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Background: Lower-grade glioma (LGG) is the most common histology identified in
gliomas, a heterogeneous tumor that may develop into high-grade malignant glioma
that seriously shortens patient survival time. Recent studies reported that glutamatergic
synapses might play an essential role in the progress of gliomas. However, the
role of glutamatergic synapse-related biomarkers in LGG has not been systemically
researched yet.

Methods: The mRNA expression data of glioma and normal brain tissue were
obtained from The Cancer Genome Atlas database and Genotype-Tissue Expression,
respectively, and the Chinese Glioma Genome Atlas database was used as a
validation set. Difference analysis was performed to evaluate the expression pattern of
glutamatergic synapse-related genes (GSRGs) in LGG. The least absolute shrinkage and
selection operator (LASSO) Cox regression was applied to construct the glutamatergic
synapse-related risk signature (GSRS), and the risk score of each LGG sample
was calculated based on the coefficients and expression value of selected GSRGs.
Univariate and multivariate Cox regression analyses were used to investigate the
prognostic value of risk score. Immunity profile and single-sample gene set enrichment
analysis (ssGSEA) were performed to explore the association between risk score and the
characters of tumor microenvironment in LGG. Gene set variation analysis (GSVA) was
performed to investigate the potential pathways related to GSRS. The HPA database
and real-time PCR were used to identify the expression of hub genes identified in GSRS.

Results: A total of 22 genes of 39 GSRGs were found differentially expressed among
normal and LGG samples. Through the LASSO algorithm, 14-genes GSRS constructed
were associated with the prognosis and clinicopathological features of patients with
LGG. Furthermore, the risk score level was significantly positively correlated with the
infiltrating level of immunosuppressive cells, including M2 macrophages and regulatory
T cells. GSVA identified a series of cancer-related pathways related to GSRS, such as
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P13K-AKT and P53 pathways. Moreover, ATAD1, NLGN2, OXTR, and TNR, hub genes
identified in GSRS, were considered as potential prognostic biomarkers in LGG.

Conclusion: A 14-genes GSRS was constructed and verified in this study. We provided
a novel insight into the role of GSRS in LGG through a series of bioinformatics methods.

Keywords: lower-grade glioma, glutamatergic synapses, risk signature, tumor immune microenvironment,
immunity profile

INTRODUCTION

Glioma is the most frequent primary malignant brain tumor,
with about 10,000 new cases reported every year (Lapointe et al.,
2018). Indeed, some brain lower-grade glioma (LGG), including
the WHO II, III grade, could remain indolent for years, while
others rapidly progress to glioblastoma. Therefore, the survival
of patients with LGG ranges from 15 years to 1 year (Zhao
et al., 2019). At present, the available primary treatment for
LGG is still surgical resection (Han et al., 2017). However, due
to the silent clinical characteristics of LGG, most patients miss
the suitable opportunity for surgery. Besides, the combination
of radiotherapy and temozolomide chemotherapy, the first-line
adjuvant strategy, still has a high risk of acquired primary
resistance (Olubajo et al., 2020). It is partly a result of a poor
understanding of the exact etiology and pathogenesis for gliomas.
Therefore, novel effective biomarkers of LGG patients were vital
to be identified for applying to therapy strategies.

Despite the process of understanding the molecular
pathogenesis of glioma, the prognosis of patients and treatment
effect of this tumor remained poor (Chen et al., 2015). In
malignant glioma tissues interacting with neurons, glioma
cells foster a tumor-favorable microenvironment to promote
self-proliferation and escape from the immune response
(Guo et al., 2019). Recent studies have shown that gliomas
could manipulate normal elements of neuronal plasticity and
development in the tumor microenvironment (TME), which
could create an abnormal connection between neurons and
tumor cells by neuronal glioma synapses (NGS; Venkatesh
et al., 2015, 2019; Venkataramani et al., 2019). Meanwhile,
the electrical activity of neurons mediates the depolarization
of the calcium signal network of glioma cells through NGS,
thus increasing the proliferation and invasion of the tumor,
leading to the progression of glioma (Luk and Sadikot, 2004;
Venkataramani et al., 2019; Venkatesh et al., 2019; Lim-Fat
and Wen, 2020). The glutamatergic synapses are considered
the main functional structures of NGS (Luk and Sadikot, 2004;
Venkataramani et al., 2019; Lim-Fat and Wen, 2020). The
glutamatergic synapse may play a crucial role in mediating
neuronal-glial circuits in TME; it involves three vital elements:

