’ units.
Brain water content was considered to be 80% for approximations
(Keep et al., 2012) when working with data of ’nmol/mg dry
weight’. The calculations and data analyses were performed using
Python and R programming languages as described in detail in
the Supplementary Presentation.

Validation Strategy
The search for validation data is particularly demanding. While
it would be ideal to compare calculated concentrations to an
independent set of studies measuring the concentrations of
the large number of molecules by some other experimental
techniques, to our knowledge such data is missing. Moreover,
separating the datasets for validation would mean not using them
for the database itself, decreasing its coverage and, subsequently,
the statistical power of the analyses done using the database. For
these reasons, we had to come up with a set of evaluations (strictly
speaking, evaluations should not be called validations) which
address the correctness of the different aspects of the database,
such as:

(1) comparison of absolute levels for signaling protein
concentrations to the study not used in our atlas (Milo et al.,
2010), and evaluated total protein numbers per cell to the
literature level (Milo, 2013);

(2) similarity and difference between various groups of proteins
from different pairs of studies, brain regions, cell types;
proteins of different functions and proteins from different
locations;

(3) PubMed co-mentions of gene names with cell types in
which the concentration of related protein was found as
higher than compared to all other cell types (assuming
that proteins with higher cell-type specificity measure are
expected to have more co-mentions of their names with
those cell types in PubMed search);

(4) functional analysis of overrepresented proteins across brain
regions and cell;

(5) testing the discriminatory abilities of the calculated
concentrations in the approach analogous to the differential
protein expression.

Comparison of Estimated Protein
Concentrations to Literature
The aim of the first step in the assessment of generated
concentrations and copy numbers was to compare them to
the literature values. Estimated protein concentrations were
compared to the publicly available data from Itzhak et al.
(2017), which was also included in the Molecular Atlas and
partially used for the normalization (see more details in Results).
Since this study applied a very similar approach to evaluate
molar concentrations, given comparisons can only control for
possible problems in our adaptation of the total protein approach
(Wiśniewski et al., 2014).

Total protein copy numbers per cell were compared to one
different study (Milo, 2013). Concentrations of signaling proteins
were compared to literature data from Harvard BioNumbers
(Milo et al., 2010). Statistical analysis was performed in Python
with the use of Scipy (Virtanen et al., 2020) and Scikit-posthocs
(Terpilowski, 2019).

Statistical Analysis for Multiple
Comparisons of Data Sets
The normalization procedure relied on the concentrations of the
housekeeping genes, so we next assessed equality of medians
of the full data sets to see if they were in agreement. To
compare normalized protein and peptide concentrations from
different studies we calculated Holm adjusted p-Values from
the Conover post hoc test applied after the Kruskal-Wallis
Test rejection. We have chosen the Kruskal-Wallis Test to
examine the equality of medians among multiple independent
samples of different sizes, because it is a distribution-free
test, for which the normality assumption does not need to
be satisfied. This test is sometimes referred to as a non-
parametric ANOVA. The Conover post hoc test has been
chosen for having higher power compared to Nemenyi and
Dunn tests. Both healthy and diseased states data were used
for this analysis.
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Correlation Analysis
We calculated Pearson correlation coefficients of the protein
concentrations across different data sets, brain regions and cell
types, as well as numbers of common proteins with known
concentrations across pairs of data sets, brain regions and cell
types. We also calculated numbers of common proteins measured
across all combinations of data sets, brain regions, and cell types.

Factors That Explain Biological
Variability of Concentrations
We were concerned that applied transformations could
potentially “overnormalize” the data, eliminating natural
biological differences. We performed a series of statistical
analyses to assess whether subcellular location, functional
category or cell type contribute the most to the remaining
variability of protein concentrations. We assigned functional
categories to proteins using Gene Ontology (MGI-GO slims1).
We started with a subset of the data from neurons to reduce
possible systematic errors due to differences in cell types. Using
this data as a case study, we compared concentrations of stress-
response related proteins of oxidative stress and DNA repair.
These proteins are mostly attributed to different organelles,
primarily mitochondria and nuclei. Next, we compared the
oxidative stress response and oxidative phosphorylation (mostly
mitochondrial proteins). We then examined the variability of
all available protein levels in neurons compared to astrocytes.
For this analysis, we chose a subset of oxidative stress response
proteins. We used only mouse data to perform the comparison
of neurons with astrocytes, since the rat and human studies
predominantly contain neuron and not astrocyte data. For the
subcellular location and functional category analysis, data from
mouse, human, rat were used as they were well balanced across
compared groups.

We used a series of statistical measures to perform rigorous
analysis of protein concentration distributions (both µM and
natural log transformed data). We started with the distance
between the median to overall visible spread ratio (DBM/OVS)
calculation for the first evaluation of whether there is a difference
between compared groups (Wild et al., 2011). Then we aimed
to examine whether compared groups are likely taken from
the same distribution by using the Wilcoxon-Mann-Whitney
U-test (two-sided) and Kolmogorov-Smirnov test (two-sided).
Even though these tests are relatively similar, the Kolmogorov-
Smirnov test is sensitive to any differences in distributions
(shape, median, spread), while the Wilcoxon-Mann-Whitney test
is mostly sensitive to differences in medians. Next we tested
for equality of variances using the Brown-Forsythe (modified
Levene test to use medians as a centers of compared groups)
test (Levene, 1960; Brown and Forsythe, 1974); and the Fligner-
Killeen (non-parametric) test (Fligner and Killeen, 1976; Conover
et al., 1981), both of which are applicable when data is non-
normally distributed. The first tolerates relatively small deviations
from normality, and the second is better suited for non-normally
distributed data and the data with outliers. Homogeneity of

1http://www.informatics.jax.org/vocab/gene_ontology/

variance is an important assumption of most of the parametric
statistical tests. Due to the possible effect of sample sizes, we
performed a permutation procedure with 1000 times random
sampling (N = 100) and repeated comparisons in sampled data.
We used sampling from combined data as control. Only healthy-
state data was included.

Comparison With PubMed Mentions
We defined the brain region and cell type specific proteins
as those with concentrations in the top 1% of overall protein
levels in different brain regions and cell types correspondingly.
Next, we defined protein specificity index as a difference in
natural logarithms of concentrations for proteins in relation to
brain regions and cell types where they are measured compared
to their concentrations in other brain regions and cell types
correspondingly. We queried PubMed for co-mentions of gene
names with cell types in which the concentration of related
protein was measured. Then, we compared specificity indices
of these proteins with their association (co-mentions) with
those brain regions and cell types in the literature obtained by
automated PubMed mining using the R programming language
(library RISmed2). Only healthy state data were used for this
analysis. Possible biases in this analysis come from synonyms as
well as a tendency to cite influential papers. This analysis should
be considered as one of many evaluation steps.

