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Neuropathic pain is a kind of chronic pain that remains difficult to treat due to
its complicated underlying mechanisms. Accumulating evidence has indicated that
enhanced synaptic plasticity of nociceptive interneurons in the superficial spinal dorsal
horn contributes to the development of neuropathic pain. Neuroligin1 (NL1) is a type
of excitatory postsynaptic adhesion molecule, which can mediate excitatory synaptic
activity, hence promoting neuronal activation. Vglut2 is the most common marker of
excitatory glutamatergic neurons. To explore the role of NL1 in excitatory neurons in
nociceptive regulation, we used transgenic mice with cre recombinase expression driven
by the Vglut2 promoter combined with viral vectors to knockdown the expression of NL1
in excitatory neurons in the spinal dorsal horn. We found that NL1 was upregulated in the
L4–L6 spinal dorsal horn in Vglut2-cre+/− mouse subjected to spared nerve injury (SNI).
Meanwhile, the expression of phosphorylated cofilin (p-cofilin) and α-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid receptor subunit 1 (GluR1) was also increased.
Spinal microinjection of a cre-dependent NL1-targeting RNAi in Vglut2-cre+/− mouse
alleviated the neuropathic pain-induced mechanical hypersensitivity and reduced the
increase in p-cofilin and GluR1 caused by SNI. Taken together, NL1 in excitatory neurons
regulates neuropathic pain by promoting the SNI-dependent increase in p-cofilin and
GluR1 in the spinal dorsal horn. Our study provides a better understanding of the role
of NL1 in excitatory neurons, which might represent a possible therapeutic target for
alleviating neuropathic pain.

Keywords: neuropathic pain, spinal cord, excitatory neuron, neuroligin1, cofilin, GluR1

Abbreviations: AAV, adeno-associated virus; AMPAR, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor;
CTD, C-terminal domain; EGFP, enhanced green fluorescent protein; LIMK, LIM-domain protein kinase; NC-AAV, native
control adeno-associated virus; NL1-AAV, recombinant RNAi adeno-associated virus targeting NL1; NL1, neuroligin 1; PBS,
phosphate buffered saline; p-cofilin, phosphorylated cofilin; PSD, postsynaptic density; PWT, paw withdrawal threshold;
SEM, standard error of the mean; SNI, spared nerve injury; WT, wild type.
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INTRODUCTION

Neuropathic pain is a worldwide problem that can be caused by
a lesion or disease of the somatosensory system (Jensen et al.,
2011; Colloca et al., 2017; Song et al., 2020). It has been confirmed
that central nerve injury and peripheral nerve injury are the
two main causes of neuropathic pain (Scholz et al., 2019; Tang
et al., 2019). Traumatic nerve injury is the main peripheral
mechanism of neuropathic pain. The spared nerve injury (SNI)
model is a common animal model of neuropathic pain that makes
it possible to study the peripheral mechanisms that occur in
sensory processing (Chao et al., 2018; Kumar et al., 2018; Guo
et al., 2019). Although some mechanisms of neuropathic pain
are well understood, it remains difficult to prevent and treat
neuropathic pain without thoroughly elucidating the underlying
molecular mechanisms.

Peripheral sensory neurons that are situated in the dorsal
root ganglia convey information about noxious and innocuous
stimuli to the spinal dorsal horn (Kuner and Flor, 2017;
Letellier et al., 2018). Neurons in the spinal dorsal horn can be
broadly divided into two types according to their physiological
functions: excitatory (glutamatergic) and inhibitory (GABAergic
and/or glycinergic) neurons. At present, Vglut2 is considered the
most common and reliable marker of excitatory glutamatergic
neurons (Wang et al., 2018; Zhang et al., 2018). In dorsal
root ganglia neurons, Vglut2 is involved in the development
of acute and persistent pain (Rogoz et al., 2012). A previous
study determined that EYFP positive dorsal horn neurons
are glutamatergic excitatory neurons and mediate nociceptive
transmission (Wang et al., 2018).

Neuroligins are postsynaptic and transsynaptic adhesion
molecules with a high affinity for presynaptic neuroproteins
(Südhof, 2008). Rodents express four neuroligins, which are
distributed differently in excitatory and inhibitory synapses
(Bemben et al., 2015). Neuroligin1 (NL1) is primarily located in
excitatory synapses, and can mediate excitatory synaptic activity,
hence promoting neuronal activation (Ye et al., 2017). Although
extensive studies have shown that NL1 is associated with pain
regulation and hypersensitivity (Guo et al., 2018; Zhao et al.,
2018), how NL1 in excitatory neurons participates in nociceptive
transmission is not fully known.

