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Interestingly, more males are diagnosed with autism spectrum disorder (ASD) than
females, yet the mechanism behind this difference is unclear. Genes on the sex
chromosomes and differential regulation by sex steroid hormones and their receptors
are both candidate mechanisms to explain this sex-dependent phenotype. Nuclear
receptors (NRs) are a large family of transcription factors, including sex hormone
receptors, that mediate ligand-dependent transcription and may play key roles in sex-
specific regulation of immunity and brain development. Infection during pregnancy
is known to increase the probability of developing ASD in humans, and a mouse
model of maternal immune activation (MIA), which is induced by injecting innate
immune stimulants into pregnant wild-type mice, is commonly used to study ASD.
Since this model successfully recaptures the behavioral phenotypes and male bias
observed in ASD, we will discuss the potential role of sex steroid hormones and their
receptors, especially focusing on estrogen receptor (ER)β, in MIA and how this signaling
may modulate transcription and subsequent inflammation in myeloid-lineage cells to
contribute to the etiology of this neurodevelopmental disorder.

Keywords: estrogen receptor β, brain myeloid cells, maternal immune activation, autism spectrum disorder, sex
differences, inflammation

INTRODUCTION

Many neurodevelopmental disorders (NDDs), such as autism spectrum disorder (ASD), attention-
deficit/hyperactivity disorder (ADHD), and schizophrenia, show sex differences (Waddell and
McCarthy, 2012; Hanamsagar and Bilbo, 2016; Hill, 2016; McCarthy, 2016; Bordeleau et al., 2019;
May et al., 2019; Lord et al., 2020; Merikangas and Almasy, 2020); yet the mechanisms behind
these observations are poorly understood. For example, it is known that males are more frequently
diagnosed with ASD than females (Baron-Cohen et al., 2011; Loomes et al., 2017; Dietz et al., 2020).
Several studies indicate a male to female ratio of approximately 3:1 or 4:1 in ASD, as well as sex
differences in symptoms (Loomes et al., 2017; Hull et al., 2020). To explain this sex difference
in ASD, several hypotheses have been proposed. One possibility is that sex chromosome gene
effects contribute to ASD etiology. Indeed, mutations in many genes are known to increase the
probability of ASD, and some of them, such as FMR1, MeCP2, and neuroligins 3 and 4, are on
the X-chromosome (Marco and Skuse, 2006; Guy et al., 2011; Percy, 2011; Zhang et al., 2017;
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Sledziowska et al., 2020; Savatt and Myers, 2021). While it
will not be addressed here, excellent reviews that discuss the
chromosomal contributions to sex differences in ASD can be
found elsewhere (Marco and Skuse, 2006; Guy et al., 2011;
Percy, 2011; Zhang et al., 2017; Sledziowska et al., 2020; Savatt
and Myers, 2021). Another possible explanation for the sex
differences observed in ASD is the differential regulation of sex
hormones and their receptor-mediated signaling in females and
males, leading to differential gene transcription. In this review,
we will discuss the possibility that regulation of inflammation by
sex hormone nuclear receptors (NRs) contributes to the observed
sex differences in ASD.

Though both sex differences and immune involvement are
well established features of ASD, mechanisms linking sex and
immune factors in neurodevelopmental disorders like ASD
are not as well studied. However, the importance of sex
in inflammation has been demonstrated in other biological
contexts. Sex-dependent inflammatory phenotypes are observed
in response to innate and adaptive immune reactions as
well as in acute and chronic inflammatory diseases and
their animal models (Klein and Flanagan, 2016; Chamekh
and Casimir, 2019; Gal-Oz et al., 2019). Males are generally
more susceptible to pathogen infections (Klein, 2012; Vazquez-
Martinez et al., 2018), while females are more often diagnosed
with autoimmune diseases (Quintero et al., 2012; Ngo et al.,
2014; Billi et al., 2019; Lasrado et al., 2020). For example, in
experimental autoimmune encephalomyelitis, a mouse model
of multiple sclerosis, female and male mice have differing
disease courses (Constantinescu et al., 2011). Phenotypes also
differ by sex in animal models of high-fat diet, which induces
low grade but chronic inflammation in macrophages and
disrupts homeostasis in adipose tissues, resulting in induction
of metabolic syndrome (Lumeng et al., 2007; Duan et al.,
2018). Male mice gain weight and display insulin resistance,
while female mice are more resistant to these effects (Pettersson
et al., 2012; Ingvorsen et al., 2017; Casimiro et al., 2021). These
observations suggest that sex-specific factors are important in
regulating inflammation.

