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Sex differences in behaviors relevant to nicotine addiction have been observed in rodent
models and human subjects. Behavioral, imaging, and epidemiological studies also
suggest underlying sex differences in mesolimbic dopamine signaling pathways. In this
study we evaluated the proteome in the ventral tegmental area (VTA) and nucleus
accumbens (NAc) shell in male and female mice. Experimental groups included two
mouse strains (C3H/Hed and C57BL/6J) at baseline, a sub-chronic, rewarding regimen
of nicotine in C3H/Hed mice, and chronic nicotine administration and withdrawal in
C57BL/6J mice. Isobaric labeling with a TMT 10-plex system, sample fractionation, and
tandem mass spectrometry were used to quantify changes in protein abundance. In
CB8H/Hed mice, similar numbers of proteins were differentially regulated between sexes
at baseline compared with within each sex after sub-chronic nicotine administration.
In C57BL/6J mice, there were significantly greater numbers of proteins differentially
regulated between sexes at baseline compared with within each sex after chronic
nicotine administration and withdrawal. Despite differences by sex, strain, and nicotine
exposure parameters, glial fibrillary acidic protein (GFAP) and dopamine and cAMP-
regulated phosphoprotein of 32 kDa (DARPP-32, Ppp1rib) were repeatedly identified
as significantly altered proteins, especially in the VTA. Further, network analyses showed
sex- and nicotine-dependent regulation of a number of signaling pathways, including
dopaminergic signaling. Sub-chronic nicotine exposure in female mice increased
proteins related to dopaminergic signaling in the NAc shell but decreased them in
the VTA, whereas the opposite pattern was observed in male mice. In contrast,
dopaminergic signaling pathways were similarly upregulated in both male and female
VTA after chronic nicotine and withdrawal. Overall, this study identifies significant sex
differences in the proteome of the mesolimbic system, at baseline and after nicotine
reward or withdrawal, which may help explain differential trajectories and susceptibility
to nicotine addiction in males and females.
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INTRODUCTION

Smoking tobacco is responsible for more than 7 million deaths
a year worldwide' and nicotine is the primary psychoactive
ingredient in tobacco (Picciotto and Kenny, 2013). Like other
drugs of abuse, one of the primary mechanisms contributing
to the initial stages of nicotine reward is the ability of
nicotine to increase phasic dopamine release from ventral
tegmental area (VTA) projection neurons to the nucleus
accumbens (NAc; Schultz, 2010; Nestler, 2005; Di Chiara and
Imperato, 1988). Nicotine exerts its actions via activation and
desensitization of nicotinic acetylcholine receptors (nAChRs),
which are pentameric cation channels made of a (a2-al0)
and P (B2-B4) subunits. nAChRs are expressed widely, with
significant expression in multiple cell types in the VTA
(Picciotto et al., 2008; Dani, 2015; Picciotto and Kenny,
2013).

Importantly, there are significant sex differences in many
aspects of nicotine addiction, ranging from the cellular to
behavioral levels. In clinical studies, women are not only more
susceptible to developing nicotine addiction (Pogun et al., 2017;
Pogun and Yararbas, 2009; Sylvestre et al., 2018), but also
experience more difficulty quitting and higher rates of relapse
(Weinberger et al., 2014; Smith et al., 2015, 2016). In preclinical
studies, female rats self-administer more nicotine than male
rats (Flores et al, 2019) and acquire self-administration more
quickly than males at lower doses of nicotine (Donny et al,
2000). Further, nicotine interacts differentially with sex hormones
in males and females to affect nicotine-induced dopamine
release in striatal tissue in opposite directions (Dluzen and
Anderson, 1997). Even the upregulation of a4p2 nAChRs, a
classic response to chronic nicotine exposure, is less pronounced
in female rodents (Koylu et al., 1997; Mochizuki et al., 1998;
Hoegberg et al, 2015) and humans (Cosgrove et al,, 2012)
compared to their male counterparts. Significant sex differences
in baseline function of the mesolimbic dopamine system have
also been demonstrated, including the numbers of putative
dopaminergic neurons in the VTA (McArthur et al, 2007),
baseline VTA dopaminergic activity (Calipari et al, 2017),
and D1 and D2-type dopamine receptor availability in the
NAc shell and VTA (Pohjalainen et al., 1998; Bernardi et al.,
2015).

Several studies have undertaken analyses of nicotine-induced
alterations in the brain proteome. These studies include
investigations of whole brain tissue (Miller et al., 2018; Paulo
et al,, 2018; Koul et al., 2020) or specific brain regions, including
hippocampus (Matsuura et al., 2016; Zhu et al., 2017), cortex
(Matsuura et al., 2016; Hwang and Li, 2006; McClure-Begley
et al., 2016), amygdala (Hwang and Li, 2006), dorsal striatum
(Petruzziello et al., 2013; Hishimoto et al., 2016; Hwang and
Li, 2006; Yeom et al., 2005), NAc, and VTA (Hwang and Li,
2006) in mice and rats. Nicotine administration ranged from an
acute injection 48 hours prior to tissue collection (Hishimoto
et al., 2016) to 6 months of nicotine administration through
drinking water (Matsuura et al, 2016). Despite evidence for

Uhttps://www.who.int/news-room/fact-sheets/detail/tobacco

significant sex differences in nicotine addiction, 7 of the 10 studies
published to date used only male animal subjects, one study
only female animal subjects, and one study did not report the
sex of its animal subjects. Only one study used both male and
female animal subjects and specifically focused on the proteomic
signatures of brain-derived extracellular vesicles in their analysis
of sex differences after long-term nicotine self-administration
(Koul et al., 2020).

In this study, we used male and female mice to investigate
baseline sex differences in the proteome of the mesolimbic
system, specifically the VTA and NAc shell, as well as changes
in response to a sub-chronic, rewarding regimen of nicotine
administration and a chronic regimen followed by withdrawal.
To quantify changes in protein abundance, we used isobaric
labeling with a TMT 10-plex system, off-line fractionation,
and tandem mass spectrometry. This approach results in less
variation between runs, more efficient analysis due to sample
multiplexing, and improved depth and signal-to-noise ratio
(Rauniyar and Yates, 2014; Mansuri et al., 2020). In order to
determine the effect of nicotine and of sex, we conducted pairwise
analyses of (1) males or females receiving control treatment, (2)
males receiving control or nicotine treatment, and (3) females
receiving control or nicotine treatment. Further, we explored
functional implications of the differentially expressed proteins
through pathway enrichment analyses and determined which
proteins were significantly altered across experiments to identify
converging effects of sex and/or nicotine.

MATERIALS AND METHODS

Animals

Male and female C3H/He] (sub-chronic nicotine) and C57Bl/6]
(chronic nicotine and withdrawal) mice were obtained from
The Jackson Laboratory (Bar Harbor, ME, United States) at
9-11 weeks of age. Nicotine or control treatments began at 10-
12 weeks of age, following at least one week of acclimation to
the vivarium. Mice were group-housed with cagemates of the
same sex and strain, maintained on a 12-h light-dark cycle (lights
on at 7:00 AM), and provided standard chow. All procedures
were approved by the Yale University Institutional Animal Care
and Use Committee.

Sub-Chronic Nicotine Exposure

Sub-chronic nicotine administration was used in the setting
of conditioned place preference (CPP) training. Due to the
variability in effective CPP conditioning paradigms, we used
C3H/He] mice and a training schedule which has successfully
produced CPP in both male and female mice in our hands
(Lee et al.,, 2020) to ensure the behavioral relevance of the
nicotine administration paradigm. Briefly, mice were handled
for 3 days, with gentle stroking of the back and scruff of the
neck on the first day, light scruffing of the neck on the second
day, and then scruff while pressing syringe (without needles)
to back of neck on the third day to simulate a subcutaneous
(s.c.) injection. On day 4, animals were given a baseline chamber
preference test, where they freely explored the three chambers of
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the apparatus for 15 min and the time spent in each chamber was
recorded. On days 5-10, mice were trained once a day with either
saline (10 ml/kg, s.c.) or nicotine injections (nicotine ditartrate
salt, NIDA Drug Supply Program; free base concentrations of
0.5 mg/kg for males and 0.75 mg/kg for females in saline at
10 ml/kg, s.c.) preceding a 30-min session in one of the two end
chambers. On alternate days, mice received the alternate injection
prior to a 30-min session in the alternate chamber. Different
doses of nicotine were used to produce similar levels of nicotine
reward in male and female mice, accounting for sex differences
in nicotine response and sensitivity, including pharmacokinetic
differences in nicotine absorption and metabolism (Kota et al.,
2007, 2008; Lenoir et al., 2015; Pogun and Yararbas, 2009). We
have previously demonstrated that the specific doses used in this
study produce CPP in C3H/He] mice (Lee et al, 2020). The
nicotine group received alternating injections of nicotine and
saline on days 5-10, while the control group received saline on all
days while alternating chambers on days 5-10. On day 11, mice
were again tested for chamber preference in a 15-min session and
sacrificed 10-30 min after preference testing.