Neuroligin1 protein contains an extracellular cholinesterase
domain, a transmembrane region, and a cytoplasmic C-terminal
domain (CTD). The CTD of NL1 is sufficient to regulate
cofilin phosphorylation by activating LIM-domain protein kinase
(LIMK) (Liu et al., 2016). Cofilin is an essential protein that binds
actin filaments and induces severing and depolymerization, and
then effects changes in the actin cytoskeleton and neuron/synapse
structure (Davis and Zhong, 2017; Goode et al., 2018).
Accumulating evidence has indicated that the expression of
phosphorylated cofilin (p-cofilin) is upregulated in neuropathic
pain (Valek et al., 2017; Yang et al., 2017; Hu et al., 2019). It
is, however, poorly defined whether cofilin is phosphorylated
through NL1 in neuropathic pain.

It has been shown that NL1 promotes the differentiation of
glutamate synapses by capturing surface-diffusing α-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors

(AMPARs) with a postsynaptic density-95 scaffold (PSD-95)
(Shipman et al., 2011; Budreck et al., 2013). A unique intracellular
tyrosine of NL1 in hippocampal neurons can regulate AMPAR
recruitment during synapse differentiation and potentiation
(Letellier et al., 2018). GluR1, an important subunit of AMPARs,
is involved in pain hypersensitivity (Guo et al., 2020). We
speculated that NL1 might regulate GluR1 recruitment in
neuropathic pain.

Neuroligin1 may regulate neuropathic pain differently in
excitatory and inhibitory neurons. Thus, in our research,
we studied the mechanism by which NL1 in excitatory
neurons participates in neuropathic pain. We hypothesized
that NL1 might contribute to neuropathic pain by promoting
phosphorylation of cofilin and the recruitment of GluR1. To test
our hypothesis, we used transgenic mice with Cre recombinase
expression driven by the Vglut2 promoter combined with viral
vectors to knockdown the expression of NL1 in excitatory
neurons in order to specifically examine the effects of NL1
in excitatory neurons in neuropathic pain regulation and the
relevant mechanisms.

EXPERIMENTAL PROCEDURES

Mice
All surgical and experimental protocols were approved by
the Animal Use and Care Committee of Hubei University of
Medicine (Shiyan, China) and were performed in accordance
with the National Institutes of Health guidelines. VGluT2-IRES-
Cre knock-in mice (stock #028863) and Ai3 mice (stock #007903)
were obtained from The Jackson Laboratory (Bar Harbor, ME,
United States). Wild-type C57BL/6 (WT) mice were provided
by the Institute of Laboratory Animal Science, Hubei University
of Medicine. The VGluT2::Ai3 mice were generated by crossing
male Vglut2-cre+/+ mice with female Ai3 mice. The Vglut2-
cre+/− mice were generated by crossing male Vglut2-cre+/+

mice with female WT mice. The mice were kept in a 12:12 (06:00–
18:00) light: dark cycle and were given free access to food and
water. Unless otherwise stated, 8–12-week-old male and female
mice were used for all experiments. All the studies and tests were
conducted between 9 am and 6 pm.

Spared Nerve Injury Model
As described in previous reports (Decosterd and Woolf, 2000;
Shields et al., 2003), Vglut2-cre+/− mice were anesthetized with
isoflurane (5% for induction and 2.5% for maintenance) and an
incision was made proximal to the lateral side of the right knee
to separate the biceps femoris and expose the sciatic nerve and its
branches. The common peroneal and tibial nerve branches were
ligated with silk suture and about 1 mm of nerve was removed
distally, with the sural nerve left intact. After wound closure and
post-operative analgesia, the mice were monitored for anxiety
symptoms and allowed to recover on a hot mat before returning
to their cages. In the sham operation control group, sciatic nerve
peroneal nerve and tibial nerve branches were not ligated or cut
off, but the operation was performed by the same method.
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Construction of Adeno-Associated Virus
(AAV) and Intraspinal Microinjection
Adeno-associated virus vectors with enhanced green fluorescent
protein (EGFP) were used to stably knockdown the expression of
NL1 in EYFP positive neurons (excitatory neurons). The vector
AKD006 (pAKD-CMV-bGlobin-Flex-EGFP-MIR30shRNA) and
the NL1 gene (GenBank accession number NM_001357095.1)
were recombined by the Obio Technology Company (Shanghai,
China). The same vector framework, without gene incorporation
but carrying EGFP, was used as the negative control AAV.
The viral titer of NL1 was 2.27 × 1013 TU/mL. The sh-RNA
against Neuroligin1 gene sequence was: 5′-CGAGGCAG
TAGGCACAGCGAGAACATTGGGTTCTTTTACATCTGTGG
CTTCACTAAAAGAACCCAATGTTCTCGCTTCGCTCACTG
TCAACAGCAATATACCTT-3′.