Functional Network Analysis
As was done for the PubMed mentions analysis, we selected
proteins in every cell type (neurons, astrocytes, microglia,
oligodendrocytes) and brain region of interest (cerebellum,
cortex, hippocampus, striatum, brainstem, thalamus, amygdala)
with concentrations above 99% of overall protein levels across
cell types and brain regions, correspondingly. Using Cytoscape
version 3.7.1 (Shannon, 2003) with STRING plugin (Doncheva
et al., 2019; Szklarczyk et al., 2019), we analyzed networks of
these proteins in different cell types and brain regions, using
the Markov Cluster Algorithm (inflation parameter of 5) and
subsequent functional enrichment on clusters using the default
parameters to retrieve it with the Cytoscape-STRING plugin.
Only healthy state data were used for this analysis.

Preservation of Differential Protein
Expression Patterns
We used concentrations estimated from Hasan et al. (2019)
data to examine protein level changes in EAE compared to
healthy controls. Only one study was selected for this analysis to
diminish possible biases. The data was median-normalized. First,
we used principal component analysis (PCA) for dimensionality
reduction to visualize the samples. Next, we performed basic
differential expression analysis as shown in Supplementary
Presentation and the source code. We used the same criteria
as in Hasan et al. (2019) to select significantly upregulated (fold
change ≥ 1.15; p < 0.05) and downregulated (fold change ≤
0.87; p < 0.05) proteins. Centering and scaling with the base R

2https://cran.r-project.org/web/packages/RISmed/RISmed.pdf
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language scale function were performed for the heatmap. We set
the “row_km” parameter in ComplexHeatmap (Gu et al., 2016) to
two for easier interpretation of clusters. Functional annotation of
clusters was obtained using Gene Ontology resource (Ashburner
et al., 2000; Mi et al., 2017; The Gene Ontology Consortium,
2019).

Comparison of Protein Concentrations Between
Species
Using the gene names alignment, we selected common
proteins from healthy-state mouse and human samples. For
between-species comparison we selected measurements from
cortex, striatum, cerebellum, brainstem, hippocampus, thalamus,
amygdala based on (Carlyle et al., 2017; Hasan et al., 2019;
McKetney et al., 2019; Bai et al., 2020). Only mouse data from
Bai et al. (2020) is used in this analysis, because human data
from the same study does not reflect a healthy state. The mean
concentrations across repetitions of the same species, studies and
age categories were calculated, combining data from different
brain regions. The aggregated data resulted in concentration
entries for 3990 genes for 8 combined samples of different species,
studies and age categories. Median normalization was performed
to prepare data for PCA and heatmap in Supplementary
Figures 7A,B correspondingly. Additional centering and scaling
with the base R language scale function were performed for the
heatmap. The row_km parameter in ComplexHeatmap (Gu et al.,
2016) was set to two for easier interpretation of clusters. We
selected only significantly upregulated (log2 fold change ≥ 2;
p < 0.05) and downregulated (log2 fold change ≤ −2; p < 0.05)
proteins for the heatmap.

Comparison of Protein Concentrations Between Cell
Types
We applied the same methods to compare protein concentrations
between cell types with healthy-state mouse and rat samples
based on (Han et al., 2014; Sharma et al., 2015; Chuang
et al., 2018; Krogager et al., 2018). The mean concentrations
across repetitions of the same studies and age categories were
calculated. Median normalization was performed to prepare data
for PCA and heatmap plots in Supplementary Figures 8A,B,
correspondingly. Additional centering and scaling with the
base R scale function were performed for the heatmap in
Supplementary Figure 8B, with the same row_km parameter
and log2 regulation range as for between species. The list
of proteins with these differential concentrations in neurons
compared to astrocytes is given on the right in Supplementary
Figure 8B, and features some of the known proteins of particular
importance in the brain.

Case Study of Protein Concentrations in Alzheimer’s
Mouse Cortex
Data from two studies (Hamezah et al., 2019; Bai et al., 2020),
both of which measured healthy and AD samples, were integrated
for this analysis. Median normalization was performed to prepare
data for PCA and heatmap plots in Supplementary Figures 9A,B,
correspondingly. Centering and scaling were performed for the
heatmap Supplementary Figure 9 as in previous analyses. The

same row_km parameter was set for easier interpretability of
clusters on the heatmap. We used the same criteria as in Hasan
et al. (2019) and in our comparison of EAE to healthy state
concentrations to select significantly upregulated (fold change ≥
1.15; p < 0.05) and downregulated (fold change≤ 0.87; p < 0.05)
proteins in disease compared to healthy state.

Expansion of the Integrated Data Using
RNA-to-Protein Level Predictions
Multi-omics studies, for instance, Sharma et al. (2015) measured
both the transcriptomes and proteomes for different brain cell
types. We used these data on RNA and protein levels to
determine whether we can estimate how protein concentrations
in different cell types reflect the differences in mRNA levels.
For the initial estimation, we assume that these mechanisms
are similar in different brain cell types, ignoring cell-specific
regulatory processes. Therefore, we can use reference protein
concentrations with reference gene expression from the same
study to calculate RNA-to-Protein (RTP) conversion ratios for all
the available genes and proteins. Next, we applied the conversion
ratios to obtain protein levels from the RNA levels of more
specifically separated cell types.

Metabolite Concentrations at Different
Scales
As described in Results, we calculated tissue level signal for the
metabolite concentrations based on cellular level concentrations
of metabolites and compared it with that measured at the
tissue level from other experiments. We used the PubChem
compound identifier to resolve synonymic names of molecules.
We recalculated reported values per gram of wet or dry
tissue to molar concentrations to compare MRS with mass-
spectrometry data. We manually validated concentrations of
characteristic metabolites against various literature data, by
comparing whether there are any values in the Atlas which are
no more than twice higher or lower that the other literature
data, including glucose (Erecińska and Silver, 1994; Byrne et al.,
2014; Barros et al., 2017), ATP (Köhler et al., 2020), lactate
(Muraleedharan et al., 2020), pyruvate (Byrne et al., 2014),
glutathione (Koga et al., 2011). This approach is very limited and
more data on metabolite concentrations is needed for a more
complete validation.