Abbreviations: LGG, lower-grade glioma; WHO, World Health Organization;
TIME, tumor immune microenvironment; TME, tumor microenvironment;
TCGA, The Cancer Genome Atlas; CGGA, the Chinese Glioma Genome Atlas;
GTEx, Genotype-Tissue Expression; GSRGs, glutamatergic synapse-related genes;
GSRS, glutamatergic synapse-related risk signature; OS, overall survival; TIICs,
tumor-infiltrating immune cells; ssGSEA, single-sample gene-set enrichment
analysis; GSVA, gene set variation analysis; ICPs, immune checkpoints; ICD,
immunogenic cell death; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of
Genes and Genomes; ICIs, immune checkpoint inhibitors.

presynaptic neurons, postsynaptic neurons, and astrocytes
(Findley et al., 2019). Venkataramani et al. (2019) further
detected the biological markers of postsynaptic structure,
including HOMER1, HOMER2, HOMER3, and glutamatergic
vesicles in microtubules connecting glioma cells with normal
neurons and glioma cells. In addition, neuroligin-3 (NLGN3)
has been considered to be involved in the phosphoinositide 3-
kinase/mammalian target of rapamycin (PI3K-mTOR) signaling
pathway to promote the proliferation of gliomas (Venkatesh
et al., 2015). It was reported that NLGN3 is highly expressed
in the co-culture environment of neurons and glioma. After
inhibiting the expression of NLGN3, the growth of glioma cells
was significantly suppressed. Furthermore, in the medium with
high expression of NLGN3, the density of synaptic connections
between gliomas and neurons was significantly higher than that
in the culture environment with the inhibited expression of
NLGN3. It suggested that NLGN3, as a critical synaptic adhesion
factor, may directly mediate the invasion and proliferation of
glioma by participating in the synaptic formation mechanism
(Venkatesh et al., 2017). Therefore, glutamatergic synapses might
mediate the profession and progression of gliomas in the brain.

The tumor immune microenvironment (TIME) components
could direct response to related treatment and be a vital
determinant of tumor-immune interactions (Grabovska et al.,
2020). Moreover, tumor-infiltrating immune cells (TIICs) have
proven beneficial effects for tumor progression (Lai et al., 2019).
Immunotherapy is undergoing rapid advances and has become
a novel treatment strategy in various cancers (Lu et al., 2020;
Waaler et al., 2020). Mainly, immune checkpoint blockade (ICB)
has emerged as the most promising immunotherapy modality
in cancer (Wei et al., 2018). However, only a small number
of patients were sensitive to the ICB treatment (Sharma et al.,
2017). Therefore, it would benefit from avoiding immune-related
adverse events and decreasing treatment costs by identifying
novel biomarkers combined with immune checkpoints (ICPs).
The involvement of microglia, the CNS resident immune
cells, and phagocytes in synaptic refinement has been widely
established (Scott-Hewitt et al., 2020). Moreover, the immune
synapse connections among immune cells, such as T-cells and
antigen-presenting cells, are essential means of intracellular
communication in immune cells in coordinating many functions
(Davis and Dustin, 2004). Consequently, it is of great significance
to explore the influence of glutamatergic synapse-related genes
(GSRGs) in TIME and identify glutamatergic synapse-related
biomarkers in LGG, which may be practical for understanding
the underlying pathogenesis of gliomas.