MIA-Induced Inflammation as a Model of
ASD
The maternal immune activation (MIA)-induced animal model
of ASD has the potential to reveal insights about the impact of
sex-specific and immune factors, and their interactions, during
brain development. The MIA model was developed based on the
observation that infection during pregnancy is linked to ASD
(Atladottir et al., 2010; Zerbo et al., 2015; Al-Haddad et al., 2019).
Outbreaks of several viruses, such rubella and influenza, have
been documented to be associated with increased numbers of
individuals with ASD (Zerbo et al., 2013; Shuid et al., 2021).
Consistent with these findings, the MIA model uses the injection
of a toll-like receptor (TLR) ligand into pregnant wild-type
female mice on a specific day of gestation to induce an immune
response. A commonly used ligand is polyinosinic:polycytidylic
acid [Poly(I:C)], which mimics infection by double-stranded
RNA viruses and triggers the TLR3-mediated innate immune

response (Smith et al., 2007; Patterson, 2011). This MIA-
induced ASD model displays behavioral phenotypes, including
decreased sociability, increased repetitive restricted behavior,
impaired learning and memory, altered levels of anxiety, and
hyperactivity (Patterson, 2011; Estes and McAllister, 2016).
Importantly, several groups have reported that the behavioral
phenotypes in this model are only observed in male offspring
(Xuan and Hampson, 2014; Coiro and Pollak, 2019; Haida
et al., 2019; Keever et al., 2020; Nichols et al., 2020, preprint;
Figure 1A). Based on these findings, MIA induction in mice
is widely used to study the mechanism of ASD because it
successfully recaptures behavioral phenotypes and sex-specific
features observed in the disorder.

Inflammation in Fetal Myeloid-Lineage
Cells Upon MIA
It is currently hypothesized that maternal cytokines are the
causative factor affecting fetal brain development in the MIA-
induced model of ASD (Smith et al., 2007; Choi et al., 2016).
Indeed, MIA induces an adaptive immune response in mothers,
particularly the activation of a subset of T helper cells (Th17 T
cells) and the release of maternal cytokines such as interleukin
(IL)-17, that can affect fetal brain development in mice (Choi
et al., 2016). However, a few groups, including ours, have reported
that MIA may also directly induce an inflammatory innate
immune response in fetal myeloid cells (Onore et al., 2014;
Matcovitch-Natan et al., 2016; Carlezon et al., 2019; Ben-Yehuda
et al., 2020; Cui et al., 2020; Nichols et al., 2020, preprint).