The Molecular Atlas Application in Flux
Variability Analysis
We tested the integrated database by applying it to a simulation
of metabolism. One common method for simulation of large
scale metabolic networks is called flux balance analysis (FBA).
We aimed to evaluate whether protein concentrations used as
constraints will result in meaningful relative maximum capacities
of reactions in the neuron and astrocyte. We provided a detailed
description for this part in the Supplementary Presentation
(McKenna et al., 2006; Çakir et al., 2007; Lewis et al., 2010; Orth
et al., 2010; Sigurdsson et al., 2010; Schellenberger et al., 2011;
Ebrahim et al., 2013; Desouki et al., 2015; Gavai et al., 2015;
King et al., 2015; O’Brien and Palsson, 2015; Noor et al., 2016;
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DiNuzzo et al., 2017; Martín-Jiménez et al., 2017; Sánchez et al.,
2017; Heckmann et al., 2018; Supandi and van Beek, 2018; Tian
and Reed, 2018; Lularevic et al., 2019; Pandey et al., 2019; Anand
et al., 2020; Gurobi Optimization, 2021).

Quantification and Statistical Analysis
Summary
Concentration estimations and statistical analysis were
performed using Python and R scripts (available from
https://github.com/BlueBrain/MADIP; https://github.com/
BlueBrain/BrainMolecularAtlas) with commonly used packages
(Hunter, 2007; Hagberg et al., 2008; Krijthe, 2015; Silge and
Robinson, 2016; Wickham, 2016, 2019; VanderPlas et al., 2018;
Terpilowski, 2019; Dowle and Srinivasan, 2020; Harris et al.,
2020; Schauberger and Walker, 2020; Virtanen et al., 2020;
Reback et al., 2021; Waskom et al., 2021; Wickham et al.,
2021). The details can be found in the “Results” and “Materials
and Methods” Sections. The chosen statistical tests tolerate
deviations from normality. We have chosen to use two-sided
tests. Equality of variances was analyzed with Brown-Forsythe
(Levene, 1960; Brown and Forsythe, 1974) and Fligner-Killeen
tests (Fligner and Killeen, 1976; Conover et al., 1981). Summary
on the statistical methods applied in this study is available in the
“Materials and Methods” Section and Supplementary Table 2.
We did not include data at the subcellular level of detail in the
analysis of cellular concentrations, however, this data is available
through Supplementary Data Sheets, and the accompanying
website https://portal.bluebrain.epfl.ch/resources/models/brain-
molecular-atlas.

RESULTS

Protein Concentrations Estimation
We need absolute molar concentrations or absolute protein
copy numbers for modeling purposes or as one of the possible
references. These units are easily interconvertible and more
biologically relevant than raw mass-spectrometry intensities.

Therefore, we applied a data integration pipeline (see
section “Materials and Methods”) resulting in the Adjusted
Molecular Concentration (AMC) database, containing 2,131,244
concentration entries for proteins produced by 14,700 genes
(Supplementary Data Sheets 1-4).

The effect of the processing pipeline on protein concentrations
is shown in Figures 2, 3 with examples of the most represented
proteins by the number of measurements in different data
sets. We have chosen Syntaxin-binding protein 1 (STXBP1) for
demonstration of the effect of concentration estimation and
normalization, as the protein with the largest number of available
measurements in the collected data among the proteins that are
present in the largest number of data sets (590 entries from
24 data sets). Figure 2A shows levels of STXBP1 protein in
original data. Normalized concentrations of this protein are
reflected in Figure 2B. As expected, between-data set variation
is reduced as a result of unit unification and normalization. Due
to the importance of relative concentrations of the protein in
comparison with other measured proteins, we show levels of

STXBP1 along with distribution of levels of other proteins before
and after processing (Figure 2C). We can see that STXBP1 tends
to be among highly expressed proteins, which is in line with
the fact that it was detected in the largest number of collected
samples. In summary, our processing pipeline brings together
non-homogeneous quantitative data on protein levels reported in
different units, and produces widely used molar concentrations.

Protein Variability Across Data Types
To further assess the effect of the applied data transformation,
we compared the original (Figures 3A,D) and processed
concentration levels (Figures 3B,D) of 74 most represented
proteins by the number of measurements in different data sets.
Since individual proteins in the original data are reported in
different units in non-equal numbers of biological settings (brain
regions, ages, cell types and parameters) of non-equal sample
sizes of different types of experiments, we defined variability score
as an absolute value of the coefficient of variation of the data
(no log transformation) scaled to the number of measurements
of each protein in every data type. A zero-variability score
means that the coefficient of variation of the protein level
data for a given type of protein is zero. These entries are
omitted from visualization in Figures 3C,E to improve the
figure’s readability. From the comparison of unitless variability
scores calculated for original and processed data, we observed a
decrease of variability upon processing (Figures 3C,E). With this
analysis, we demonstrated that molar concentration calculations
with subsequent normalization makes the data from different
types of sources more comparable and prepares them for use
in further studies. The difference in variability addressed in
this analysis mostly comes from the difference of original
units, most of which are not comparable without translation
to a common unit system (such as molar concentrations or
protein copy numbers).

Validation
We further assessed and validated the integrated Molecular Atlas
data in a series of analyses as described below.

Comparison of Absolute Values of Protein
Concentrations to Published Data
The aim of the next integrated data assessment step was to
evaluate the absolute scale of estimated molar concentrations.
Both healthy and diseased states data were used for this analysis.
Even though absolute levels, such as concentrations or copy
numbers are essential, the gold standard is scarcely available
for the large number of proteins in mammals. As an initial
quality check, we evaluated total protein count per cell from the
calculated copy numbers based on the normalized concentrations
data and initially estimated volume (see formulas in section
“Materials and Methods”), and compared those numbers to the
literature evaluations (Milo, 2013), as shown in Supplementary
Figure 2A. We compared the concentration of signaling proteins
from our data with the characteristic range of signaling protein
concentrations 0.01-1.0 µM from literature (Milo et al., 2010).
Using the Mouse Genome Database (Bult et al., 2019) we
obtained a list of 6,087 signal transduction genes (GO:0007165).
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FIGURE 2 | An example of data before and after normalization for the experimental methods used to obtain the data. (A,B) STXBP1 protein (Syntaxin-binding
protein 1) before (A) and after (B) methodological normalization. Horizontal line corresponds to the median value and is drawn at the level of 20.3 (A) and 1.57 a.u.
(B). STXBP1 was chosen for demonstration as the protein with the largest number of available measurements in the collected data among the proteins that are
present in the largest number of data sets (590 entries from 24 data sets). Variability score is defined as an absolute value of the coefficient of variation of the data (no
log transformation) scaled to the number of measurements of each protein in every data type. The data after methodological normalization is considered as one
group for calculation of the variability score in panel (B). (C) Protein levels in different data sets before and after normalization. Abbreviations: loge = natural logarithm,
LFQ = label-free quantification; TMT = tandem mass tag; SILAC = stable isotope labeling by/with amino acids in cell culture; iBAQ = intensity-based absolute
quantification. Sample sizes per data set are available from the Supplementary Presentation.