Here, we conjectured that the interaction between
glutamatergic synapses and the immune status has a particular
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significance for the prognosis of glioma. A novel glutamatergic
synapse-related risk signature (GSRS), developed and verified
through various bioinformatics methods, might be incorporated
into the existing clinicopathological characteristics and staging
system to improve the prognosis of LGG patients. In addition,
the association between the risk signature and immune profiles
will be investigated in LGG.

DATA AND METHODS

Public Data and Samples Collection
We collected whole-genome RNA-seq expression data and
clinical and molecular information and eliminated incomplete
clinical information along with lacking prognostic information
from 529 LGG (including WHO II-III grade glioma) samples
in The Cancer Genome Atlas (TCGA) database1. A total of 625
LGG (WHO II-III grade) glioma samples were screened out from
Chinese Glioma Genome Atlas (CGGA)2 part A and B, which was
merged, standardized, and then used as a validation set. In this
study, cases with ≤30 days of survival or those with no survival
data were eliminated since they might die of fetal complications
(including hemorrhage, intracranial infection, and heart failure)
rather than LGG. Among the mentioned cases, 447 LGG samples
in TCGA and 592 LGG samples in CGGA with complete
mRNA expression data and corresponding clinical materials were
selected for subsequent analyses. In addition, 940 normal brain
samples (including brain tissues in different parts such as cortex,
cerebellum, and brainstem) with complete mRNA_seq data were
used as a control set. In addition, considering that batch effects
may exist between or within different databases, we used the
“normalizeBetweenArrays” function (Bolstad et al., 2003; Ritchie
et al., 2015) of R package “limma” to remove multiple batch
effects merging the mRNA_seq data of TCGA and GTEx, and
CGGA part A and B.

Patient Samples
This study was approved by the Institutional Ethics Committee
of the Faculty of Medicine at Renmin Hospital of Wuhan
University. Informed consent was obtained from all patients
whose tissues were used. In total, six control samples from
patients with cerebral hemorrhage and 24 lower-grade glioma
samples (WHO grade II-III, 10 and 14 samples) were collected
during May 2019 and April 2021. All patients were not
treated with chemotherapy or radiotherapy before surgery. The
independent samples from our hospital will be used to verify the
mRNA expression level of hub genes of GSRS in LGG.

Obtaining Glutamatergic
Synapse-Related Gene Sets
Gene sets, “GOBP_NEGATIVE_REGULATION_OF_SYNAPT
IC_TRANSMISSION_GLUTAMATERGIC” and “GOBP_POSI
TIVE_REGULATION_OF_SYNAPTIC_TRANSMISSION_GLU

1http://cancergenome.nih.gov/
2http://www.cgga.org.cn

TAMATERGIC,” were obtained from the Molecular Signatures
Database3.

Identify Differentially Expressed Genes
Between Lower-Grade Glioma and
Normal Tissues
Genotype-Tissue Expression and TCGA-LGG databases were
combined as a training set. Though R package “limma” (Ritchie
et al., 2015), differentially expressed genes (DEGs) were identified
from GSRGs; false discovery rate (FDR) less than 0.05 and abs of
logFC larger than 1 were set as the criterion.

Protein–Protein Interaction Network
Analysis
The protein–protein interaction (PPI) network of 39 GSRGs was
constructed in the STRING database4. Nodes with confidences of
interactive relationships larger than 0.4 were shown.

Genomic Alterations of 39 Glutamatergic
Synapse-Related Genes
Copy number variation (CNV) amplification, CNV deep
deletion, in-frame mutation, truncating mutation, missense
mutation, and fusions of these 39 genes were analyzed in the
cBioPortal dataset5.

Construction of Glutamatergic
Synapse-Related Risk Signature
Univariate Cox regression was performed through the “survival”
R package to assess the prognostic value of the GSRGs in LGG
(genes with p-value < 0.05 were selected for further study).
Based on the survival time, survival status, and expression
level of prognosis-related genes of patients with LGG, the least
absolute shrinkage and selection operator (LASSO) regression
algorithm (Miller, 2009) was used to formulate a risk signature
(the penalty parameter λ was chosen based on 10-fold cross-
validation). Genes and their regression coefficients were then
obtained according to the most suitable λ value.