Brain myeloid-lineage cells derive from primitive
macrophages in the yolk sac and migrate to the brain on
embryonic day (E) 9.5 in mice, after which these cells expand,
migrate, and develop into microglial cells and border-associated
macrophages (BAMs) (Ginhoux et al., 2010; Goldmann et al.,
2016; Utz et al., 2020). These two myeloid subsets have common
as well as subset-specific gene expression profiles and localize to
different areas of the brain: microglia in the brain parenchyma,
and BAMs in the meninges and the choroid plexus (Ginhoux
et al., 2010; Goldmann et al., 2016; Mrdjen et al., 2018; Jordao
et al., 2019; Van Hove et al., 2019; Utz et al., 2020). A few studies
point to BAMs as a key cell type in the response to MIA in
the fetal brain. Although the precise mechanism is not clear,
a recent publication indicates that MIA-activated BAMs in
the choroid plexus secrete the chemokine CCL2 into the fetal
ventricle, resulting in enhanced local inflammation (Cui et al.,
2020). Moreover, our single-cell RNA-sequencing (scRNA-seq)
analysis showed that the activation of fetal BAMs in response
to MIA was dependent upon fetal Trif, an essential signaling
molecule downstream of TLR3 (Nichols et al., 2020, preprint).
These findings indicate that MIA leads to fetal innate immune
signaling in BAMs. Furthermore, in validating our scRNA-seq
data, we found that MIA causes BAMs in the choroid plexus, but
not meningeal BAMs or microglia, to have increased expression
of S100a8 and 9, key inflammatory genes that are known to
induce chemotaxis and enhance inflammation (Ehrchen et al.,
2009; Cesaro et al., 2012; Cury et al., 2013; Garcia-Arias et al.,
2013; Walsham and Sherwood, 2016; Nishikawa et al., 2017;
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FIGURE 1 | Hypothesized role of estrogen receptor (ER)β signaling in mediating sex differences in the maternal immune activation (MIA) mouse model of ASD. (A) In
the MIA model, polyinosinic:polycytidylic acid [Poly(I:C)] is injected into wild-type pregnant female mice at E12.5. MIA results in inflammatory signaling, including
responses in myeloid-lineage cells in the fetal brain (microglia and BAMs). Offspring of Poly(I:C) treated dams display sex-specific behavioral phenotypes such as
decreased social interaction in male offspring but not in female offspring. To explain the sex difference in the MIA-induced ASD mouse model, we consider sex
steroid hormone nuclear receptor signaling in the fetal brain. (B) Mechanism of ERβ-mediated repression of inflammatory gene expression, which we previously
observed in microglia. (C) Two hypothesized mechanisms by which sex differences in ERβ signaling in the fetal brain could contribute to the sex differences observed
in the MIA model. Differential expression of (I) ERβ or (II) steroid ligands in female and male fetal brains could result in differential transcriptional responses to the MIA
inflammatory stimulus.

Aranda et al., 2018; Wang et al., 2019; Silvin et al., 2020). These
data suggest that inflammation in fetal myeloid cells may be
involved in the development of ASD-like changes in MIA-
induced fetal brains. Furthermore, it is possible that differential
regulation of this inflammation may be a mechanism to explain
the sex-specific phenotypes observed in this mouse model.

Expression of ERs and Sex Steroid
Hormones in the Fetal Brain
Since MIA induces inflammation in brain myeloid-lineage cells,
one hypothesis to explain the male bias in ASD is differing
magnitude and duration of inflammation in males and females
during fetal development. As we described above, in this review
we will mainly discuss sex steroid NRs, especially ERβ, as
potential regulators of fetal brain inflammation. We focus on ERβ

because (1) ERβ is broadly expressed in mouse brain (Mitra et al.,
2003; Fan et al., 2006) and (2) we previously showed that ERβ

could regulate inflammation in microglial cells (Saijo et al., 2011).
So far, it is not clear whether ERα and ERβ expression

in the myeloid cells of the fetal brain varies by sex. Studies
have examined estrogen signaling primarily in whole brain or
neuronal cells, and few have examined developmental time

points prior to the neonatal period. Excellent reviews are
available for overall brain expression analyses of ERα, ERβ, and
enzymes required for the generation of androgens and estrogens
(McCarthy, 2008; Bondesson et al., 2015). Several reports indicate
that ERα, ERβ, and enzymes are present during mid-gestation.
For example, ERβ expression was detected in the fetal midbrain,
neuromere, hypothalamus, thalamus, and basal plate of pons at
E12.5 (Fan et al., 2006), and ERα expression was observed at
E16.5 in a gonadal sex dependent manner (Cisternas et al., 2015).
In amygdala neuronal cultures obtained from E15 embryos,
ERβ is sex-differentially regulated: lower levels of Esr2 mRNA
expression were observed in females, but also sex differences
in hormonal responsiveness were present, with increased Esr2
expression in response to 17β-estradiol or DHT hormonal
stimulation only in females. These effects were dependent on
sex chromosome complement (Cisternas et al., 2017). Activity
of ERs, using an ERE-luciferase reporter, was observed in the
fetal forebrain and hindbrain as early as E13.5, though no
difference was detected between brains from females and males
except in the P1 hindbrain (Della Torre et al., 2018). Several key
enzymes involved in steroid hormone synthesis are expressed
in female and male E16 fetal brain, including StAR, Cyp11a1,
5α-Reductase, and aromatase (Cisternas et al., 2015). Aromatase
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is an enzyme that converts testosterone to 17β-estradiol and
androstenedione to estrone. Notably, sex-dependent expression
of aromatase in the developing mouse brain has been reported,
which may indicate the presence of differing concentrations of
ER ligands in females and males that could impact downstream
signaling (Harada and Yamada, 1992; Greco and Payne, 1994;
Hutchison et al., 1997; Cisternas et al., 2015; Shay et al., 2018;
Sellers et al., 2020).