Chronic Nicotine Exposure and
Withdrawal

C57Bl/6] mice were exposed to nicotine chronically in the
drinking water as described (Jung et al., 2016), and brain
samples were collected approximately 24 h after the nicotine was
withdrawn. This schedule and mode of nicotine administration
has been used in C57BL/6] mice to produce nicotine-induced
neuronal adaptations (Brunzell et al., 2003; Caldarone et al., 2008;
Paulo et al., 2018). Further, the withdrawal period is sufficient
to produce physiologic and behavioral symptoms of withdrawal
in mice, including molecular adaptations in the mesolimbic
system, somatic signs, and affective signs of withdrawal (Jackson
and Imad Damaj, 2013; Damaj et al, 2003; Locklear et al,
2012). Nicotine ditartrate salt (NIDA Drug Supply Program)
was dissolved in 2% saccharin drinking water to a final free
base nicotine concentration of 200 pg/ml. The corresponding
control group received 0.2% tartaric acid (Sigma-Aldrich, St.
Louis, MO, United States) in 2% saccharin drinking water,
which was matched in pH to the nicotine solution (pH 3.7-
3.8). Nicotine or saccharin control solutions were the only
available sources of drinking water for 21 consecutive days.
Treatment drinking water was replaced with normal drinking
water following the 21-day treatment period, and tissue was
collected 24 h after this switch.

Tissue Collection

Mice were euthanized by rapid decapitation and brains were
quickly removed from the skull and placed on a brain matrix
to create 1 mm coronal sections from the frontal cortex through
the midbrain. These coronal sections were then carefully placed
into a petri dish of cold 1x PBS over ice. Bilateral 1 mm
punches were taken from NAc shell- and VTA-enriched regions,
deposited into separate 1.5 ml Eppendorf tubes, and immediately
frozen on dry ice.

Four mice from each group (sex x treatment) in each
experiment (sub-chronic or chronic nicotine administration)
were included for proteomic analysis. Samples were excluded
if there were any technical difficulties in collecting a sufficient
amount of tissue using the brain punch.

Proteomics Sample Preparation by
Protein Extraction, Digestion, Labeling,

and Pooling

Mouse tissue punches were lysed in fresh lysis buffer [RIPA
buffer, 0.5% sodium deoxycholate, containing 1x PhosSTOP
phosphatase inhibitor (Roche) and 1x cOmplete protease
inhibitor cocktail (Roche)]. The homogenate was incubated at
4°C on ice for 10 min and then sonicated on ice for 3 x 10 s
with 30 s intervals. A soluble fraction was obtained following
centrifugation for 10 min at 14,000 x g at 4°C (Tan et al., 2017).
A BCA protein concentration assay (Thermo Fisher Scientific)
was performed and confirmed by running a short SDS gel with
BSA standards stained with Coomassie blue. Protein (50 jLg) for
each sample then underwent acetone precipitation, reduction,
alkylation, and trypsin (Promega, 1:50 w/w) digestion overnight
at 37°C, then quenching with 1% trifluoroacetic acid. RP C18
cartridges (The Nest Group, Southborough, MA, United States)
were used to desalt peptides, after which samples were dried with
speed-vac. Samples were resuspended in 50 mM HEPES (pH
8.5) and labeled with TMT 10-plex reagents according to the
manufacturer’s instructions (Thermo Fisher Scientific; see also
Figure 1). A label efficiency test was performed on 1/20th of each
sample prior to equally mixing the 10 channels (8 samples and
2 pooled controls generated by mixing equal amount of proteins
from all 8 samples used in each run), then samples were dried
prior to fractionation and analysis.

High-pH Reversed-Phase Fractionation
and SPS-MS3 TMT Data Acquisition

Fractionation and TMT data acquisition were performed as
previously described (Mervosh et al., 2018). Briefly, high-pH
reversed-phase C18 peptide fractionation was performed on an
ACQUITY UPLC H-class system (Waters Corporation, Milford,
MA, United States) equipped with an ACQUITY UPLC BEH C18
column (1.7 pm, 2.1 mm X 50 mm). Elution was performed
as previously described (Mervosh et al., 2018), with a flowrate
of 0.3 ml/min and gradient of 2% of mobile phase A (10 mM
ammonium acetate, pH 10) to 37% mobile phase B (10 mM
ammonium acetate in 90% acetonitrile, pH 10) in 19.8 min. In
total 60 fractions were collected, pooled into five fractions, dried,
and reconstituted in loading buffer (0.2% trifluoroacetic acid, 2%
acetonitrile in water).

Reversed phase-liquid chromatography-mass spectroscopy
(RP-LC-MS/MS/MS) was performed at the Yale/Keck MS &
Proteomics Resource with a nanoACQUITY UPLC system
(Waters Corporation, Milford, MA, United States) connected to
an Orbitrap Fusion Tribrid (Thermo Fisher Scientific, San Jose,
CA, United States) as described (Mervosh et al., 2018). SPS-
MS3 scanning was performed as described previously (Mervosh
et al., 2018), except that the maximum injection time was set
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FIGURE 1 | Experimental design and workflow. (A) Male and female mice were treated with nicotine or control solutions. In C3H/HeJ mice, sub-chronic nicotine or
saline was administered subcutaneously on alternating days for a total of 6 days in a CPP testing paradigm (n = 4 per group). In C567BL/6J mice, nicotine or
saccharin was administered in drinking water chronically for 21 days, followed by a 24-h withdrawal period (n = 4 per group). About 10-30 min after CPP testing in
C8H/Hed mice, or 24 h after cessation of nicotine or saccharin treatment in C57BL/6J mice, subjects were sacrificed and the VTA and NAc shell were collected from
each brain by 1 mm punch biopsy on 1 mm-thick coronal sections. (B) Tissue samples were subsequently processed for proteomic analysis with a TMT10-plex
isobaric labeling strategy. (C) Data were quantified, normalized, analyzed, and visualized using MaxQuant and Perseus software and the online STRING database
tool.

to 60 ms, and dynamic exclusion was enabled for a duration 1.6 m/z. MS3 scans were produced with higher-energy collision
of 30 s for the full scan. CID-MS fragmentation isolation dissociation (HCD) for the top 10 fragment ions for each
mode was set to quadrupole and isolation width was set to  peptide MS2 and were analyzed in the Orbitrap at a resolution
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of 60,000. The maximum injection time was set to 120 ms
and automatic gain control (AGC) target value was set to
1 x 10°.

Quantification and Normalization of
Peptides and Proteins

Raw files were processed with MaxQuant (MaxQuant,
RRID:SCR_014485) version 1.6.1.0 with a false-discovery
rate (FDR) < 0.01 at the level of proteins, peptides and
modifications using the Andromeda search engine integrated
into the MaxQuant environment, and using the Mouse UniProt
FASTA database (16916 sequences available, retrieved October
2018, UniProtKB, RRID:SCR_004426). For Group Specific
Parameter changes, “type” was set as “reporter ion MS3” and
“l0plex TMT.” Oxidized methionine (M) and acetylation
(protein N-term) were selected as variable modifications, and
carbamidomethyl (C) as a fixed modification with minimum
peptide length of seven amino acids. Trypsin was selected as the
protease allowing for up to two missed cleavages, and the peptide
mass was limited to a maximum of 4,600 Da. Quantification
of peptides and proteins was performed by MaxQuant using
“unique + razor peptides” including unmodified peptides and
modified peptides [oxidation (M) and Protein N-term acetyl].
“Match between runs” (MBR) was enabled with a matching time
window of 0.7 min. In general, values of parameters in MaxQuant
have not been changed from their default values unless explicitly
stated (Sowers et al., 2019).