The formula was given as follows:

Riskscore = exprgene(1)× coefficientgene(1)+ exprgene(2) ×

coefficientgene(2) + · · · + exprgene(n) × coefficientgene(n)

where n is the number of prognostic genes, exprgene is the
expression value of the gene, and coefficientgene is the coefficient
of the gene in the risk signature.

Principal Components Analysis
According to the median value of risk score calculated, LGG
samples were assigned into high- and low-risk groups, and the
principal component analysis (PCA) was used to confirm the
differences between the groups through dimensionality reduction
of the mRNA expression data in both TCGA-LGG and CGGA.

3http://www.broad.mit.edu/gsea/msigdb/
4http://www.string-db.org/
5http://www.cbioportal.org/
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Prognostic Analysis of Glutamatergic
Synapse-Related Risk Signature
The prognostic significance of the GSRS in LGG was evaluated
by Kaplan–Meier survival curves and Cox regression analysis in
the training and verification datasets (log-rank test p-value < 0.05
was considered significant). In addition, the receiver operating
characteristic (ROC) curves of GSRS and other clinical risk
factors for predicting 1-, 3-, and 5-year overall survival (OS) of
patients with LGG were performed, and the area under the ROC
curves (AUCs) was calculated. Swets (1988) established three
categories to determine the accuracy of a diagnostic technique
based on the AUC-ROC: high accuracy (0.9 < AUC-ROC ≤ 1),
moderate accuracy (0.7 < AUC-ROC ≤ 0.9), and finally, low
accuracy (0.5 < AUC-ROC ≤ 0.7).

Clinicopathological Relevance of the
Glutamatergic Synapse-Related Risk
Signature
Patients were separated into high- and low-risk groups in both
training and verification cohorts. The chi-square test performed
the difference analysis of risk score among clinicopathological
characteristics, including WHO grade, IDH mutation status,
1p19q co-deletion status, age group, and gender. p-value < 0.05
was considered significant.

Tumor-Infiltrating Immune Cells Profiles
The abundance profile of immune cells was estimated by the
CIBERSORT computational method in the low- and high-risk
groups separately. Pearson correlation analysis and the Wilcoxon
test investigated the correlation between the fraction of TIICs
and risk score in both TCGA-LGG and CGGA cohorts (p < 0.05
was considered significant). In addition, based on the ESTIMATE
algorithm, the immune score, stromal score, and tumor purity
of each LGG sample were calculated with the “estimate” package
(Ciardullo et al., 2020).

Single-Sample Gene Sets Enrichment
Analysis
The vital genes of 29 immune-related pathways were extracted
from the study of Bindea et al. (2013). Single-sample GSEA
(ssGSEA; Finotello and Trajanoski, 2018) was used to calculate
the level of tumor-infiltrating immune cells based on melanoma
mRNA TPM data. In addition, the difference analysis of
enrichment degree of gene hallmarks with 29 kinds of immune-
related hallmarks was performed among low- and high-risk
groups in the training and verification sets (p-value < 0.05 was
considered significant).

Moreover, considering the importance of ICPs and
immunogenic cell death (ICD) modulators in cancer immunity,
we then analyzed their expression levels among low- and
high-risk groups.

Mutational Status Analysis
In the TCGA-LGG dataset, tumor somatic mutational load was
calculated as a total number of mutations identified in each

sample. In addition, the prognostic value of tumor mutation
burden (TMB) in LGG was explored, and the mutational status
was calculated and compared in low- and high-risk groups by R
package “maftools.”

Gene Set Variation Analysis
Hallmark gene sets, which summarize and represent specific,
well-defined biological states or processes and display
coherent expression, were downloaded from the Molecular
Signatures Database and chosen for further analysis. GSVA
of hallmark gene sets was implemented among low- and
high-risk groups in TCGA-LGG using the R package “GSVA”
(Hänzelmann et al., 2013).