Little is known about the expression of sex steroid hormones
in the fetal mouse brain; however, a report showed that 17β-
estradiol, testosterone, and DHT were detected in the brains of
fetal mice, and that these hormones may exhibit sex dimorphic
expression patterns in different brain regions (Konkle and
McCarthy, 2011). However, to better understand how sex steroid
hormones may regulate inflammation induced by MIA, precise
analysis of sex steroid hormone expression in the fetal brain
will be important.

Together, these expression studies suggest that the cellular
machinery for ER signaling is present in the fetal brain from a
relatively early age, and that sex differences in the expression of
receptors, steroid metabolizing enzymes, and hormone ligands
could contribute to differential regulation by ERs in females and
males. Our favorite hypothesis is that concentrations of particular
ER ligands differ between females and males in such a way
that MIA-induced inflammatory responses differ in magnitude
or duration. For example, ligands that induce transcriptional
repression of inflammatory genes via ERβ may be highly
expressed in female fetal brains, leading to efficient resolution of
inflammation upon MIA. The hypothetically lower expression of
such repressive ERβ ligands in fetal male brains could result in
larger or prolonged inflammatory responses compared to females
(Figure 1C, Hypothesis II). A comprehensive analysis of the
expression of ERs and related ligands in developing fetal mouse
brains, especially comparing sex, cell type, and specific brain
region, will be important in understanding the contribution of
ER-mediated transcription in sex-specific brain development.

Nuclear Receptor Signaling in General
NRs are a family of transcription factors which both positively
and negatively regulate transcription in response to ligand
binding. Steroid hormone NRs are a class of NRs with
activities that depend on endogenous small lipophilic ligands
such as steroid hormones. For example, estrogen receptors
(ERs) bind to estrogen response elements (essential ERE, 5’-
GGTCAnnnTGACC-3’) (Driscoll et al., 1998; Klinge, 2001) in
gene regulatory regions to control the expression of target genes.
In addition to direct DNA binding, NRs can also regulate
transcription by binding to other transcription factors in trans.
NR function depends upon the ligands that are bound to the
receptor. Indeed, NRs change their conformation in response
to ligand binding in order to recruit either transcriptional
activator or repressor complexes (Moras and Gronemeyer, 1998;
Bourguet et al., 2000; Nagy and Schwabe, 2004), and it has
been proposed that ligand binding may induce post-translational
changes on NRs that stabilize co-factor binding (Hammer
et al., 1999; Lannigan, 2003; Pascual et al., 2005; Lalevee et al.,
2010; Anbalagan et al., 2012; Helzer et al., 2015; El Hokayem
et al., 2017). To carry out their transcriptional activation and

repression activities, NRs recruit a wide variety of co-factors
and enzymes required for modifying histones and remodeling
chromatin. These factors include histone acetyltransferases,
deacetylases, methyltransferases, demethylases, and chromatin
remolding factors, as well as kinases, phosphatases, and ubiquitin
and SUMO E3 ligases (Olefsky, 2001; Perissi and Rosenfeld, 2005;
Dasgupta et al., 2014).