These search results were exported as text files, along with
their TMT reporter ion intensities (Supplementary Table 1).
Three normalization steps were implemented as described
(Plubell et al., 2017; Robinson and Oshlack, 2010) using
in-house R scripts in RStudio (RStudio, RRID:SCR_000432)
version 1.3.1093. Each experiment (i.e., sub-chronic and chronic
nicotine administrations) consisted of two TMT 10-plex runs
with two biological replicates of each experimental group
(sex x treatment) and two pooled channels of equal ratios (i.e.,
equal amount of proteins) of the eight experimental channels
within the TMT run. First, data were normalized within each
TMT 10-plex experiment to account for small variations in
sampling loading and labeling efficiency. To accomplish this
first normalization, a global scaling factor was applied to the
total ion reporter intensity of each channel such that each
channel was adjusted to the average total intensity across all
ten channels. A second normalization step called “trimmed
means of M values” (TMM), originally developed for RNA-
seq data (Robinson and Oshlack, 2010), was used to align the
centers of intensity distributions across samples within each
TMT experiment. This provided robust normalization across
samples, which can skew detection of differentially expressed
proteins (Robinson and Oshlack, 2010; Branson and Freitas,
2016). Third, the data were normalized across TMT experiments
(batch correction) using “internal reference scaling” (IRS; Plubell
et al., 2017; Mansuri et al., 2020) for chronic VTA or Limma
(Brusniak et al., 2008; Margolin et al., 2009; Ting et al., 2009;
Jankova et al., 2011; Schwammle et al., 2013; Zhao et al., 2013)
for sub-chronic VTA, sub-chronic NAc, and chronic NAc due to

higher variability of data in the latter datasets. IRS uses reporter
ion intensities from the two pooled sample reference channels
within each TMT experiment to create scaling factors for each
protein in the eight experimental channels. All normalized data
are available in Supplementary Table 2.

Statistical Analysis

Normalized ion intensities were statistically analyzed in Perseus
software (Perseus, RRID:SCR_015753) version 1.6.0.7. Values
were first log2 transformed to achieve normal distribution.
Proteins were filtered to remove “only identified by site,
“reverse;” and “potential contaminants.” In addition, proteins
with missing values in any individual sample were filtered out.
For the sub-chronic VTA, sub-chronic NAc, and chronic NAc
analyses, an additional step of multiple ANOVA tests with
FDR < 0.05 was implemented due to the relatively lower numbers
of proteins identified in these experiments (<2,000) compared to
the chronic VTA experiment (>3,000), and the higher variability
in protein expression values observed in those three analyses.
This step reduced the variability in protein expression values in
the sub-chronic VTA, sub-chronic NAc and chronic NAc data,
thereby improving data quality as assessed by the clustering
of replicates in principle component analyses (PCA). Pairwise
comparisons between male control and female control, male
nicotine (MN) and male control (MC), and female nicotine
(FN) and female control (FC) in each experiment were then
conducted to determine differentially regulated proteins by sex
and by nicotine treatment. In each pairwise comparison above,
the second group served as the reference group (female control,
male control and female control, respectively). Moderated t-tests
were performed with FDR < 0.05 and s0 = 0.5. The s0 parameter
incorporates expression values into significance determinations,
such that s0 = 0 relies solely on FDR to determine significance and
s0 > 0 uses both fold change and FDR cutofs. Default settings for
FDR determination were used (permutation-based FDR with 250
randomizations applied).

Bioinformatics Analysis

Pathway enrichment analyses were conducted using the Search
Tool for the Retrieval of Interacting Genes (STRING) database
(STRING, RRID:SCR_005223) version 11.0% (Szklarczyk et al.,
2019). Significantly regulated proteins, as determined by Perseus
in pairwise comparisons, were submitted without expression
values to the STRING database for gene ontology (GO) and
pathway enrichment analyses.

Further sub-network analyses were performed by
importing protein interaction data into Cytoscape (Cytoscape,
RRID:SCR_003032) version 3.8.2. The required interaction score
and FDR were set at minimums of 0.7 and 1%, respectively. The
Molecular Complex Detection (MCODE) plug-in (MCODE,
RRID:SCR_015828) (Bader and Hogue, 2003) was used in
Cytoscape with cut off-values of node score = 0.2, degree = 4,
k-core = 4, and maximum depth = 100 to identify protein-
protein interaction (PPI) networks within the data. The proteins
in each network cluster were further submitted to the DAVID

Zhttps://string-db.org/
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database (DAVID, RRID:SCR_001881) for GO and KEGG
pathway enrichment analysis.

Raw data and results of analyses are provided in
Supplementary Tables 1-8, as summarized in Table 1.

RESULTS

Quantitative Proteomic Analysis of VTA
and NAc Shell After Sub-Chronic and

Chronic Administration of Nicotine

The VTA or NAc shell proteomes were examined after sub-
chronic nicotine administration and after withdrawal from
chronic nicotine administration as shown by the workflow
depicted in Figure 1. Sub-chronic nicotine was administered at
doses and on a schedule that induces CPP in C3H/He] mice (Lee
etal., 2020). Chronic nicotine was administered to C57BL/6] mice
through drinking water for 21 days, followed by 24 h of normal
drinking water administration prior to tissue collection, at which
point mice can exhibit signs of withdrawal (Jackson and Imad
Damaj, 2013; Damaj et al.,, 2003). Tissue was then processed,
TMT 10-plex isobaric tags were applied to biological replicates of
the experimental groups and pooled reference samples, and each
set of labeled samples was pooled, fractionated and run through
LC-MS/MS/MS (Figure 1).

Proteins were identified by applying the criteria of <1%
FDR for peptides and proteins, and no missing value across the
biological replicates in sex x treatment groups in each brain
region after each nicotine treatment. These criteria identified
1,813 proteins in the VTA (Supplementary Table 1A) and 1,562
proteins in the NAc shell (Supplementary Table 1B) in the sub-
chronic nicotine groups. After chronic nicotine exposure and
withdrawal, there were 3,215 proteins identified and quantified in
the VTA (Supplementary Table 1C) and 1,827 in the NAc shell
(Supplementary Table 1D). Data were normalized to account
for within, and across, mass spectrometry analyses (see section
“Materials and Methods” and Supplementary Tables 2A-D).
In order to facilitate more meaningful pairwise comparisons
between sex and treatment groups, an additional multiple
ANOVA step was implemented prior to differential protein
expression analysis for VTA sub-chronic, NAc sub-chronic, and
NAc chronic data sets. In these data sets, the multiple ANOVA
step helped address the lower numbers of proteins identified
(<2,000) and higher variability in protein quantitation that was
found. Following the multiple ANOVAs, the proteins submitted
for differential protein expression analysis were 286 for VTA
sub-chronic, 404 for NAc sub-chronic, and 235 for NAc chronic.

The reproducibility and overall quality of the data were
confirmed. Figure 2 shows normalized data from the VTA
after chronic nicotine administration and withdrawal.
The distribution of individual protein intensity values after
normalization were highly similar between individual biological
samples, as illustrated by box plots (Figure 2A). A principal
component analysis (PCA) indicates more variability between
experimental groups than within groups, as illustrated by
the clustering of biological replicates when mapped across

the first two dimensions of the PCA (Figure 2B). The
coefficients of variance were low across groups, averaging
3% (Figure 2C). Finally, multiple scatter plots of individual
proteins between biological replicates demonstrated Pearson
correlation coefficients >0.99 (Figure 2D). Overall, these
analyses indicate the high quality of the data.