We used gene symbols as a key to a subset of the Brain
Molecular Atlas for signal transduction genes, and we found
3,349 relevant gene names in the collected data. The median
concentration of signal proteins in the Brain Molecular Atlas
is 0.087 µM after the normalization procedure, which is in
the range of literature values (Milo et al., 2010). The signaling
protein concentrations distribution is shown in Supplementary
Figure 2B. We conclude that estimated molar concentrations are
in the range of biologically plausible values at the absolute scale.

Consistency Check of Predicted Concentrations
From Data Set Comparisons
As only housekeeping genes were used in the normalization
procedure, we next decided to statistically evaluate the equality
of medians from full data sets to see how comparable they are.
Holm adjusted p-Values from the Conover post hoc test applied
after Kruskal-Wallis Test (H = 1034.55, p-Value = 4.07e-
203) for comparison of normalized concentrations (on
natural log scale) from different studies are shown in

Frontiers in Molecular Neuroscience | www.frontiersin.org 10 November 2021 | Volume 14 | Article 604559

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-neuroscience#articles


fnmol-14-604559 November 5, 2021 Time: 15:18 # 11

Shichkova et al. Brain Molecular Atlas

FIGURE 3 | The effects of the data processing pipeline on protein levels. (A,B) Protein levels before (A) and after (B) normalization; and levels variability scores (C) of
74 proteins that are present in the largest number of collected data sets (24 of 25 data sets). (D,E) Histograms of protein levels (D) and variability scores (E) for the
same set of 74 proteins as in panels (A–C). Abbreviations: loge = natural logarithm, LFQ = label-free quantification; TMT = tandem mass tag; SILAC = stable isotope
labeling by/with amino acids in cell culture; iBAQ = intensity-based absolute quantification. Sample sizes are available from the Supplementary Presentation.

Supplementary Figure 2D. Due to the particular importance
of peptides for neuroscience research (Hökfelt et al., 2000;
Borbély et al., 2013) we examined the consistency of their
concentration distributions across different data sets by the same
approach (Supplementary Figures 2C,E). According to the
test results, medians of estimated concentrations are largely in
agreement across studies, however, one can see that distributions
of concentrations in some pairs of studies still have significant
differences. This can be explained by the different sets of brain

regions from where the data were obtained, cultured or isolated
cells, different developmental stages, sexes, presence of both
control and disorder state data in some data sets, and other
biological parameters for which no control was introduced
in this analysis, as well as potential limitations of the analysis
itself. However, this result is confirmatory in a sense that we
do not expect to precisely match all distributions, because this
would discard the natural variability of protein levels in different
biological settings.
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Correlation Analysis
Next, we wanted to know how well correlated the estimated
protein concentrations are across different data sets
(Figures 4A,B), brain regions (Figures 4C,D) and cell types
(Figures 4E,F). We calculated Pearson correlation coefficients
of the protein concentrations as well as the number of common
proteins with known concentrations across pairs of data sets
(Supplementary Figure 3A), brain regions (Supplementary
Figure 3C), and cell types (Supplementary Figure 3E); see
Section “Materials and Methods” for the details.

The number of common proteins (i.e. sample size) in
compared data sets is important for the interpretation of the
correlation analysis results. It would be ideal to use the same
set of proteins in every pair of samples in correlation analysis.
The analysis indicates that the number of common proteins
decreases with the number of different samples taken together
(Supplementary Figures 3B,D,F), as the coverage of measured
concentrations in every sample does not correspond to a full
proteome. So, we cannot choose a set of proteins measured
among all data sets which would permit correlation analysis on
the same list of proteins for comparisons of all pairs of the data
sets, brain regions, cell types. For this reason, the correlation
coefficient is calculated independently for every pair of samples
(data sets, brain regions, cell types) using the list of proteins
that are measured in common in the two samples of every
comparison. Information on the sample sizes of every pair is
given in Supplementary Figures 3A,C,E.

The correlation analysis shows high correlation for most of
the pairs of samples across studies, brain regions and cell types.
Lower correlations of the data based on Jean Beltran et al. (2016)
compared to other sources are due to the cell type (primary
human fibroblast) used in the study. However, this data was
included in our integrated database because of the importance
of organellar scale concentrations, which are rarely found in
genome scale studies to date. To summarize, the high level of
correlation among the data sets that are expected to produce
similar cellular protein portraits and lower level of correlation
between data sets that come from very different biological settings
further validate applied data transformation.

Factors That Explain Biological Variability of
Concentrations
Our pipeline aimed to reduce experimental biases in the data,
but we were concerned that the approach could lead to the
elimination of the natural biological variation of concentrations.
Accordingly, we sought to address the factors which explain
the remaining variability of protein concentrations after we
applied the processing pipeline. For instance, concentrations for
some proteins fall into a wide range of values in a healthy
state, potentially elucidating adaptation mechanisms of cellular
homeostasis and stress response pathways. We applied several
statistical tests to analyze the contributions of those factors in a
case study of different subcellular locations, functional categories
and cell types (see section “Materials and Methods”).

The case study results for comparison of distributions
of protein concentrations of different subcellular locations,
functional categories and cell types are represented in

Figures 5A-R and Supplementary Table 2, additional results
(without log-transformation) are in Supplementary Figures 4A-
O. From the analyses above we conclude that the functional
category is the factor which best explains the remaining protein
concentration variability.

Literature Associations and Cell Type Specificity of
Proteins
The next step in the evaluation of generated data aimed to
evaluate relative levels of protein concentrations across brain
regions and cell types. We queried PubMed for co-mentions of
gene names with cell types in which the concentration of related
protein was measured. We defined a protein specificity index (in
section “Materials and Methods”) as a measure of the protein
concentration in a particular location (cell type, brain region) as
related to other locations of the same level of detail (cell types or
brain regions, correspondingly). We observed a weak association
between a protein specificity index in a particular cell type with
the number of co-mentions of the corresponding gene and that
cell type (Supplementary Figures 5A–D).

There was no relation of brain region protein specificity
with PubMed co-mentions of the proteins with corresponding
brain regions. Different noise factors, such as synonyms to
protein names, contribute to the imprecision of this association
analysis. It should be considered only as one of the evaluation
steps, which requires a more detailed approach when studying
potential protein markers. We conclude from this analysis
that more knowledge is available in the literature on the
cell-type specific protein/gene expression for the proteins
having concentration highly specific to particular cell types
in our data, than on the analogous comparison of the brain
region specificity.