The procedure for microinjection of AAV into the spinal
cord was similar to a previous study (Haenraets et al., 2018).
The Vglut2-cre+/− mice were first treated with SNI following
anesthesia with isoflurane (5% for induction and 2.5% for
maintenance) and then immediately subjected to intraspinal
AAV injections. The backs were shaved at the dorsal level,
and the scraped skin was disinfected with an iodine solution
to keep it moist. A longitudinal cut (2.5 cm) was made
to expose the vertebral column at the lumbar spinal cord
level. Then the lumbar (L4-L6) spinal cord was exposed by
tearing or cutting away surrounding muscle and removing
tissue remaining on the vertebra or above the dura in the
intervertebral space. A glass capillary (25 ± 10 mm diameter)
connected to a glass microinjector (10 µL) was used for AAV
microinjection, and the needle was inserted 200 µm along
the right side of the lumbar spinal dorsal horn midline at a
depth of 300 µm to reach the dorsal horn; a target injection
volume of 0.3 µL was injected into the mice at a speed of
200 nL/min. After injection, the microsyringe was placed for
5 min to allow the pressure to be balanced, and then the
syringe was slowly withdrawn. Then, the skin was sutured and
iodine disinfectant was applied. Finally, the mice were put
on a hot mat for anesthesia recovery and then transferred to
their home cage.

Behavioral Tests
Mechanical hypersensitivity of the Vglut2-cre+/− mice was
assessed using the paw withdrawal threshold (PWT) with a
dynamic plantar esthesiometer (Ugo Basile, Comerio, Italy). The
ipsilateral and contralateral hind paws of all mice were measured
separately between 8:00 a.m. and 11:00 a.m. on days −1, 1, 3,
7, 10, 14, and 21 after corresponding treatments. Before the
experiment, each mouse was placed individually in a transparent
Perspex box (10 cm × 10 cm × 10 cm) on a wire mesh platform
for 30 min in a quiet environment. In each measurement, a
straight metal filament (0.5 mm diameter) was raised until it
touched the paw of the mouse, and the force (g) was increased
until the paw was retracted. The last force on the esthesiometer
was the PWT of the mouse. The paw of each mouse was measured
once every 10 min for a total of three times, and the average of
three values was taken for data analysis.

Real-Time Polymerase Chain Reaction
(PCR)
On day 21 after corresponding treatments, the Vglut2-cre+/−

mice were deeply anesthetized with 2% pentobarbital sodium
(0.5 mL/100 g, intraperitoneal injection) and the L4–L6 spinal
cord was immediately transferred to an ice-chilled lysis buffer
through laminectomy. Total RNA was extracted from the spinal
cord using Trizol reagent and reverse transcribed according
to the manufacturer’s instructions (Takara, Tokyo, Japan). The
expression of target genes was analyzed using the ViiA7 Dx
system (Applied Biosystems, Carlsbad, CA, United States), with
the SYBR Green qPCR Master Mix reagent system (Takara). The
forward and reverse primers used in this study were:

GAPDH-F: 5′-GTGAAGGTCGGTGTGAAC-3′
GAPDH-R: 5′-TGAGTGGAGTCATACTGGAA-3′
Neuroligin 1-F: 5′-CCAACAGGAGAACATCGT-3′
Neuroligin 1-R: 5′-AAGCATAACTTCAGGCAATC-3′
Cofilin-F: 5′-GTGTGGCTGTCTCTGATG-3′
Cofilin-R: 5′-GTTCTTCTTGTCCTCACTCA-3′
AMPA 1-F: 5′-GAGCCAATGTGACAGGTT-3′
AMPA 1-R: 5′-TCATAGGTAAGAGCAGAAGTG-3′