Pairwise Comparisons of Differentially
Regulated Proteins by Sex and

Treatment Group

Differentially regulated proteins in each group were calculated
as described in the section “Materials and Methods,” such that
moderated ¢-tests were performed with FDR < 0.05 and s0 = 0.5.
This analysis is depicted as summary data in Figure 3A and
in volcano plots in Figure 3B. The analysis included pairwise
comparisons of differentially regulated proteins in either VTA
or NAc shell between male control and female control (MC vs.
FC) samples, female nicotine and female control groups (FN
vs. FC), and male nicotine and male control groups (MN vs.
MC). After sub-chronic nicotine administration in the VTA
of C3H/He] mice, slightly fewer proteins were differentially
expressed between MC vs. FC (86 proteins) compared to the
proteins differentially expressed in FN vs. FC (113 proteins)
and MN vs. MC (109 proteins) comparisons (Figure 3).
A similar pattern in numbers of differentially regulated proteins
was observed in the NAc shell after sub-chronic nicotine
administration, with 109, 129, and 136, proteins significantly
altered in MC vs. FC, FN vs. FC, and MN vs. MC mice,
respectively (Figure 3).

In contrast, there were more strikingly varied patterns of
differential protein expression in C57BL/6] mice. In the VTA,
392 proteins were differentially expressed between MC vs. FC, far
exceeding the 74 proteins that were differentially expressed in FN
vs. FC mice, and the 7 proteins that were differentially expressed
in MN vs. MC mice (Figure 3). An overall similar pattern was
observed in the NAc shell, but of a different magnitude. In the
NAc shell, 13 proteins were differentially expressed in MC vs. FC,
while there was only one protein that was significantly decreased
in FN vs. FC mice, and zero proteins that were differentially
regulated by nicotine exposure in male mice (Figure 3). The
identities of all proteins, as well as their fold change and q-values,
are available online (Supplementary Tables 3-6).

Comparison of Commonly Altered
Proteins Across Sex and Treatment

Groups

We further evaluated the pairwise comparisons to identify
similarities in sub-chronic vs chronic nicotine-induced and sex-
dependent alterations in protein expression within the NAc shell
and the VTA (Figure 4). Differential expression of the same
proteins in multiple comparisons provides convergent evidence
of the regulation of those proteins. For example, if the same
set of proteins are differentially expressed in MC vs. FC in
both C3H/HeJ and C57BL/6] mice, it would strengthen the
suggestion that expression of those proteins is sex-dependent
at baseline. In the VTA in the absence of nicotine exposure,
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TABLE 1 | Summary of data provided in Supplementary Tables 1-8.

Table # Table File Name Description of contents

S1 Supplementary Non-normalized intensity values for all proteins identified by mass spectrometry. Data are shown for 4 biological
Table 1_All-Unnormalized replicates of each experimental group (sex x treatment) and 4 pooled reference samples. Each of the 4 sheets

shows this data for one brain region (VTA or NAc) after one nicotine administration experiment (sub-chronic or
chronic).

S2 Supplementary Normalized intensity values for all proteins identified by mass spectrometry. Data are shown for 4 biological
Table 2_All-Normalized replicates of each experimental group (sex x treatment) and 4 pooled reference samples. Each of the 4 sheets

shows this data for one brain region (VTA or NAc) after one nicotine administration experiment (sub-chronic or
chronic).

S3 Supplementary The results of pairwise comparisons to determine which proteins were differentially expressed between MC vs.
Table 3_Pairwise Sub-chronic FC, FN vs. FC, and MN vs. MC in the VTA after sub-chronic nicotine administration.

VTA

sS4 Supplementary The results of pairwise comparisons to determine which proteins were differentially expressed between MC vs.
Table 4_Pairwise Sub-chronic FC, FN vs. FC, and MN vs. MC in the NAc after sub-chronic nicotine administration.

NAc

S5 Supplementary The results of pairwise comparisons to determine which proteins were differentially expressed between MC vs.
Table 5_Pairwise Chronic VTA FC, FN vs. FC, and MN vs. MC in the VTA after chronic nicotine administration.

S6 Supplementary The results of pairwise comparisons to determine which proteins were differentially expressed between MC vs.
Table 6_Pairwise Chronic NAc FC, FN vs. FC, and MN vs. MC in the NAc after chronic nicotine administration.

S7 Supplementary Proteins that were found to be differentially expressed in multiple pairwise comparisons. Each of the 4 sheets
Table 7_Commonly altered shows these commonly altered proteins for one type of pairwise comparison (e.g., MC vs. FC) in one brain
proteins region (VTA or NAc) across strains or nicotine administration experiments.

S8 Supplementary Table 8_Top Five most significantly enriched KEGG pathways for differentially expressed proteins in each pairwise

5 KEGG Pathways

comparison. Each of the 3 sheets shows the KEGG pathways enriched in each pairwise comparison (MC vs.
FC, FN vs. FC, MN vs. MC) in one brain region (VTA or NAc) in one strain or nicotine administration experiment.

17 proteins were commonly differentially expressed between
sexes, representing 19.8% (17/86) and 4.3% (17/392) of the
total proteins differentially expressed between MC vs. FC in
the VTA of C3H/HeJ mice and C57BL/6] mice, respectively
(Figure 4A and Supplementary Table 7A). 14 of the 17
(82.4%) overlapping proteins were differentially expressed in
the same direction, including Ppplrlb [dopamine and cAMP-
regulated phosphoprotein of 32 kDa (DARPP-32)] which was
expressed at higher levels in males. In the NAc shell, only one
protein, Krt76, was commonly regulated in C3H/HeJ (0.9%,
or 1 out of 109 total differentially regulated proteins) and
C57BL/6] (7.7% or 1/13) MC vs. FC comparisons (Figure 4A and
Supplementary Table 7B).

For each sex, the proteins regulated by sub-chronic nicotine
and chronic nicotine were compared to find proteins that
may be key regulators of nicotine’s effects across reward and
withdrawal (Figure 4B, Supplementary Table 7). In the VTA FN
vs. FC comparisons, there were 13 proteins in common between
sub-chronic (11.5% or 13 of 113 total differentially regulated
proteins) and chronic (17.6% or 13/74) nicotine administration
groups. Of those 13 proteins, only Ppplrlb was altered in
the same direction (increased protein levels following nicotine
exposure; Figure 4B and Supplementary Table 7C). In the
VTA MN vs. MC comparisons, there were two overlapping
proteins [glial fibrillary acidic protein (GFAP) and Ppplrlb],
or 1.8% (2/109) and 28.6% (2/7) of differentially regulated
proteins in sub-chronic and chronic nicotine groups, respectively
(Figure 4B and Supplementary Table 7D). Similar to the
FN vs. FC comparisons, only Ppplrlb was increased in both
sets of male VTA comparisons (Figure 4A). Notably, these
similarities in protein alterations are within the same brain

region and same pairwise comparisons of sex and treatment
groups, but the tissue are from different mouse strains with
different nicotine treatment protocols (i.e., C3H/He] for sub-
chronic administration, and C57BL/6] for chronic administration
and withdrawal).

There was only one protein significantly altered in the NAc
shell in FN vs. FC after chronic nicotine administration and
withdrawal, and none in MN vs. MC. This protein, Tagln, was
altered in opposite directions in sub-chronic and chronic groups.

Within sub-chronic and chronic nicotine administration
experiments, nicotine-induced protein alterations between sexes
were compared to find sex-independent effects of nicotine
(Figure 4C). Between FN vs. FC and MN vs. MC comparisons in
the VTA after sub-chronic nicotine administration, there were 43
proteins commonly identified as differentially regulated proteins
representing 38.1% (43/113) and 39.4% (43/109) of proteins
with nicotine-induced alterations in expression in female and
male mice, respectively (Figure 4C and Supplementary Table 3).
65.1% (28/43) of the commonly regulated proteins were altered in
the same direction, including GFAP, an astrocyte marker which
was downregulated by sub-chronic nicotine in both males and
females, and Ppplrlb which was up-regulated in both sexes.
DOPA decarboxylase (DDC) and tyrosine hydroxylase (TH),
two proteins involved in dopamine synthesis, were commonly
regulated but in different directions: both were decreased by
sub-chronic nicotine in the female VTA, but increased in
male VTA (Supplementary Table 3). In the NAc after sub-
chronic nicotine administration, 41.1% (53/129) of proteins
differentially expressed in FN vs. FC were also altered by
nicotine in MN vs. MC, or 39.0% (53/136) of proteins in
male mice (Figure 4C and Supplementary Table 4). 50.9%
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FIGURE 2 | Example of data normalization by sample loading, TMM, and IRS, using data from the VTA after chronic nicotine and withdrawal. (A) Normalized
intensity values for each reference pool (P1, P2, P3, P4) and experimental sample in each of the two TMT experimental sets (red and blue) are shown as box plots.
(B) Principal component analysis of sample intensity values shows clustering of the samples by experimental groups and reference pooled samples, where each oval
encompasses the biological replicates run in each TMT experimental set. (C) The coefficients of variance of each experimental group averaged ~3% after
normalization. (D) Quality control analysis showing, for each biological replicate, scatter plots of normalized quantification values (logo of TMT intensities) and

Pearson correlation coefficients, which ranged from 0.99 to 1.00.