Verification of Hub Genes of
Glutamatergic Synapse-Related Risk
Signature
The prognosis-related genes of GSRS were identified through
K–M survival curves in both training and validation sets.
In addition, according to The Human Protein Atlas (HPA)
database6, the protein level of genes identified among normal
brain and LGG tissues was investigated.

RNA Extraction and Quantitative
Real-Time PCR
The extraction of RNA of prognosis-related genes from tissues
and cells was carried out by TRIzol reagent (Invitrogen, Carlsbad,
CA, United States). The PrimeScript RT Reagent Kit (RR047A,
TaKaRa, Japan) was used to synthesize cDNA. We used SYBR
Premix Ex Taq II (RR820A, TaKaRa, Kusatsu, Japan) and Bio-Rad
CFX Manager 2.1 real-time PCR Systems (Bio-Rad, Hercules, CA,
United States) to detect mRNA levels following the specifications
provided by the manufacturers. The relative Ct method was
adopted to compare the data of the experimental group and the
control group, and GAPDH was set as an internal control.

RESULTS

Genetic Alterations of Glutamatergic
Synapse-Related Genes in Lower-Grade
Glioma
Through difference analysis of 39 GSRGs in the training set,
22 genes were found differentially expressed among normal
and LGG samples, as shown in Figures 1A,B. Upregulated and
downregulated GSRGs and corresponding logFC values were
arranged in Supplementary Table 1. Subsequently, through
Spearman’s correlation analysis, we found a strong expression
correlation among GSRGs (Figure 1C). Furthermore, the PPI
network analysis confirmed a strong co-expression correlation
among the GSRGs (Figure 1D). In addition, to better understand
the genomic characteristics of GSRGs in LGG, the mutation
analysis performed in the cBioPortal database showed the copy

6https://www.proteinatlas.org/
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FIGURE 1 | The genomic characterization of glutamatergic synapse-related genes (GSRGs). (A) Heatmap for differentially expressed GSRGs; genes with red color
are involved in positive regulation of glutamatergic synaptic transmission, while genes with blue color mainly participate in negative regulation of glutamatergic
synaptic transmission. (B) Boxplot for differentially expressed GSRGs. (C) Correlation plot for GSRGs; purple squares indicate positive correlation and turquoise
squares indicate inverse correlation. (D) Protein-protein interaction network of GSRGs in STRING database. ***p < 0.001.

number variation and somatic mutational status of GSRGs
(Supplementary Figure 1).

Construction and Verification of
Glutamatergic Synapse-Related Risk
Signature
A total of 18 prognosis-related genes (p < 0.05) were
identified from 39 GSRGs through univariate Cox analysis for
further LASSO regression analysis (Figure 2A). After validation,
using the LASSO with fixed λ = 10-5, the optimal model
included 14 genes as features, including EGFR, CCR2, ATAD1,
NLGN2, SHANK2, OXTR, GRIK2, TNR, KMO, DRD2, NPY2R,
ADORA1, GRIK3, and TSHZ3. These 14 genes and their
corresponding coefficients were sorted out in Supplementary
Table 2. Then, the risk score of each patient was calculated
according to the mRNA expression value of each risk gene and
the corresponding coefficients (Figures 2B–D). As visualized in
PCA, low- and high-risk clusters could well be distinguished
through the median value of GSRS. In addition, survival
analysis performed in training and validation sets also showed
distinct clinical outcomes between low- and high-risk groups

(Figures 2E–H). Moreover, the distributions of risk gene
expression, risk score, and survival status were plotted in the
GSRS of TCGA and CGGA-LGG cohorts (Figures 2I,J). All these
results suggested that the risk score based on GSRS could be a
better indicator for predicting the prognosis of patients with LGG
than other clinical factors.