Functional Analysis of Protein Networks
Next, we aimed to perform functional analysis of overrepresented
proteins across brain regions and cell types and compare
the results to the literature. This was performed using the
Cytoscape software version 3.7.1 (Shannon, 2003) with STRING
plugin (Doncheva et al., 2019; Szklarczyk et al., 2019) as
described in “Materials and Methods” Section. Networks of
these proteins for selected brain regions and cell types are
shown in Figures 6, 7, clusters of less than four nodes are
omitted in the visualization. More detailed results on functional
annotation are in Supplementary Data Sheet 6. Different
brain regions and cell types share many annotations, such as
energy metabolism and mitochondria, brain disorders, signaling,
chromatin, and others, that are enriched in the overrepresented
proteins. Indeed, energy metabolism possesses significant cell-
type specific properties (Magistretti and Allaman, 2015) and
shows brain-region dependent differences (Kleinridders et al.,
2018). Individual variations are also represented, for instance,
the immune properties of microglia, which is in agreement with
literature (Lenz and Nelson, 2018). We found that stress response
and heat shock proteins are enriched in oligodendrocytes, and
the literature evidence confirms this observation (Goldbaum and
Richter-Landsberg, 2001).
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FIGURE 4 | Correlation of protein concentrations confirms good agreement of the integrated data. (A,C,E) Pearson coefficient of correlation for protein
concentrations from different studies (A), brain regions (C), cell types (E) after normalization. (B,D,F) Representative examples for the comparison of protein
concentrations data from two studies (B), two brain regions (D), and two cell types (F). Natural logarithm for µM concentrations is used in all panels.

Preservation of Differential Protein Expression
Patterns
The aim of this analysis was to assess the reliability of estimated
protein concentrations in preserving differential expression
patterns. We performed differential expression analysis on the

basis of molar concentrations for a subset of proteins from Hasan
et al. (2019) which was already included as a data source in
our pipeline, and compared the results to the original report.
Our idea was to analyze whether the processing pipeline disturbs
data in a way that differential expression patterns observed
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FIGURE 5 | Statistical evaluation of factors with a potential to explain biological variability of protein concentrations. (A–C) Comparison of protein concentrations in
different groups of proteins. Boxplots characteristics: (A) OSR (oxidative stress response): center line, median: −1.86; upper and lower quartiles: Q1: −3.31, Q3:
−0.32; whiskers, 1.5x interquartile range: −7.77, 4.14; outliers: −8.57, 4.39, 4.18. DNA repair: center line, median: −2.56; upper and lower quartiles: Q1: −3.92,
Q3: −0.95; whiskers, 1.5x interquartile range: −8.24, 3.48; outliers: 3.74, 3.36, 3.76, 3.58, 3.62, 4.40, 4.57, 4.30, 3.71, 4.36, 3.94, 3.87, 4.45, 4.70, 4.15. (B) OSR
(oxidative stress response): center line, median: −1.86; upper and lower quartiles: Q1: −3.31, Q3: −0.32; whiskers, 1.5x interquartile range: −7.77, 4.14; outliers:
−8.57, 4.39, 4.18. OXPHOS (oxidative phosphorylation): center line, median: −0.35; upper and lower quartiles: Q1: −1.74, Q3: 0.90; whiskers, 1.5x interquartile
range: −5.56, 3.72; outliers: −7.34, −5.87, −6.35, −6.15, −6.59, −6.87. (C) Neurons: center line, median: center line, median: −1.96; upper and lower quartiles:
Q1: −3.44, Q3: −0.26; whiskers, 1.5x interquartile range: −7.63, 4.39; outliers: −8.57. Astrocytes: center line, median: −1.74; upper and lower quartiles: Q1:
−3.17, Q3: 0.00; whiskers, 1.5x interquartile range: −7.93, 4.43; no outliers. (D–R) Statistical analyses in permutations with multiple (1000) resampling with the
sample sizes of 100. Types of analyses are named in the left panel of each row.
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FIGURE 6 | Functional analysis of the most expressed proteins highlights shared functions in different brain regions. Networks of the most expressed proteins in
different brain regions. (A–F) Nodes represent proteins. Edges correspond to all known relations between proteins based on STRING-Cytoscape (Shannon, 2003;
Doncheva et al., 2019; Szklarczyk et al., 2019). Only clusters with more than 4 nodes are shown. The version of this figure with labels shown using bigger font size is
available from the Supplementary Presentation for better readability of the labels.

from the mass-spectrometry protein abundances will not be
observed when using estimated concentrations. We observed
better separation for brain regions rather than healthy and
diseased states in principal component analysis (Figure 8A).
On this basis, we analyzed differentially expressed genes
(Robinson et al., 2010; Ritchie et al., 2015) in distinct brain
regions, not combining the data from different brain regions
(Figure 8B and Supplementary Figures 6A-F). The top four
enriched Gene Ontology biological processes terms are shown
on the right of the corresponding cluster in Figure 8B. The

resulting enriched biological processes are in good agreement
with those reported in Hasan et al. (2019), in particular,
immune mechanisms are upregulated and synaptic processes
are downregulated in EAE spinal cord samples, as found by
both our analysis using concentrations and the Hasan dataset.
We conclude that estimated concentrations preserve differential
protein expression patterns in the comparison of EAE samples to
healthy controls; but more variance in the protein concentrations
is explained by the brain regions of origin, rather than diseased-
state versus control.
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FIGURE 7 | Functional analysis of the most expressed proteins highlights shared functions in different cell types. Networks of the most expressed proteins in
different cell types. (A–D) Nodes represent proteins. Edges correspond to all known relations between proteins based on STRING-Cytoscape (Shannon, 2003;
Doncheva et al., 2019; Szklarczyk et al., 2019). Only clusters with more than four nodes are shown. The version of this figure with labels shown using bigger font size
is available from the Supplementary Presentation for better readability of the labels.

Comparison of Protein Concentrations Between
Species
To further assess whether estimated concentrations preserve
differential protein expression, we focused on species-specific
differences. We applied the same approach as in the previous
analysis (Preservation of differential protein expression patterns)
to find proteins with differential concentrations between mouse
and human. There was a clear separation between mouse
and human brain samples after the PCA was applied for the
dimensionality reduction (Supplementary Figure 7A). We
also found a set of proteins with differential concentration
levels in the mouse and human brain, so we conclude that
the integration pipeline preserved between-species biological
variation in the protein concentrations (Supplementary
Figure 7B). More detailed analyses, which are out of the scope
of this study, need to be carried out to compare differential
protein concentrations to the differential expression analysis
performed using proteomics data without transformation
to concentrations.