(27/53) of the commonly altered proteins were also altered
in the same direction, including glutamate decarboxylase 2
(Gad2) and vesicular glutamate transporter 2 (Slc17a6), which
were up-regulated by nicotine in both males and females, and
potassium/sodium hyperpolarization-activated cyclic nucleotide-
gated channel 1 (Henl) which was downregulated by nicotine
in both male and female NAc. Examples of proteins commonly
identified but altered in different directions include monoamine
oxidase B (Maob), which was increased by sub-chronic nicotine

in female NAc but decreased in male NAc, and proenkephalin-A
(Penk), which was decreased by sub-chronic nicotine in female
NAc but increased in male NAc (Supplementary Table 4).

In the VTA after chronic nicotine administration and
withdrawal, 6/7 (85.7%) proteins significantly up-regulated in
MN vs. MC were also up-regulated in FN vs. FC (8.1%, 6/74;
Figure 4C). These proteins include GFAP, a marker of astrocytes,
and Ppplrlb (DARPP-32), as well as regulator of calmodulin
signaling (RCS or Arpp2l), sodium-dependent dopamine
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FIGURE 3 | Significantly altered proteins in pairwise comparisons between male vs. female and nicotine vs. control groups. (A) Summary of differentially regulated
proteins in each pairwise comparison. (B) Volcano plots of logy fold change and —log+g p-values are shown for each pairwise comparison in VTA and NAc shell after
sub-chronic or chronic nicotine administration in C3H/Hed or C57BL/6J mice. Black lines within the graph show the significance cutoffs as determined in Perseus
with sO = 0.5 and FDR < 0.05. Proteins meeting significance criteria are colored. Red indicates an increase in protein abundance, and green indicates a decrease in
protein abundance.

transporter (DAT; Slc6a3), and two phosphodiesterases, Pdel0a
and Pde2a (Supplementary Table 5).

Pathway Enrichment Analyses of
Differentially Regulated Proteins in Sex

and Treatment Comparisons

The STRING database was used to identify emergent patterns
in the proteins that were differentially expressed within
pairwise comparisons. The STRING database analysis displays
functional enrichment by GO categories, including biological
process, molecular function and cellular component, as well
as KEGG pathways, multiple protein domain databases, and
other enrichment categorizations. The five most significantly
enriched KEGG pathways for the different comparisons are
shown in Figure 5 to focus on possible functional implications
of the significantly altered proteins. Significantly altered proteins
that are members of the gene sets for the top five enriched

KEGG pathways in each pairwise comparison are shown in
Supplementary Table 8.

STRING Analysis of Differentially Regulated Proteins
in VTA After Sub-Chronic Nicotine Administration
Differentially expressed proteins between the male and female
control groups in the VTA of C3H/HeJ mice were submitted
for STRING analysis. For the 52 proteins with significantly
greater expression in the VTA of MC vs. FC C3H/He] mice,
the five most significantly enriched KEGG pathways out of
14 total were Parkinson’s disease, oxidative phosphorylation,
non-alcoholic fatty liver disease, Alzheimers disease and
Huntington’s disease (Figure 5A and Supplementary Table 8A).
For the 34 proteins with significantly greater expression
in FC vs. MC mice, the five most significantly enriched
KEGG pathways of seven total included folate biosynthesis,
amphetamine addiction, glycolysis/gluconeogenesis, Th17 cell
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differentiation, and tryptophan metabolism (Figure 5A and
Supplementary Table 8A).

In the VTA after sub-chronic nicotine administration, the five
most significantly enriched KEGG pathways of the 22 total from
the 62 proteins upregulated in FN vs. FC were composed of the
same set of proteins (Cox6bl, Cycl, Ndufa6, Ndufa9, Ndufb10,
Ndufs3, Ndufs5, Ndufs6, Ndufv2, and mt-Co2), and were the
same five pathways as those enriched for proteins upregulated
in MC over FC (Figure 5A and Supplementary Table 8A). For
the 51 proteins decreased in FN vs. FC, nine KEGG pathways
were significantly enriched in total, including several terms
related to dopamine synthesis, metabolism or signaling such
as tyrosine metabolism, dopaminergic synapse, amphetamine
addiction, and phenylalanine metabolism (Figure 5A and
Supplementary Table 8A).

Sixty-seven proteins significantly upregulated in MN vs. MC
were submitted to the STRING database, and the five most
significantly enriched KEGG pathways terms of 46 total in these
proteins included amphetamine addiction, calcium signaling,
and dopaminergic synapse (Figure 5A). The list also included
glucagon signaling and oocyte meiosis, with four of the six genes
representing each of those gene sets also included in the gene sets
for amphetamine addiction, calcium signaling and dopaminergic
synapse terms (Camk2a, Camk2b, Camk2g, and Ppp3ca). For
the 52 proteins that were decreased in MN vs. MC, the five
most significantly enriched KEGG pathways of 14 total included

the same five most significantly enriched pathways that were
upregulated in MC vs. FC and in FN vs. FC, although the
proteins included did not overlap completely (Figure 5A and
Supplementary Table 8A).

STRING Analysis of Differentially Regulated Proteins
in NAc After Sub-Chronic Nicotine Administration
For the 59 proteins with significantly greater expression in the
NAc of MC vs. FC C3H/He] mice, the five most significantly
enriched KEGG pathways included signaling-related terms
such as dopaminergic synapse, calcium signaling pathway, and
c¢GMP-PKG signaling pathway (Figure 5B and Supplementary
Table 8B). The full list of 24 also included glutamatergic synapse,
cAMP signaling pathway, and retrograde endocannabinoid
signaling terms, as well as addiction-related terms. For the 50
proteins with significantly greater expression in the FC over MC
mice, metabolic terms including beta-alanine metabolism and
taurine and hypotaurine metabolism were among the five most
significantly enriched KEGG pathways, and butanoate, alanine,
aspartate, and glutamate metabolism were among the total 9
significantly enriched KEGG pathway terms. Neuron-specific
KEGG pathway terms that were significantly enriched in FC over
MC mice included GABAergic synapse, ALS, and synaptic vesicle
cycle (Figure 5B and Supplementary Table 8B).

The five most significantly enriched KEGG pathways among
the 71 proteins upregulated in FN vs. FC mice in the
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NAc shell after sub-chronic nicotine administration included
primarily metabolic pathways and one KEGG pathway related to
Parkinson’s disease (Figure 5B and Supplementary Table 8B).
The full list of 30 pathways included more metabolic pathways,
as well as several pathways related to dopaminergic signaling,
including dopaminergic synapse, alcoholism, cocaine addiction,
amphetamine addiction, and tyrosine metabolism. The five most
significantly enriched KEGG pathways of 11 total among the 58
proteins decreased in FN vs. FC included the phagosome, gap
junction, ALS, amphetamine addiction, and gastric acid secretion
(Figure 5B and Supplementary Table 8B).

There was only one significantly enriched KEGG pathway
among the 43 proteins upregulated in MN vs. MC mice in
the NAc shell after sub-chronic nicotine: synaptic vesicle cycle.
The five most significantly enriched KEGG pathways of 20 total
among the 93 proteins decreased in MN vs. MC included terms
related to neuropsychiatric functions, such as dopaminergic
synapse, alcoholism, and retrograde endocannabinoid signaling,
and metabolic terms, including arginine and proline metabolism
as one term, and beta-alanine metabolism (Figure 5B and
Supplementary Table 8B).