The Risk Score Could Be an Independent
Factor to Predict the Overall Survival of
Lower-Grade Glioma Patients
For better exploring the significance of our GSRS in predicting
the prognosis of patients independently, univariate combining
with multivariate COX analysis was conducted (Figure 3A), and
we found that the risk score might serve as an independent
factor for predicting the OS of patients for the TCGA-LGG
cohort (hazard ratio HR: 1.262, p < 0.001), and the risk score
achieved a higher area under the AUC-ROC compared with all
other prognosis-related clinical factors, including WHO grade,
age, IDH mutational status, 1p19q co-deletion status, and gender.
The AUC of a risk score for 1-, 3-, and 5-year OS of patients
in the training set was 0.885, 0.801, and 0.743, respectively
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FIGURE 2 | Construction of 14-genes glutamatergic synapse-related risk signature (GSRS). (A) Forest plot for the survival analysis of LGG patients using a univariate
Cox model after adjustment for GSRGs; red color represents p < 0.05. (B) The craft plot for partial likelihood deviance in LASSO, different colors represent different
genes in GSRS. (C) Partial likelihood deviance as a function of regularization parameter λ in the training dataset. Each red point marks a λ value along regularization
paths, and gray error bars represent confidence intervals for the cross-validated error rate. The left vertical dotted line marks the minimum error, whereas the right
vertical dotted line marks the most significant λ value, the error of which is within 1 SD of the minimum. The horizontal row of numbers above the plot marks the
gene number in each condition upon shrinkage and selection based on linear regression. (D) Radar diagram of efficiency of the 14 genes in GSRS; the closer the red
dot is to the outside, the greater the value it represents. (E) Principal component analysis (PCA) of LGG samples in TCGA; dots in turquoise represent samples in
high-risk groups and dots in red represent samples in low-risk groups. (F) Overall survival analysis of risk score for LGG patients in TCGA. (G) PCA in CGGA-LGG.
(H) Survival analysis in CGGA-LGG. According to training (I) and validation (J) sets, the distribution of risk score, corresponding OS, and gene expression are listed
in the picture from top to bottom.

(Figures 3B–D). These results were validated in the CGGA-LGG
cohort, and HR of the risk score in multivariate COX regression
was 1.192 (Figure 3E, p < 0.001), and the AUC of a risk score for
1-, 3-, and 5-year OS of patients in CGGA-LGG were 0.741, 0.739,
and 0.719, respectively (Figures 3F–H).

Relationship Between Glutamatergic
Synapse-Related Risk Signature and the
Clinicopathological Features
We screened out 447 and 592 cases with sufficient data on
age, gender, WHO grade, IDH mutational status, and 1p19q

co-deletion status in training and validation sets, respectively.
Chi-square tests were performed for the comparisons of the
distribution of clinical factors among different risk groups
with the R function “chisq.test.” The results of the chi-
square tests in TCGA and CGGA cohorts were presented
in Table 1. We found that the risk scores obtained based
on GSRS showed a significant correlation with WHO grade,
IDH mutational status, and 1p19q co-deletion status in TCGA
and CGGA cohorts (Figures 4A,B). Specifically, LGG samples
with a higher WHO grade, IDH wild type, 1p19q non-co-
deletion had significantly higher risk scores than others, while
there was no significant correlation between risk score and
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FIGURE 3 | The prognostic value of GSRS. (A) In the training set, forest plot on the left for the univariate Cox test evaluating the association of the risk score and
clinical factors with patient OS, and forest plot on the right for the multivariate Cox analysis identifying independent risk factors for the OS of patients. The ROC curve
of risk score and clinical factors for predicting 1- (B), 3- (C), and 5-year (D) OS. (E) In the validation set, univariate and multivariate COX analysis of risk score and
clinical factors. ROC curve of risk score compared with other clinical factors for predicting 1- (F), 3- (G), and 5-year (H) OS.
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TABLE 1 | Correlation between 14-GSRS genes risk scores and clinicopathological factors of glioma patients in the two cohorts.