Comparison of Protein Concentrations Between Cell
Types
Similarly to cross-species comparison, we assessed whether the
differences in protein concentrations are preserved in different
cell types. Specifically, we compared concentrations in astrocytes
and neurons on the basis of multiple studies (Supplementary
Figure 8). The methods (described in the corresponding section)
are analogous to the previous section on species. We can see that
it is possible to separate neuron from astrocyte samples using
integrated data on protein concentrations, where one of the data
sources provides the information on both neurons and astrocytes,
and other resources report the data for only one of those.

Case Study of Protein Concentrations in Alzheimer’s
Mouse Cortex
As protein concentrations might represent more biologically
relevant units compared to mass-spectrometry intensities, we
aimed to use the generated data to compare healthy-state with
AD using the same methods as in the previous section (see
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FIGURE 8 | Case study for differential protein concentrations analysis across brain regions and states. (A) Principal component analysis performed on the Molecular
Atlas protein concentrations estimated from Hasan et al. (2019) data. (B) Hierarchical clustering of proteins with differential concentrations in EAE spinal cord
samples compared to healthy spinal cord (based on 3128 proteins). Top four enriched GO biological process terms are shown on the right of the corresponding
cluster. Levels refer to row-scaled centered median-normalized Molecular Atlas concentrations.

“Materials and Methods” for the details). From this analysis,
we found a list of proteins that are present at differential
concentrations in healthy and AD states (Supplementary
Figure 9). Among the proteins of that list are Amyloid
Beta Precursor Protein (APP), Annexin A3 (ANXA3),
Lysosomal Associated Membrane Protein 2 (LAMP2), Late
Endosomal/Lysosomal Adaptor MAPK And MTOR Activator
2 (LAMTOR2) that are known for the involvement in the AD
pathology according to the literature data (Sjödin et al., 2016;
Castillo et al., 2017; Navarro et al., 2020).

Differential protein concentration analyses in Figure 8 and
Supplementary Figures 6-9 further confirm that concentrations
in the Molecular Atlas preserve within-individual biological
variation of concentrations, which permits the observation
that some molecules have different concentrations across brain

regions and cell types, as well as in different states, and others
are more uniform in varying locations and conditions. Lists
of differentially expressed proteins are given in Supplementary
Data Sheet 7. However, more attention is needed for the analysis
of potential confounding variables when the data are applied
to the search of potential disease, species, cell types, and brain
regions markers.

Expansion of the Integrated Data Using
RNA-to-Protein Level Predictions
The aim of the next analysis was to explore potential use of
RNA sequencing data for prediction of protein concentrations.
Even with a high overall coverage of quantitative data for protein
levels in the brain, there is a lack of cell-type-specific resolution
(e.g., for different morpho-electrical types of neurons) for protein
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concentrations, and not all brain regions are covered by protein
level data, which are needed for simulations. However, RNA
sequencing, and especially single-cell RNA sequencing, features
high resolution and coverage of various morpho-electrical types
of neurons. For this reason, we can calculate approximations for
the differences of protein concentrations in various cell types and
brain regions using gene expression data.

Regulatory mechanisms of protein turnover can distort the
correlation between RNA and protein levels. But even though
the dependence of protein levels on RNA levels is an unresolved
question, there is significant evidence that levels of at least some
groups of proteins can be predicted from their RNA levels (Vogel
et al., 2010; Schwanhäusser et al., 2011; Edfors et al., 2016; Silva
and Vogel, 2016; Li et al., 2017; Mandad et al., 2018; Eraslan et al.,
2019).

Multi-omics studies allow us to investigate relations between
levels of transcripts, proteins, and metabolites. Using (Sharma
et al., 2015) data, we calculated RNA-to-Protein (RTP)
conversion ratios for all the available genes and proteins
data. Next, we applied the conversion ratios to obtain protein
levels from the RNA levels. Indeed, protein concentrations
independently calculated from transcriptomics RPKM data
and proteomics LFQ data among astrocytes and among
neurons show a high Pearson correlation (Supplementary
Figure 10A). However, correlation between different cell types
is lower, and that observation is different from what is expected
based on reports on RTP being independent of the tissue
(Edfors et al., 2016).

Surprisingly, observed correlations are higher than those
reported for comparisons of “raw” mass-spectrometry LFQ levels
of proteins and RPKM from transcriptomics (Supplementary
Figure 10B). Therefore, we conclude that the transcriptomics
data could potentially be used to augment the Brain Molecular
Atlas for specific cases such as brain disorders, even though
transcriptomics data should be taken cautiously due to the
reasons described above.

Data Integration for Metabolite
Concentrations
We aimed to supplement our protein concentrations atlas with
data on metabolite concentrations to enable more complete
quantitative portraits of the brain cells and regions. The
metabolite concentration part of the Molecular Atlas is less
comprehensive than the protein part since there are only a
few recent studies that quantitatively measured large numbers
of metabolites in the brain cells of rats, mice, or humans
(Sugimoto et al., 2012; Chen W.W. et al., 2016; Zheng et al.,
2016). Two dominant experimental methods are based on either
mass-spectrometry (MS) or magnetic resonance spectroscopy
(MRS) measurements. Mass-spectrometry studies provide data
at different scales of resolution varying from tissue (Kim
et al., 2014) to organelle level (Chen W.W. et al., 2016).
Spectroscopy experiments usually just report tissue signals. The
main experimental data was augmented by commonly known
concentrations from review papers and estimations.

Overall, we collected 3,279 concentration entries for 441
unique metabolites. Some of them are annotated at the

tissue scale, others are described in particular cell types
and subcellular compartments. We analyzed how differences
in experimental procedures and organisms affect metabolic
concentrations. We observed that the type of experiment
(MRS or MS) contributed mostly to variance, rather than
the absolute values of concentrations (Figure 9A), while
metabolites data from different organisms often show differences
in concentrations themselves (Figure 9B). Therefore, it is
important to be organism-specific and try to correct organismal
differences in metabolic levels when we use data from sources
other than the target organism. Moreover, some differences
in concentrations often can be explained by variations in
experimental protocols.