ERs and Their Impact on Inflammation
Various reports have suggested that sex steroid hormones and
their steroid hormone nuclear receptors (NRs) may regulate
inflammatory responses in innate immune cells. In particular,
two estrogen receptor isoforms (ERα and ERβ) as well as
the androgen receptor (AR) are well characterized sex steroid
hormone NRs that are known to regulate innate immune
responses (Vegeto et al., 2003; Baker et al., 2004; Suuronen et al.,
2005; Harkonen and Vaananen, 2006; Sierra et al., 2008; Lai
et al., 2009; Saijo et al., 2011; Kovats, 2015; Villa et al., 2015;
Villa et al., 2016; Ardalan et al., 2019; Becerra-Diaz et al., 2020).
We have previously reported that ERβ regulates the duration
and magnitude of the inflammatory response in microglial cells
(Saijo et al., 2011). ERβ binds a range of ligands, including
estrogens and androgens, and specific ERβ ligands can facilitate
repression of inflammation (Kuiper et al., 1997; Wu et al.,
2013). See Figure 1B for a simplified schematic of ERβ-mediated
transcriptional repression of inflammatory genes. Several reports
have indicated that 17β-estradiol, a ligand for both ERα and ERβ,
can regulate inflammation in myeloid-lineage cells. However, this
regulation is not always clear in that some reports have suggested
that ER-mediated transcription represses inflammation (Vegeto
et al., 2003; Ribas et al., 2011), while others have suggested that
it does not (Calippe et al., 2010; Shindo et al., 2020). While the
amino acid sequences of the DNA-binding domains of these two
ER isoforms are highly conserved, their ligand-binding domains
(LBDs) are much less so (47% in human). Since the functions
of NRs are dependent upon ligands, this lack of conservation
in ER LBDs may suggest that ERα and ERβ may differ in their
preferential ligands, and that binding of the same ligand to either
ERα or ERβ could result in different transcriptional outputs.

Previously, we reported that ERβ represses inflammation in
microglia in a ligand-dependent manner (Saijo et al., 2011).
In mouse microglial cells, a subset of ligands, including the
endogenous ligand 5-androsten-3β, 17β-diol (15-Adiol) and the
synthetic ligands Indazole-estrogen-Cl and -Br, have been shown
to induce transcriptional repression of inflammation in an ERβ-
dependent manner. Treatment with these repressive ligands, but
not the classic ER ligand 17β-estradiol, results in the recruitment
of the transcriptional corepressor CtBP (Saijo et al., 2011;
Figure 1B). CtBP is a co-repressor platform that is known to
assemble enzymes required for transcriptional repression, such as
euchromatic histone-lysine N-methyltransferase 2 (EHMT2, also
known as G9a), euchromatic histone-lysine N-methyltransferase
1 (EHMT1, also known as GLP), the histone deacetylases HDAC1
and 2, and lysine demethylase 1A (KDM1a, also known as
LSD1) (Chinnadurai, 2002; Dcona et al., 2017). When microglial
cells are stimulated with the TLR4 ligand lipopolysaccharide
(LPS), ERβ binds to cFos and repressive ligands, which results
in the recruitment of the CtBP complex to target genes, thus
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regulating inflammation through a transrepression mechanism.
Interestingly, mutations in ERβ, CtBP1/2, and HDACs have
been observed in human ASD patients (Chakrabarti et al., 2009;
Zettergren et al., 2013; De Rubeis et al., 2014). Although these
NRs and their co-factors/binding partners are proposed to be
genetic factors for ASD, we consider the possibility that these
steroid hormone NRs and their ligands may exert their effects on
brain development by modulating the inflammatory response to
environmental immune stimuli.

CONCLUSION AND FUTURE
DIRECTIONS

Endocrine disruption, such as sex hormone dyshomeostasis,
during fetal brain development increases the risk of NDDs
(Colborn, 2004; Schug et al., 2015; Moosa et al., 2018).
Further supporting the role of sex hormone signaling in brain
development, ERβ conventional knockout mice show fewer
proliferating cells and more apoptotic cells in the E18.5 fetal
brain (Wang et al., 2003). These observations underscore the
importance of sex hormone nuclear receptor-mediated signaling
during brain development in addition to the well-known
role of hormone signaling in sex differentiation of the brain.
Investigating the role of ER signaling in different cell types and
across developmental time periods will clarify the mechanisms
underlying the observed brain phenotypes after disruption of
hormone signaling pathways.

Here, we have discussed the hypothesis that ERβ-mediated
repression of inflammation in brain myeloid-lineage cells may
contribute to the male bias observed in an MIA-induced ASD
mouse model. We consider two hypotheses of how ERβ-mediated
transcription may contribute to the sex-specific phenotypes in
the MIA model. One is that the expression of ERβ may be
different between fetal female and male brains. The other is that
ERβ ligands that induce transcriptional repression may differ in
fetal female and male brains (Figure 1C). Therefore, a precise
mechanistic understanding of ERβ-mediated transcription and a
thorough analysis of the expression of sex steroid hormones and
their receptors in the brain may provide new insights into the sex-
dependent phenotypes in ASD and other neurodevelopmental
disorders.
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