STRING Analysis of Differentially Regulated Proteins
in VTA After Chronic Nicotine Administration and
Withdrawal

For the 207 proteins with greater expression in the VTA
of C57BL/6] mice after chronic nicotine administration and
withdrawal, the five most significantly enriched KEGG pathways
of eight total included ribosome, metabolic pathways, fatty acid
metabolism, and pyruvate metabolism, as well as GABAergic
synapse (Figure 5C and Supplementary Table 8C). For the
185 proteins with greater expression in the VTA of FC over
MC mice, a total of 58 KEGG pathways were significantly
enriched. The five most significantly enriched KEGG pathway
terms were related to neuronal signaling, including dopaminergic
synapse, amphetamine addiction, GABAergic synapse, morphine
addiction, and calcium signaling.

Among the 48 proteins upregulated in FN vs. FC mice,
the five most significantly enriched KEGG pathways terms of
eight total included ribosome, alcoholism, cocaine addiction,
amphetamine addiction, and dopaminergic synapse (Figure 5C
and Supplementary Table 8C). For the 26 proteins significantly
decreased in FN vs. FC mice, there were only four significantly
enriched KEGG pathway terms, none of which are specific to
neuronal function (Figure 5C and Supplementary Table 8C).
For the six proteins significantly increased in MN vs. MC mice,
three were directly related to dopaminergic signaling, including
Ppplrlb, Arpp2l, and Slc6a3. Accordingly, four of the total
six enriched KEGG pathways were related to dopaminergic
functions, including cocaine addiction, amphetamine addiction,
dopaminergic synapse, and alcoholism (Figure 5C and
Supplementary Table 8C). Morphine addiction and purine
metabolism were enriched KEGG pathways based on Pdel0a
and Pde2a proteins matching the representative gene set
for those terms.

After chronic nicotine administration and withdrawal, there
were no significantly enriched KEGG pathways among the

10 proteins significantly increased in the NAc shell of
FC over MC mice.

Protein—-Protein Interaction Network
Analysis

Additional analyses were performed using MCODE in Cytoscape
in order to identify PPI networks. The top three network
clusters in each analysis are shown in Figures 6, 7, annotated
with the score, number of nodes, and edges in each cluster
as well as significantly enriched (p < 0.05) GO and KEGG
pathways as determined with further DAVID database analysis.
The input for these analyses were all significant differentially
regulated proteins, both up- and down-regulated, in each
pairwise comparison.

In the VTA after sub-chronic nicotine administration,
two PPI clusters were identified among proteins differentially
regulated in the MC vs. FC comparison (Figure 6A). In
cluster 2, Parkinson’s and Alzheimer’s disease KEGG pathways
and oxidation-reduction process GO biological process (GOBP)
pathways were enriched. In the sub-chronic VTA EN vs. FC
comparison, one significant protein network was identified with
the same KEGG pathways (Parkinson’s disease, Alzheimer’s
disease) and GOBP terms (oxidation-reduction process) enriched
as in MC vs. FC (Figure 6B).

In the NAc after sub-chronic nicotine, the top three protein
clusters for the MC vs. FC comparisons are shown (Figure 6C).
Enriched KEGG pathways among these protein networks include
synaptic vesicle cycle and GABAergic synapse, and enriched
GOBP pathways include neurotransmitter biosynthetic process,
substantia nigra development, myelination, and response to toxic
substance. In the sub-chronic NAc FN vs. FC comparison, two
PPI network clusters were identified (Figure 6D). Enriched
KEGG pathways were taurine and hypotaurine metabolism, and
alanine, aspartate and glutamate metabolism. The same GOBP
pathways were enriched in NAc FN vs. FC as in MC vs. FC.

In the VTA in the chronic nicotine administration and
withdrawal group, the top three PPI network clusters are
shown for the MC vs. FC comparisons (Figure 7A). Enriched
KEGG and GOBP pathways were ribosomes and translation,
respectively, in cluster 1. In cluster 2, GABAergic synapse,
morphine addiction, and glutamatergic synapse KEGG pathways
and signal transduction GOBP pathways were enriched. In cluster
3, GOBP pathways of substantia nigra development, myelination,
and response to toxic substance were enriched. Similarly, in the
VTA chronic FN vs. FC comparison, cluster 1 had ribosome
KEGG pathway enrichment as well as translation and RNA
processing GOBP pathways (Figure 7B). In cluster 2, PPAR
signaling KEGG pathway and protein oxidation and negative
regulation of lipase activity GOBP pathways were enriched.

DISCUSSION

In this study, we analyzed whole tissue homogenates from VTA
and NAc shell brain punches in male and female mice with
and without nicotine administration. We not only examined
differential protein expression between sexes under control
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conditions to analyze baseline sex differences, but we also
investigated and compared the effect of nicotine within sex. An
advantage of this experimental design is the use of two nicotine
administration schedules, two mouse strains, and two sexes
for proteomic comparisons. The breadth of these experimental
manipulations not only allows for comparisons between nicotine
reward and withdrawal, but also between strains, which is a
known but underreported source of variability (Damaj et al.,
2003; Bilkei-Gorzo et al., 2008; Isiegas et al., 2009).

In comparison to the number of proteins regulated after
nicotine exposure in each sex, the number of proteins
differentially expressed between sexes under control conditions
were similar in C3H/He] mice and much greater in C57BL/6]
mice. Other proteomic studies examining sex as a variable have
also shown equivalent if not greater amounts of differential
protein expression based on sex compared to other experimental
manipulations (Liang et al., 2018; Sowers et al., 2019; Valent
et al, 2019). Between our study and that of Sowers et al.
(2019), which was also conducted in C57BL/6] mice but in
hippocampi, there were several proteins that were differentially
regulated in the same direction by sex (Alb, Camk2a, Cpne6, and
Synpr) and some proteins that were differentially regulated but
in opposite directions (Anxa6, Llcam, Scg2, and Vatll). Other
studies examining sex differences in experimentally naive rodents
(i.e., under “baseline” conditions), focused on specific neuronal
compartments such as the synapse (Distler et al., 2020), microglia
(Guneykaya et al, 2018), mitochondria in microvasculature
(Cikic et al., 2021), or a specific type of protein modification
(Khaliulin et al., 2020). Thus, the current study demonstrating a
significant degree of sex difference in the mesolimbic proteome
at baseline is an important contribution to broadening the
understanding of baseline sex differences in the mouse brain.

Enriched Pathways

The KEGG pathways enriched in MC vs. FC comparisons in
the VTA and NAc shell of C3H/HeJ mice, and in the VTA of
C57BL/6] mice, were many of the same pathways observed for
the effect of nicotine within sex. These KEGG pathways were
related to dopaminergic signaling, GABAergic signaling, calcium
signaling, and neurological disorders. Pathways not specific to
neurons were also enriched, such as certain metabolic pathways
and ribosomal terms. Both the STRING analyses of each pairwise
comparison and the further step of PPI sub-network analyses
in Cytoscape and DAVID databases supported these findings.
Importantly, these results suggest that the pathways exhibiting
sex differences at baseline are relevant for neuronal function and
for sex differences in the effects of nicotine.