Western Blot
On post-operative day 21, the Vglut2-cre+/− mice were
deeply anesthetized with 2% pentobarbital sodium, the
L4–L6 spinal cord was quickly removed to an ice-chilled
radioimmunoprecipitation assay lysis buffer. The extracted
tissues were homogenized in RIPA buffer [20 mM Tris (pH 7.5),
150 mM NaCl, 1% NP40, 0.5% sodium deoxycholate, 1 mM
EDTA, and 0.1% sodium dodecyl sulfate (SDS)] supplemented
with serine protease and phosphatase inhibitor cocktails (Sigma,
United States) for 2 min and disintegrated on ice for 30 min,
and the homogenates were centrifuged (12,000 rpm, 15 min,
4◦C) to obtain protein. The total protein concentration was
determined using a BCA protein assay kit (Thermo Fisher
Scientific, Rockford, IL, United States). Subsequently, a western
blot assay was conducted as previously described (Laguesse et al.,
2017). Tissue homogenates were separated by 10% SDS-PAGE
and transferred onto nitrocellulose membrane at 300 mA for
2 h. Membranes were incubated with a blocking solution (5%
milk-PBS, 0.1% Tween 20) at room temperature for 30 min and
then probed with primary antibodies diluted in blocking solution
overnight at 4◦C. The primary antibodies were diluted and used
in this study were as follows: sheep antineuroligin1 (1:1000,
AF4340, R&D Systems), rabbit anti-phospho-cofilin (1:1000,
3313, Cell Signaling Technology), mouse anti-cofilin (1:1000,
ab42824, Abcam), rabbit antiGluR1 (1:1000, AB1504, Millipore),
rabbit anti-GAPDH (1:1000, 2118, Cell Signaling Technology).
Membranes were washed and probed with HRP-conjugated
secondary antibodies for 1 h at room temperature. Membrane
were developed using ECL and band intensities were quantified
using Image Lab software (Bio-Rad, ChemiDoc XRS+).

Immunofluorescence
Mice were anesthetized with 2% pentobarbital sodium and
sequentially perfused with ice-cold phosphate buffered saline
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(PBS) and 4% paraformaldehyde on day 21 after corresponding
treatments. The L4–L6 spinal cords were rapidly removed
from the mice, post-fixed in 4% paraformaldehyde for 2 h at
4◦C, and then transferred to a 30% sucrose solution diluted
with PBS for 48 h at 4◦C. The spinal cord was embedded
with O.C.T compound at −20◦C and then cut into transverse
slices of 25 µm thickness using a freezing microtome (Leica,
Germany). After being washed with PBS three times, the
slices were blocked with 5% normal donkey serum in PBS for
10 min at room temperature and then incubated with primary
antibodies overnight at 4◦C. The next day, the slices were
removed from the refrigerator for 30 min and the slices were
washed with PBS three times and incubated with secondary
antibodies in darkness for 40 min at 37◦C. Finally, after mounting
with DAPI (Beyotime, China), the immunofluorescence was
detected using a confocal laser microscope (Leica TCS SP8,
Wetzlar, Germany).

The primary antibodies were diluted in PBS and used in this
study were as follows: sheep antineuroligin1 (1:50, AF4340, R&D
Systems), rabbit anti-phospho-cofilin (1:100, 3313, Cell Signaling
Technology), rabbit GluR1 (1:50, AB1504, Millipore), and guinea
pig antiMAP2 (1:200, 188004, Synaptic System).

The secondary antibodies were diluted in PBS and used in
this study were as follows: Alexa Fluor 647 conjugated donkey
anti-sheep IgG H&L (1:200, ab150179, Abcam), Alexa Fluor
568 conjugate donkey anti-rabbit IgG H&L (1:200, ab175470,
Abcam), and Alexa Fluor 647 conjugated donkey anti-guinea pig
IgG H&L (1:200, ab150187, Abcam).

Statistical Analysis
SPSS 22 software (SPSS, Inc., Chicago, IL, United States) was
employed in our study for statistical analysis, and results are
expressed as mean ± standard error of the mean (SEM).
Analysis of the time-course of SNI-induced tactile allodynia
between groups was performed using two-way (group and
time) repeated measures analysis of Variane (ANOVA). For
all other experiments, differences were compared using one-
way ANOVA. Results with a p < 0.05 were considered
statistically significant.