We calculated brain concentrations from compositions of
neuronal, astrocytic, blood and extracellular space concentrations
and compared them with brain tissue concentrations for both
organism-corrected and initial values of concentrations
to validate organismal bias. For this analysis we used the
following volume fractions approximated from various literature
sources: extracellular space is 0.19 (Hrabetova et al., 2018),
vasculature is 0.03 (Santuy et al., 2018), neuronal somas are
0.10 (Santuy et al., 2018), axons and dendrites are 0.60 and
glia is 0.08. The volume fractions of axons and dendrites and
glia are estimates to separate neuronal and glial components
of neuropil. We approximated missing concentrations in
astrocytes with neuronal concentrations (otherwise there
were only five common molecules with no missing data
in all types of volume fractions). Concentrations (without
normalization) give a Spearman coefficient of correlation of
0.59 (Pearson coefficient of correlation is 0.13). However,
the number of molecules with known concentrations in
all volume fractions was too small (23 molecules) for
statistical significance. To summarize, integrated metabolite
concentrations from different types of experiments can
be combined when there is no data for all molecules of
interest from the same experiment, but more attention and
potentially additional normalization is required if there is a
need to work with evolutionary distant species, such as human
versus mouse and rat.

The Molecular Atlas Application in
Constraint-Based Modeling
Our next aim was to demonstrate one of many possible
applications of the Brain Molecular Atlas by using it for
constraint-based modeling of metabolism. Detailed results
are available from the Supplementary Presentation. By
performing this exercise, we have shown that estimated protein
concentrations can be used as flux constraints in metabolism
modeling, and the difference in flux capacities reflects expected
differences between neuron and astrocyte metabolism. Including
experimental data on measured fluxes will further narrow down
mathematical solutions to those that are more biologically
plausible, potentially improving existing models, but it is
out of the scope of the current study. Similar approaches
might be taken to compare reaction capacities in healthy and
diseased states, bringing more aspects for interpretation of the
molecular profiles.
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FIGURE 9 | Sources of variability in metabolite concentrations. (A) Effects of measurement methods and species on the concentrations of metabolites.
(B) Concentrations of molecules measured by magnetic resonance spectroscopy (MRS, left) and by mass-spectrometry (MS, right) with the same set of molecules
measured by both MRS and MS. Sample sizes are available from the Supplementary Presentation.

Brain Molecular Atlas Web Application
While all the generated data, as detailed by different ages,
species, locations and conditions with their provenance and
meta-information, are available from Supplementary Data
Sheets and should be used for any formal evaluation, we

also provide an online resource for quick exploration and
visualization of the median normalized protein concentrations
in different brain regions, as well as neurons and astrocytes with
their subcellular locations. The integrated protein data in our
Brain Molecular Atlas is publicly accessible through the Blue
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Brain Cell Atlas (Erö et al., 2018) for protein concentrations
in different brain regions, and Blue Brain Protein Atlas for
different organelles and whole cell protein concentrations
data in neurons and astrocytes. Both can be accessed from
the webpage: https://portal.bluebrain.epfl.ch/resources/models/
brain-molecular-atlas.

DISCUSSION

The study of cellular biomolecular networks is required for a
more advanced understanding of brain function and disease,
for molecular systems simulations, meta-analysis of molecular
networks, and as guidance for future experiments. Knowledge
of biologically plausible ranges of concentrations is essential
for building relevant models. Concentrations of molecules
not only define the presence of particular reactions in cells,
but also contribute to the rate of reactions and transport
between compartments.

Computational representations of the quantitative aspects
of cellular biochemical networks have been hampered by
discrepancies in experimental methods, data analysis and
modeling of molecular species expression and concentration.
To address these issues, we performed a meta-analysis that
implements data integration and normalization procedures for
reported protein and metabolite concentrations from a wide
range of sources for mouse, rat and human brain studies. This
permitted calculation of Adjusted Molecular Concentrations
(AMCs) that formed the basis of the Brain Molecular Atlas.
Integrated resources allow multi-aspect analysis of the data
and inform experimental design (Fernandes and Husi, 2017;
Ho et al., 2018).

We applied a variety of evaluation techniques (see Validation
in Results) to assess different aspects of the integrated data,
such as biological plausibility of the range of estimated
molar concentrations at the absolute scale, correlation
analysis, preservation of natural biological variability and
factors which explain it, literature associations, functional
enrichment of protein networks and discriminative power in
differential expression analysis. We showed that the biases
introduced by differences in experimental protocols and data
processing can be compensated by our pipeline, while preserving
biological variability. The cross-study AMCs further revealed
the reproducibility of many proteins, suggesting their tight
regulation. The remaining biological variability and the dynamic
nature of the levels of molecules in organelles, cell types and
brain regions determine the kinetics of all biochemical processes
(Lundberg and Borner, 2019).

Use of multiple data sets helps to overcome limitations of
individual studies and leads to a more complete understanding of
molecular systems. For example, new brain cell-type signatures
can be found through data integration (McKenzie et al., 2018).
Also, there are fewer possible sources of bias when experiments
of different types are performed together in multi-omics studies
(Angelidis et al., 2019). Even though the number of factors
contributing to statistical error increases with the number of
divergent data sources, the substantial amount of data required

for systems biology modeling are often only available from
multiple studies. Integrated data help build these large-scale
models that are cell-type and brain region specific. Normalization
for methods used to experimentally generate data is essential
before combining the information and considering confounding
variables when working with data from different studies. The
AMC calculation is one such solution and the resulting Brain
Molecular Atlas is designed to be expandable and adaptable to
new experimental data.

Insights
We highlighted the importance of critical data assessment,
nomenclature alignment, data processing and normalization to
the reproducibility of molecular concentrations across studies.
Molecular concentrations measured by different protocols can
differ by orders of magnitude. For metabolites, this can be
related not only to biological variability, but also to the
low chemical stability of metabolites and the delay between
sampling and inactivation of metabolism (Tillack et al., 2012).
Differences in experimental protocols in proteomics studies can
lead to systematic errors and discrepancies when comparing data
from diverse studies. Moreover, when measuring tissue level
signals, extracellular space and different cell types contribute
to the cumulative signal, even though the distribution of
molecules in different components of the tissue can be non-
uniform.

By processing data with respect to the experimental source and
normalizing the resulting concentrations to the combination of
the most relevant available data as an anchor for normalization,
we can significantly decrease experimental methods’ biases. We
utilized concentration data integrated from samples of healthy
young- to middle-aged mice and mouse cell lines for the
list of mouse housekeeping genes (Hounkpe et al., 2021) as
reference for median normalization, under the assumption that
the concentrations of these proteins are the most conservative.
The reliability of such adjusted molecular concentrations (AMCs)
demonstrates that the available literature data is sufficient to
obtain approximate quantitative molecular characterizations for
brain regions and cell types.

Furthermore, studying the biological ranges of healthy-state
concentrations can help us understand homeostatic maintenance
and regulatory processes of cell metabolism, as well as
transitions to disease-states. Notably, different cell types do
not exhibit significant differences in bulk protein concentration
distributions. But interestingly, categories of proteins related to
specific functions show concentration variability, including those
that take place in the same organelles. This can be related to
particular adaptation roles of some biological processes and an
evolved ability to adapt to changing conditions.