The experiments that comprise this study also provide
complementary and converging evidence for the breadth of
sex differences in nicotine’s effects. In the VTA and NAc shell
after sub-chronic nicotine administration the total numbers of
proteins that were significantly altered by nicotine in pairwise
comparisons within sex were similar. However, only ~20% of
those proteins were identical and altered in the same direction,
and the STRING analyses showed divergent patterns between
sexes. The KEGG pathways enriched in the VTA proteins
upregulated after sub-chronic nicotine in female mice were

similar to those KEGG pathways enriched in the proteins that
were conversely downregulated after sub-chronic nicotine in
male mice. Similarly, the KEGG pathways enriched in proteins
downregulated after sub-chronic nicotine in female mice were
more similar to the KEGG pathways enriched in proteins
upregulated after sub-chronic nicotine in male mice; these
KEGG pathways were more closely related to dopaminergic
signaling, including dopaminergic synapse, tyrosine metabolism,
and amphetamine addiction. In the NAc after sub-chronic
nicotine administration, these dopamine signaling-related KEGG
pathway terms were enriched in the proteins that were either
upregulated or downregulated in FN vs. FC. However, the
proteins representing these enriched pathways were more specific
to dopaminergic function in the upregulated proteins (Th, Maob,
and Prkaca) than in the downregulated proteins (Camk2d,
Camk2g, Gng4, and Stxla). In males, dopaminergic signaling-
related KEGG pathway terms were enriched for the NAc shell
proteins that were downregulated after sub-chronic nicotine
exposure. The results suggest that a rewarding, sub-chronic
schedule of nicotine administration produces sex- and brain
region-dependent differences in dopaminergic signaling. Unlike
baseline sex differences, for which the results of STRING and
Cytoscape network analyses converged, the Cytoscape analyses
for the effects of nicotine within sex were less informative of
dopaminergic changes than the STRING analyses. Thus, based
on the STRING analyses, sub-chronic nicotine administration
in female mice increased dopaminergic signaling proteins in the
NAc shell but decreased them in the VTA, while producing
the opposite pattern in male mice (i.e., decreased dopaminergic
signaling in the NAc shell and increased in the VTA).

These results appear consistent with prior literature showing
sex differences in the brain region-specific regulation of
dopaminergic signaling. For example, striatal dopamine release is
differentially affected by nicotine and estrogen in male and female
gonadectomized mice, in which estrogen increased nicotine-
induced dopamine release in female striatal tissue and decreased
it in male striatal tissue (Dluzen and Anderson, 1997). Decreased
dopamine signaling-related proteins in the VTA of female mice
after sub-chronic nicotine exposure may reflect the effect of
enhanced inhibitory autoreceptor signaling. Related, in human
smokers, higher D2-type autoreceptor availability was found in
the midbrain of female smokers vs. non-smokers, but not in male
smokers vs. non-smokers (Brown et al., 2012; Okita et al., 2016).
Of note, male and female mice in our sub-chronic experiment
were trained with different nicotine doses. The different doses
produce similar nicotine reward, such that the sex differences
observed in our study likely reflect divergent mechanisms
underlying a convergent behavioral output. However, we cannot
rule out the possibility that the sex differences partly reflect the
effect of differing nicotine doses.

In the chronic nicotine administration and withdrawal
experiment, there were two notable contrasts to the sub-chronic
nicotine administration experiment in the VTA. First, there
were 10 times more proteins significantly altered by chronic
nicotine treatment and withdrawal in female than in male VTA,
whereas similar numbers of proteins were differentially regulated
in each sex by sub-chronic nicotine. Second, unlike in the
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sub-chronic nicotine experiment, similar KEGG pathways related
to dopaminergic function and addictions were enriched in the
proteins upregulated after nicotine withdrawal in both female
and male mice. However, one major KEGG pathway enriched in
FN vs. FC but not MN vs. MC was the ribosome, represented
by almost a third (15/48) of the significantly upregulated
proteins in the female nicotine group. This upregulation could
represent an adaptive mechanism. For example, following
developmental stress exposure, females appear to exhibit greater
adaptability based on the increased expression of proteins related
to protein synthesis and energy metabolism (Valent et al,
2019). Alternatively, increased ribosomal proteins in females
may indicate increased VTA neuronal activity in response to
acute stress (Holly and Miczek, 2016; Brischoux et al., 2009;
Picciotto and Kenny, 2013) or more specifically to nicotine
withdrawal, such as in corticotropin releasing factor (CRF)
projections from VTA to the interpeduncular nucleus (Grieder
et al., 2014; Zhao-Shea et al, 2015). These data support the
theory that stress and withdrawal from nicotine are more
important for driving nicotine addiction in females (Torres
and O’Dell, 2016; O’Dell and Torres, 2014). Further, the
results indicate that the VTA, and likely not the NAc shell, is
an important node in the circuitry underlying the effects of
nicotine withdrawal.

Individual Proteins

An analysis of the proteins commonly altered across nicotine
administration groups, sex, and strains revealed key proteins
that may represent highly conserved mechanisms in nicotine
addiction. Most consistently, GFAP and Ppplrlb (DARPP-32)
were significantly altered by nicotine reward or withdrawal and
between sex, especially in the VTA.

Glial fibrillary acidic protein is a marker of astrocytes, which
contribute to the blood-brain barrier, regulate neurotransmission
and prevent neurotransmitter diffusion into extra synaptic spaces
by active uptake of glutamate, glycine, and GABA, and are
essential to synapse formation. Emerging research suggests that
astrocytes, or glia in general, have more active roles in brain
function than initially assumed (Barres, 2008; Paixao and Klein,
2010; Vijayaraghavan, 2009). For example, astrocytes express
DAT and DA receptors, and thus may specifically regulate
dopaminergic signaling (Fouyssac and Belin, 2019). Many studies
show increases in GFAP after exposure to drugs of abuse such as
cocaine (Fattore et al., 2002), morphine [which increased GFAP
in the VTA but not the substantia nigra (SN); Beitner-Johnson
et al., 1993; Goins and Bajic, 2018], and alcohol (where female
mice showed more astrogliosis than males; Alfonso-Loeches
et al,, 2013). In a previous proteomic study after nicotine CPP
(22 days of conditioning), GFAP was significantly reduced in
rat hippocampus (Zhu et al.,, 2017). Others have reported that
nicotine had no effect on GFAP in the hippocampal dentate
gyrus (2 weeks of 0.1, 0.5 or 1 mg/kg, i.p.; Shingo and Kito,
2005), or in the NAc core after nicotine self-administration
(Namba et al., 2020). However, GFAP was significantly reduced
in a Western blot analysis of NAc core tissue after extinction
and cue-induced reinstatement of nicotine self-administration
(Namba et al., 2020).

In the current study, levels of GFAP were significantly altered
in almost all pairwise comparisons. At baseline, GFAP was
increased in male C3H/HeJ VTA, increased in female C57BL/6]
VTA, and in female C3H/He] NAc shell. After sub-chronic
nicotine, GFAP was decreased in the VTA of both male and
female C3H/He] mice, whereas after chronic nicotine exposure
and withdrawal it was increased in the VTA of both C57BL/6]
sexes. Additionally, GFAP was decreased in NAc shell of female
mice after sub-chronic nicotine. The direction of change was not
uniform, suggesting that GFAP may be a more prominent player
in the VTA than in the NAc shell, and that its regulation depends
on sex and duration of nicotine administration.

Dopamine and cAMP-regulated phosphoprotein of 32 kDa is
a phosphoprotein highly expressed in dopaminoceptive regions
that can function as an inhibitor of protein phosphatase-1 (PP-1)
or of protein kinase A (PKA), depending on its phosphorylation
state (Svenningsson et al., 2004). Multiple phosphorylation sites
on DARPP-32 are regulated by various neurotransmitters and
drugs of abuse, including nicotine (Hamada et al., 2005, 2004;
Walaas et al, 2011). Thus DARPP-32 plays a critical role in
integrating signals received by dopaminoceptive neurons, and its
phosphorylation states and downstream effects have been studied
extensively (Svenningsson et al., 2004; Walaas et al., 2011).
Nicotine regulates multiple DARPP-32 phosphorylation sites in
striatal slices as well as in vivo after nicotine abstinence (Hamada
et al., 2004, 2005; Abdolahi et al., 2010). These studies did not
show alterations in total DARPP-32 protein levels, although other
drug treatments such as alcohol, methylphenidate, and cocaine
can regulate total DARPP-32 protein levels (Lynch et al., 2007;
Souza et al., 2009; Abrahao et al, 2014). In the current study
DARPP-32 was significantly increased in the VTA of MC vs.
FC mice in both mouse strains, and in the NAc of MC vs.
FC C3H/HeJ mice. Both sub-chronic and chronic nicotine and
withdrawal also increased DARPP-32 in the VTA of both male
and female mice, possibly reflecting proteins in the terminals of
striatal projection neurons to VTA. DARPP-32 was not altered
in the NAc where it is more abundant, but it is possible that the
protein change reflects increased transport to terminals in the
VTA. While DARPP-32 abundance was uniformly increased in
the VTA, the functional impact may vary between sex or nicotine
administration based on the phosphorylation state of the protein.