RESULTS

Most Excitatory Neurons Express NL1
To investigate the expression of NL1 in the excitatory neurons of
the spinal cord, we crossed Vglut2-cre+/+ mice with Ai3 mice
to obtain Vglut2::Ai3 mice (Figure 1A), in which the Vglut2
positive neuron would express EYFP under the control of the
Vglut2 promoter, thus all of the excitatory neurons in the never
system would be labeled with yellow fluorescence. Then we
examined the expression of NL1 in the lumbar (L4–L6) spinal
dorsal horn of normal Vglut2::Ai3 mice by immunofluorescence
labeling with an anti-NL1 antibody. Confocal microscopy images
(Figure 1B) showed that excitatory neurons were most abundant
in the superficial dorsal horn, and 68 ± 2.6% excitatory neurons
expressed NL1 (Figure 1C).

Upregulation of NL1 in the Spinal Dorsal
Horn Promotes the Development of
Neuropathic Pain
To explore whether NL1 was involved in the development of
neuropathic pain, the peroneal and tibial nerves were tightly
ligated and cut, whilst leaving the sural nerve intact, to establish
the SNI model, and the mRNA and protein levels of NL1
in the sham and SNI groups was measured. Real-time PCR
(Figure 2C) and western blot analysis showed that both mRNA
and protein levels of NL1 were substantially higher in the SNI
group (p < 0.05) than in the sham group. To further investigate
the role of NL1 in excitatory neurons in neuropathic pain, native
control adeno-associated virus (NC-AAV) or recombinant RNAi
adeno-associated virus targeting NL1 (NLI-AAV) were injected
into the lumbar spinal dorsal horn of Vglut2-cre+/− mice after
SNI surgery (Figure 2A). To test the effect of AAV transfection,
immunofluorescence staining with anti-NL1 was carried out on
AAV-positive lumbar spinal cord slices (Figure 2B). Confocal
images showed that specific knockdown of NL1 in excitatory
glutamatergic neurons. Real-time PCR (Figure 2C) and western
blot analysis showed that both mRNA and protein levels of
NL1 were remarkably downregulated by NL1-AAV (p < 0.05),
but not by NC-AAV.

We measured pain thresholds of ipsilateral and contralateral
paws in the four groups of mice on post-operative days −1,
1, 3, 7, 10, 14, and 21. The results demonstrated that all mice
had the same pre-operative PWT. There were no significant
differences on the contralateral side among the four groups
(Figure 3B). From day 3, the PWT of the SNI group was
significantly decreased compared with the sham group (p< 0.05)
on the ipsilateral side (Figure 3A). From day 7, neuropathic pain
was alleviated by treatment with NL1-AAV compared with NC-
AAV treatment (p< 0.05). All of these results suggest that NL1 in
excitatory neurons plays an important role in the development of
neuropathic pain.

Reduction of NL1 in Excitatory Neurons
Impairs the Increase of p-Cofilin in the
Spinal Dorsal Horn Following SNI
Activating the RhoA/LIM kinase/cofilin pathway results in
chronic neuropathic pain (Qiu et al., 2016). It has been previously
shown that NL1 is sufficient to induce cofilin phosphorylation
(Liu et al., 2016). To further analyze whether NL1 in excitatory
neurons promotes the development of neuropathic pain by
regulation of the phosphorylation of cofilin, lumbar spinal cord
slices of normal Vglut2::Ai3 mice were co-stained with antibodies
against NL1 and p-cofilin. Confocal images (Figure 4A) showed
that p-cofilin was co-localized with NL1 in excitatory neurons
in the lumbar spinal cord. 78.6 ± 3.2% of NL1-expressing
excitatory neurons expressed p-cofilin (Figure 4B). Real-time
PCR (Figure 4C) and western blot analysis showed that both
mRNA and protein levels of cofilin were not markedly different
in the four groups, while the protein level of p-cofilin was
obviously increased in the SNI group compared with the sham
group (p < 0.05). The increase in p-cofilin following SNI was
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FIGURE 1 | Expression of NL1 in EYFP positive neurons of the spinal dorsal horn (A) Schematic diagram for Vglut2-cre+/+ and Ai3 reporter sequences.
Vglut2-cre+/+ mice were crossed with Ai3 mice to generate Vglut2::Ai3 mice. (B) Representative confocal images of EYFP positive neurons (green) and NL1 (red) in
the right spinal dorsal horn of normal Vglut2::Ai3 mice. Scale bar: 70 µm. (C) Percentage of EYFP positive neurons expressing NL1 in total EYFP positive neurons
(n = 3; Mean ± SEM). The white square region shows NL1 expression in the EYFP positive neurons of the spinal dorsal horn.

significantly reduced by treatment with NL1-AAV compared
with NC-AAV (p < 0.05). These results indicate that the
upregulation of p-cofilin might promote the development of
SNI, and NL1 in excitatory neurons could regulate cofilin
phosphorylation.