Limitations
The first limitation of this study is the use of the data
from both in vitro and in vivo conditions, which can lead
to potential biases in the integrated data. Another tradeoff is
supplementation of sparse mouse data with rat and human
data. Our goal is to make the best possible estimate for
concentrations in different brain regions, cell types, subcellular
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locations and ages, primarily focusing on the mouse brain.
From the validations above, we decided that the benefits of
combining sources to obtain more complete coverage outweigh
the disadvantages.

Meta-analysis research encounters challenges of nomenclature
discrepancy, even though there are several commonly used
gene and protein identifiers including UniProt (The UniProt
Consortium, 2017) accession, gene symbol and name (Wain
et al., 2002; Sundberg and Schofield, 2010; Braschi et al.,
2019), Entrez gene (Maglott et al., 2011) and many others.
While mapping between different types of identifiers became a
routine task, the evolving nature of the nomenclature within
even one namespace poses a problem of correspondence
between obsolete and current identifiers. One possible solution
to the nomenclature problem is to analyze all needed data
starting with the raw data. However, the resources and
expertise needed to implement this strategy every time some
reference data is required for a new experiment or modeling
study are often out of scope. Multi-species nomenclature
mapping adds another degree of complexity. More universal
nomenclature alignment challenges will benefit from the
ontological approach and linked data, which will keep the
history of different gene and protein identifiers and their
mapping to corresponding entries in other namespaces, as well
as orthologous relations.

Concentration estimation using the total protein mass
approach (Wiśniewski et al., 2014) is based on the number of
common assumptions as given in the “Materials and Methods”
Section (total cellular protein concentration, protein amount
per cell). This could be improved by using cell-type and tissue
specific numbers for those parameters. Furthermore, use of the
total protein mass approach (Wiśniewski et al., 2014) requires
significant coverage (corresponding to thousands of genes) of the
proteome in the data sets for the assumptions of the method
to be satisfied, which excludes the studies with a small number
of proteins reported. This could potentially affect the precision
of our concentration estimation for the CSF data set from the
study of Hosp et al. (2017).

Furthermore, our normalization is based on the assumption of
conservative levels of expression of housekeeping proteins across
the integrated data, which potentially may be violated in some
cases (for instance, disease states). This can also have flaws when
some housekeeping proteins are not measured in some of the
data sets, which further impose a high coverage of the proteome
requirement for the data sets.

Metabolite concentrations data are still very sparse. Large
scale modeling studies would benefit from the data generated
with sensitivity at the level of targeted metabolomics, but
at the coverage level of untargeted metabolomics. Currently,
many studies report levels of molecules known to play an
important role in some biological functions, but many other
metabolites lack precision on the quantitative characterization of
their concentrations.

More independent data sets on the molecular concentrations
would be needed for more definitive validation. All estimations
as well as all experimental measurements should be critically
assessed prior to further use.

Alternatives
The first alternative to the entire adjusted molecular
concentrations pipeline described here would be to
experimentally measure all the data in a large series of
experiments. This approach is very demanding and any
other research method is not guaranteed to be free from
the potential errors and standardization challenges that
motivated our approach.

The next alternative to the protein concentrations
evaluations part would be to start from the raw mass-
spectrometry data and perform identification, annotation
and quantification of proteins using the same methods for
all the data sets. This approach would be beneficial for the
nomenclature discrepancies question and for the potential biases
introduced by the variations in the mass-spectrometry data
analysis.

Targeted proteomics data could be considered, but it would
require even more effort in bias correction as a larger
number of datasets will be needed to achieve similar data
coverage due to the smaller data set sizes usually produced by
targeted approaches.

Next, as described above, the assumptions on the total cellular
protein concentration and protein amount per cell estimation
of concentration could be eliminated in favor of more cell-type
and brain-region specific data. This would increase the precision
of the estimates.

Another alternative, which has common reasoning with the
methods of the current study, would be to evaluate relative
protein levels and then use some scaling factor to translate the
relative levels into concentrations.

Various alternatives for the normalization step of the
pipeline were considered, including but not limited to median
normalization using all data entries from particular selections
of proteins whose concentrations are expected to be conserved
among the tested samples, quantile normalization, more
complex statistical models for normalization, and blind
normalization (Ohse et al., 2019). But these alternatives were
not selected as a final choice since the assumptions of these
methods are not met in the protein levels data integration.
There are many other methods for the normalization
and batch correction in proteomics studies, but they
usually require more information about every experiment
than is available for the significant selection of divergent
studies.

Applications
By integrating quantitative data, the Brain Molecular Atlas
provides a valuable resource for simulations of brain metabolism,
analysis of biochemical networks of brain cells, control data
for the study of brain disorders and guidance for future
experiments. For any particular protein, one can quickly assess
its concentration profile in multiple locations in the brain
under different conditions using the Brain Molecular Atlas
Supplementary Data Sheets. The Molecular Atlas is the first
step to providing a resource for the detailed data-driven
reconstruction and simulation of the molecular processes in
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the brain. As more data becomes available, the Atlas will be
refined and expanded.

Many previous models of brain metabolism have been
simulated within the oligocellular complex known as the neuro-
glia-vasculature ensemble, or NGV (Aubert and Costalat, 2005;
Cloutier et al., 2009; Jolivet et al., 2015; Calvetti et al., 2018;
Coggan et al., 2018) with a significant number of parameters
which still undergo numerical optimization and are not purely
data-driven. Most current models of brain metabolism merely
expand previous models with some extra reactions. This strategy
can lead to the propagation of inaccuracies or inadequate
representations. However, these flaws can be significantly
reduced with a data-driven bottom-up approach in modeling and
simulation studies.

It is known that many diseases include variations of molecular
levels (DeBerardinis and Thompson, 2012). The Brain Molecular
Atlas can help identify novel marker proteins and metabolites
for various brain regions and cell types, as knowledge of
biologically plausible levels of molecules is an important control
in disease biomarkers research. Notably, the Molecular Atlas
includes some data on AD and EAE along with corresponding
healthy controls data. However, as this data is still limited, the
Molecular Atlas should be considered as a prototype which
will be further refined to mitigate possible confounding factors
described above.

By combining AMCs with biochemical networks one
can better study any aspect of their function, including
the optimality of pathways, effective enzyme activity and
inhibition by metabolites (Alam et al., 2017). In this way,
AMC-based models will increase the power of biochemical
simulations and provide the foundation for a leap forward in
our understanding of metabolic networks and their roles in
brain function.
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