The findings shown here also point to potentially novel
mechanisms underlying nicotine addiction. For example, beta-
alanine metabolism was downregulated in male NAc shell and
upregulated in female NAc shell after sub-chronic nicotine
administration. Beta-alanine is an endogenous ligand of glycine
receptors and has been implicated in regulating dopamine
release in the striatum in response to alcohol, nicotine, and
A9-tetrahydrocannabinol (Ericson et al., 2010; Jonsson et al.,
2014). Although glycine receptors have been reported to play
a role in alcohol addiction (Soderpalm et al., 2017), less is
known about their role in nicotine addiction or in sex differences
related to addiction.

PDE2A and PDE10A, the two proteins comprising the
morphine addiction KEGG pathway that was upregulated in
male VTA after chronic nicotine and withdrawal, can modulate
dopaminergic signaling but have not been linked to nicotine
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addiction directly (Lin et al, 2010; Mango et al., 2014). Both
proteins have been localized to striatal neurons, both at their cell
bodies and axon terminals, with PDE10A preferentially enriched
in basal ganglia circuits (Stephenson et al, 2012; D’Angelo
et al,, 2017), Interestingly, PDEI0A inhibition can accelerate
extinction of morphine CPP (Mu et al., 2014) and attenuates
reinstatement of alcohol self-administration in rats with a history
of exposure to stress (Logrip et al, 2014). Both PDE2A and
PDEIOA inhibitors are being studied in the clinic as potential
treatments for schizophrenia (Siuciak et al., 2006), Huntington’s
disease (Giampa et al, 2010), Parkinson’s disease (Niccolini
etal., 2015), and other movement and neuropsychiatric disorders
(Nishi and Snyder, 2010; Menniti et al., 2006).

Another example of a finding in our analyses that could
provide novel targets for future investigations is Arpp21, or
regulator of calmodulin signaling (RCS), a cAMP-regulated
phosphoprotein of 21 kDa (Ouimet et al., 1989; Rakhilin et al.,
2004). RCS was upregulated in both male and female VTA after
chronic nicotine administration and withdrawal. RCS, similar to
DARPP-32, is mostly concentrated in dopaminoceptive regions
(Ouimet et al., 1989; Becker et al., 2008). Also similar to DARPP-
32, RCS’s phosphorylation state can be increased and decreased
by D1 and D2 dopamine receptor activation, respectively (Tsou
et al., 1993; Caporaso et al,, 2000), and increased by cocaine
and methamphetamine administration (Caporaso et al., 2000).
RCS likely works in concert with, or in a manner dependent on,
DARPP-32 in signal integration functions (Walaas et al., 2011;
Nair et al., 2016).

Limitations and Future Directions

An important consideration in examining changes in individual
proteins is the sensitivity and specificity of the proteomic
technique used. Isobaric labeling, such as with TMT as used
in our study or iTRAQ, is a powerful tool for multiplexed
sample analysis. One potential pitfall of isobaric labeling is
its vulnerability to ratio compression due to co-fragmentation
of precursor ions (Mertins et al, 2012). Although ratio
compression can lead to less accurate reporter ion quantification,
its uniformity means that detection of significantly regulated
elements is not compromised (Mertins et al., 2012). Further, we
took steps to attenuate ratio compression, including extensive
sample fractionation and SPS-MS3 acquisition (Rauniyar and
Yates, 2014).

There have been mixed findings on the possible inverse
relationship between the number of channels in a multiplexed
experiment and the number of peptides identified (Pichler et al.,
2010; Pottiez et al., 2012). However, the increased multiplexing
is not only beneficial for higher throughput of samples, but
also improves signal to noise ratio by running more replicates
simultaneously, thereby reducing variation from multiple runs,
and by performing protein identification from precursor ions
of the mixed sample (i.e., same peptides from different samples
identified together) (Rauniyar and Yates, 2014). In this study,
there were fewer proteins identified for NAc shell in C57BL/6]
and after chronic nicotine, as well as in both VTA and NAc
in C3H/HeJ mice and after sub-chronic nicotine. This effect is
less likely to be a strain difference since there were many more

proteins identified in the VTA of C3H/He] mice compared to
the NAc of the same strain. There also was not a consistent
relationship between the numbers of proteins identified and the
two brain region across strains. The difference in numbers of
proteins identified and quantified between datasets may reflect, in
part, a difference in data quality. For example, a combination of
mass spectra with a lower signal-to-noise ratio and conservative
peptide or protein identification criteria may limit the number
of proteins identified in database searches (Rejtar et al., 2004).
Furthermore, differential peptide modifications or lengths may
affect peptide identification (Pichler et al., 2010).

Another important consideration is the statistical and
analytic techniques used to detect significant changes in
protein abundance and to probe their functional relevance. In
the current study, we used the sO parameter in Perseus as a
weighting factor to take into consideration both fold-change
and g-value to determine significance cutoffs, increasing the
likelihood of detecting biologically significant changes. One
limitation of our statistical analysis may be the multiplicity
of pairwise comparisons without corrections for multiple
comparisons. However, such a correction may be too restrictive
to perform in addition to the Benjamini-Hochberg corrections
applied to each individual protein comparison. Further, our
pathway analyses using the STRING database accounted
only for protein identity and not quantitative protein levels.
However, our findings were strengthened by additional
PPI network analyses that provided converging evidence of
enriched pathways.

Following the identification of differentially regulated proteins
by nicotine and between sex using an unbiased proteomic
method as presented here, more targeted methods may be
used to investigate the regulatory (e.g., phosphorylation states)
and behavioral significance of these findings. With respect to
sex differences, in particular, the relationship between protein
changes and behavioral output may be particularly important
to investigate given the possibility for divergent mechanisms
leading to convergent outcomes (Becker and Koob, 2016). The
role of sex hormones would also be a key area of future
investigations. For example, estrous phase in intact, cycling
female rodents has been shown to affect dopaminergic neuron
activity and cocaine CPP (Calipari et al., 2017), but not nicotine
reward-related behaviors including self-administration (Donny
et al., 2000) or CPP (Torres et al, 2009; Lee et al., 2020).
Estrous phase has also been shown to affect GFAP levels
in the rat interpeduncular nucleus (Hajos et al., 2000) and
hippocampus (Arias et al., 2009), but this effect has not been
investigated in the mesolimbic circuity or in the context of
drug reward. Further, the significant findings of baseline sex
differences lay a foundation for understanding sex-convergent
and sex-divergent mechanisms of mesolimbic system function
and related behaviors.

CONCLUSION

Sex differences in the mesolimbic system proteome are significant
under baseline conditions as well as in response to nicotine.
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The scale of baseline sex differences is at least equivalent, or in
C57BL/6] mice much greater than, that of sex differences after
nicotine exposure. After a rewarding sub-chronic administration
of nicotine, dopaminergic signaling pathways were altered in
opposite directions in male and female mice, such that they were
increased in the NAc and decreased in the VTA of female mice,
and decreased in the NAc and increased in the VTA of male mice.
These findings support previous literature on sex differences in
primary reinforcement vs. regulation of negative affect driving
the development of nicotine addiction in males vs. females,
respectively. Further, the disproportionate protein regulation
identified in female compared to male VTA after chronic nicotine
and withdrawal suggests a greater effect of withdrawal in females,
which might also explain sex differences in response to stress
and rates of relapse to smoking in human tobacco users. Finally,
this study compared the proteome across two sexes, two nicotine
administration paradigms, and two mouse strains. Despite the
breadth of experimental conditions and the hundreds of unique
proteins that were differentially regulated, two proteins were
repeatedly identified as significantly altered in sex and nicotine
group pairwise comparisons, suggesting that GFAP and DARPP-
32 are key proteins regulating the response to nicotine in male
and female mice, especially in the VTA. Other unique pathways
and proteins as identified in the data suggest novel targets for
further investigation.
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