NL1 in Excitatory Neurons Promotes
Expression of GluR1 Following SNI
GluR1 is a significant subtype of the AMPARs, which are involved
in pain hypersensitivity (Guo et al., 2020). Knockout of NL1 in
newborn mice leads to a reduction in AMPAR levels at synapses
and AMPAR-dependent synaptic transmission in hippocampal
slices (Mondin et al., 2011). To explore whether NL1 in excitatory
neurons can also facilitate expression of GluR1 and ultimately
contribute to the development of neuropathic pain, double
staining of NL1 and GluR1 was used to show colocalization in
spinal cord slices of normal Vglut2::Ai3 mice, and NL1-AAV was
used to knockdown NL1 in excitatory neurons in the dorsal horn
of Vglut2-cre+/− mice. Confocal images (Figure 5A) showed
that NL1 and GluR1 were colocalized in excitatory neurons
in the lumbar spinal cord. 64.7 ± 5.0% of NL1-expressing
excitatory neurons expressed GluR1 (Figure 5B). Real-time
PCR (Figure 5C) and western blot analysis suggested that the
expression of GluR1 was remarkably increased in mice subjected
to SNI as compared with sham-operated mice (p < 0.05), and
this was substantially reversed by NL1-AAV (p < 0.05) but not
by NC-AAV. These results show that NL1 in excitatory neurons
facilitates the expression of GluR1 in neuropathic pain.

DISCUSSION

In the spinal dorsal horn, about a third of the total
neurons are inhibitory GABAergic and glycinergic interneurons

(Todd et al., 2003; Foster et al., 2015). Wang et al. (2018)
have determined that EYFP positive dorsal horn neurons
are glutamatergic excitatory neurons and mediate nociceptive
transmission. In our study, we mainly wanted to know the
peripheral mechanisms by which some of the proteins expressed
in excitatory neurons are involved in neuropathic pain.

Neuroligin1 is an excitatory postsynaptic adhesion molecule
(Ye et al., 2017). Reduction of NL1 levels normalizes the increased
excitatory synaptic activity and reverses inflammatory pain
hypersensitivity (Khoutorsky et al., 2015). Activity-dependent
synaptic recruitment of NL1 in the spinal dorsal horn contributes
to inflammatory pain (Zhao et al., 2018). Downregulation of
spinal NL1 expression ameliorates post-operative pain (Guo
et al., 2018). Because it has not been confirmed how NL1 plays
a key role in neuropathic pain, how NL1 in excitatory neurons is
involved in neuropathic pain has not been investigated either. We
wanted to learn about the mechanism by which NL1 is involved
in neuropathic pain. Our research found that excitatory neurons
were most abundant in the superficial dorsal horn, that most
excitatory neurons expressed NL1, that NL1 was upregulated in
Vglut2+/− mice after SNI, and that blocking NL1 in excitatory
neurons in the spinal dorsal horn by RNAi AAV increased the
PWT of mice subjected to SNI. These results indicated that
NL1 in excitatory neurons participates in the induction and
maintenance of neuropathic pain.

In a similar model of neuropathic pain, Lin et al. (2015)
found no upregulation of NL1 expression but an increased co-
expression of NL1 with PSD95. We used different animals and
models, which may be two main reasons for the different results.
They used adult male Sprague-Dawley rats (200–250 g) and
spinal nerve ligation model, in which the L5–L6 spinal nerves of
rats were dissected and ligated. And we used male 8–12-week-old
Vglut2-cre+/− mice and spared nerve injury model, in which the
common peroneal and tibial nerve branches of mice were ligated
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FIGURE 2 | Upregulation of NL1 in the spinal dorsal horn of Vglut2-cre+/− mice following SNI (A) Vglut2-cre+/+ mice were crossed with WT mice to generate
Vglut2-cre+/− mice. NC-AAV or NLI-AAV were injected into the spinal dorsal horn of normal Vglut2-cre+/− mice. (B) On day 21 after intraspinal AAV injections,
double immunofluorescence staining with AAV (green) and anti-NL1 (red) showing effect of AAV transfection in the right spinal dorsal horn of Vglut2-cre+/− mice.
Scale bar: 25 µm. (C) Quantitative analysis of NL1 by real-time PCR and western blot in spinal cords of sham, SNI, SNI+NC-AAV, and SNI+NL1-AAV group on
post-operative day 21 (n = 4; Mean ± SEM; *p < 0.05 vs. Sham group; #p < 0.05 vs. SNI+NC-AAV group). SNI, spared nerve injury; SNI mice, mice subjected to
SNI; SNI+NC-AAV mice, SNI mice treated with NC-AAV; SNI+NL1-AAV mice, SNI mice treated with NL1-AAV.

FIGURE 3 | Knockdown of NL1 in EYFP positive neurons reduces the SNI-induced pain hypersensitivity in Vglut2-cre+/−mice The PWT was evaluated in the Sham,
SNI, SNI+NC-AAV, and SNI+NL1-AAV Vglut2-cre+/− mice on post-operative days –1, 1, 3, 7, 10, 14, and 21. (A) SNI induced a decrease in PWT and knockdown
of NL1 in EYFP positive neurons attenuated SNI-induced pain hypersensitivity. (B) No significant difference was observed on the contralateral side in the four groups
(n = 8; Mean ± SEM; *p < 0.05 vs. Sham group; #p < 0.05 vs. SNI+NC-AAV group). PWT, paw withdrawal threshold. Post-operative days: days after corresponding
treatment for four groups of mice. Intraspinal AAV injections were performed immediately after SNI-surgery.
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FIGURE 4 | The decrease of NL1 in EYFP positive neurons blocks the SNI-dependent increase of p-cofilin in the spinal dorsal horn of Vglut2-cre+/− mice following
SNI (A) Representative confocal images of EYFP positive neurons (green), NL1 (red), and p-cofilin (rose red) in the right spinal dorsal horn of normal Vglut2::Ai3 mice.
The white square region shows co-localization of NL1 and p-cofilin in EYFP positive neurons. Scale bar: 15 µm. (B) Percentage of EYFP neurons expressing NL1
and p-cofilin in EYFP neurons expressing NL1 (n = 3; Mean ± SEM). (C) Quantitative analysis of cofilin by real-time PCR in spinal cords of sham, SNI, SNI+NC-AAV,
and SNI+NL1-AAV Vglut2-cre+/− mice, and quantitative analysis of cofilin and p-cofilin by western blot in spinal cords from the four groups on post-operative day
21 (n = 4; Mean ± SEM; *p < 0.05 vs. Sham group; #p < 0.05 vs. SNI+NC-AAV group).

FIGURE 5 | NL1 in EYFP positive neurons promotes expression of GluR1 in the spinal dorsal horn of Vglut2-cre+/− mice following SNI (A) Representative confocal
images of EYFP positive neurons (green), NL1 (red), and GluR1 (rose red) in the right spinal dorsal horn of normal Vglut2::Ai3 mice. The white square region shows
co-localization of NL1 and GluR1 in EYFP positive neurons. Scale bar: 15 µm. (B) Percentage of EYFP neurons expressing NL1 and GluR1 in EYFP neurons
expressing NL1 (n = 3; Mean ± SEM). (C) Quantitative analysis of GluR1 by real-time PCR and western blot in spinal cords of sham, SNI, SNI+NC-AAV, and
SNI+NL1-AAV Vglut2-cre+/− mice on post-operative day 21 (n = 4; Mean ± SEM; *p < 0.05 vs. Sham group; #p < 0.05 vs. SNI+NC-AAV group).
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and about 1 mm of nerve was removed distally, with the sural
nerve left intact.

Hu et al. (2019) have shown that inflammatory pain is
accompanied by a reduction in LIMK / cofilin phosphorylation
and actin polymerization. Yang et al. (2017) have found that
SNI causes a significant increase in p-cofilin levels. Qiu et al.
(2016) have demonstrated that inhibiting cofilin phosphorylation
attenuates neuropathic pain. Our results also suggested that
p-cofilin was markedly upregulated in Vglut2-cre+/− mice
subjected to SNI, but the level of cofilin was not changed
significantly. Thus, these current studies illustrate that p-cofilin
is linked to the SNI-dependent increase in neuropathic pain.

Liu et al. (2016) have indicated that NL1 induces cofilin
phosphorylation and regulates spine / synaptic plasticity via
activation of Rap1/LIMK1-mediated actin reorganization. We
wanted to further investigate whether NL1 in excitatory
neurons contributes to the development of neuropathic pain
by inducing cofilin phosphorylation. Our study found that
NL1 and p-cofilin were co-localized in excitatory neurons of
the spinal dorsal horn, and the SNI-dependent increase in
p-cofilin was remarkably reversed by knockdown of NL1 in
excitatory neurons. These results indicate that NL1 in excitatory
neurons could regulate cofilin phosphorylation. Together, cofilin
phosphorylated by NL1 in excitatory neurons might promote
actin assembly, which facilitates spine/synapse formation,
regulates spine/synaptic plasticity, and eventually leads to the
development of neuropathic pain.

Past work has shown that post-operative pain increases the
surface delivery of GluR1 in the dorsal horn of rats (Guo et al.,
2014). GluR1 trafficking in dorsal horn neurons plays a pivotal
role in inflammatory pain. Mice lacking GluR1 subunits show
a loss of pain plasticity and a significant reduction in acute
inflammatory hyperalgesia (Peng et al., 2012). The increase in
the expression of GluR1 is related to type-2 diabetic neuropathic
pain (Hartmann et al., 2004). They did not mention the role
of GluR1 in pure neuropathic pain. We found that GluR1 was
obviously increased in the dorsal horn of Vglut2-cre+/− mice
following SNI. Thus, GluR1 may be associated with the regulation
of neuropathic pain.

Both AMPAR levels at synapses and AMPAR-dependent
synaptic transmission are reduced in hippocampal slices of
newborn NL1 knockout mice (Zhu et al., 2020). A unique
intracellular tyrosine in NL1 regulates AMPAR recruitment
during synapse differentiation and potentiation (Letellier et al.,
2018). Synaptic potentiation is characterized by the insertion
of AMPARs, which is a form of functional spine plasticity
(Cingolani and Goda, 2008). GluR1 is a subtype of AMPAR.
Our confocal images showed that GluR1 was co-localized
with NL1 in excitatory neurons. Knockdown of NL1 in
excitatory neurons blocked the increase of GluR1 caused by SNI.
Therefore, we predict the mechanism by which NL1 in excitatory
neurons participates in neuropathic pain involves GluR1-
dependent synaptic enhancement, affecting synaptic plasticity of
excitatory neurons.

Mounting evidence has confirmed that the enhanced synaptic
plasticity of nociceptive interneurons in the superficial spinal
dorsal horn is the basis of central sensitization in neuropathic

pain (Kuner, 2015; Peirs and Seal, 2016; Alles and Smith,
2018; Zhang et al., 2019). Here, our study provides a possible
mechanism for NL1-associated synaptic plasticity of excitatory
interneurons in neuropathic pain. A reduction of NL1 in
excitatory neurons inhibited the SNI-dependent increase in
p-cofilin and GluR1 in Vglut2+/− mice subjected to SNI,
possibly leading to changes in synaptic plasticity of excitatory
interneurons, which revealed a potentially specific role of NL1 in
excitatory neurons in the development of neuropathic pain.

It should be acknowledged that there are some limitations to
our study. Although we have observed that NL1 in excitatory
neurons participated in the development of neuropathic pain, the
potential regulatory mechanism is unclear. In addition to this,
we only investigated the role of NL1 in excitatory neurons in
neuropathic pain, and we have not explored the influence of NL1
in inhibitory neurons in nociceptive transmission. Moreover, we
did not examine the influence of reducing the expression of
p-cofilin in excitatory neurons or its effects on NL1 and GluR1
in the spinal dorsal horn. Indeed, further research is required to
confirm our conclusions.

In summary, we demonstrated a mechanism for NL1-related
synaptic plasticity of excitatory interneurons. We found that
most excitatory neurons expressed NL1 and that the expression
of NL1 was upregulated in Vglut2-cre+/− mouse after SNI
surgery. We also found that NL1 in excitatory neurons promoted
the phosphorylation of cofilin and regulated the expression of
GluR1 in the spinal dorsal horn of Vglut2-cre+/− mice following
SNI. Furthermore, knockdown of NL1 in excitatory neurons
by an RNAi AAV reduced expression of p-cofilin and GluR1
and alleviated mechanical allodynia. We provide new molecular
insight regarding the management of neuropathic pain.

CONCLUSION

Based on the results of this study, upregulation of NL1
contributed to neuropathic pain, which may be involved in
phosphorylation of cofilin and an increase in GluR1. Our findings
suggest a new target to alleviate neuropathic pain.
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