Training set TCGA RNA-seq cohort (n = 447) Validation set CGGA RNA-seq cohort (n = 513)

Features Low-risk score
(n = 224)

High-risk score
(n = 223)

P-value Low-risk score
(n = 263)

High-risk score
(n = 250)

P-value

Age 0.67 0.78

< = 45 132 135 190 187

>45 92 88 73 63

Gender 0.73 0.94

Female 99 99 108 109

Male 125 124 155 141

WHO grade <0.001 <0.001

II 131 82 157 81

III 93 141 106 149

IDH status <0.001 <0.001

Wild type 10 77 26 98

Mutant 214 146 237 152

1p/19q status <0.001 <0.001

Co-deletion 138 11 129 33

Non-co-deletion 86 212 134 217

FIGURE 4 | The association between risk score and clinicopathological factors. Heatmap of the correlations between risk score and clinicopathological
characteristics of LGG in TCGA (A) and CGGA (B) cohorts; factors with red color are significantly correlated with the risk score. Distribution of glutamatergic
synapses-related risk signature among LGG patients stratified by WHO grade, IDH status, 1p/19q co-deletion status, and gender in TCGA (C–F) and CGGA (G–J)
cohorts. ***p < 0.001.
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gender (Figures 4C–J). As a result, the risk score values were
significantly related to the grade, IDH mutation, and 1p19q
co-deletion status of LGG.

Tumor-Infiltrating Immune Cells Profiles
Tumor-infiltrating immune cells play an essential role in the
TME. We investigated the relative fraction of 22 types of immune
cells, calculated based on the “CIBERSORT” algorithm. Results
of differential fraction analysis among low- and high-risk groups
were shown in boxplots (Figures 5A,B); the abundances of M1,
M2 macrophages, T cells regulatory (Tregs), memory resting
CD4 T cells, and naive B cells in the high-risk group were
significantly higher than that in the low-risk group. Furthermore,
the stromal score captures the presence of stromal cells in tumor
tissue, while the Immune score represents the infiltration of
immune cells in the tumor area. We found that samples in
high-risk groups had higher immune and stromal scores than
samples in low-risk groups. It indicated that LGG samples with
higher risk scores had higher infiltrating levels of stromal and
immune cells. Moreover, as shown in the correlation analysis
(Figures 5C–F), M2 macrophages and Tregs were confirmed to
be significantly positively correlated with risk scores in TCGA
and CGGA cohorts. These findings indicated that risk scores
might affect the prognosis of LGG patients in association with
increased M2 macrophages and Tregs.

In addition, based on the ssGSEA scores, the activities
and abundances of pathways, functions, or immunocytes
were assessed quantitatively. Samples with higher ssGSEA
scores indicated more infiltrating immune cells and activity
of immune-related pathways. Samples in the high-risk group
were associated with higher ssGSEA scores in terms of most
immune cell types, as shown in the heatmaps (Figures 6A,B)
and boxplots (Figures 6C,D). In general, LGG patients with
higher risk scores tend to have a higher fraction of TIICs
and more active immune-related pathways than other patients.
The immunosuppressive TIICs (M2 macrophages and Tregs)
exhibited significantly higher than baseline levels in the high-
risk group.

Association Between Risk Score and
Immune Modulators
We next explored their expression levels among different
risk groups, considering the importance of ICPs and ICD
modulators in anticancer immunity. Forty-seven ICPs-
related genes were detected in the training and validation
sets, of which 38 members in the TCGA and CGGA cohort
(Figures 7A,B) were differentially expressed among the different
risk groups. It is crucial that vital ICPs, such as PDCD1
(PD-1), CD274 (PD-L1), and CTLA4, were significantly
upregulated in the high-risk group. Likewise, 18 and 16
ICD genes were expressed differently among two groups in
TCGA and CGGA, respectively (Figures 7C,D). Therefore,
the risk score value could reflect the expression levels of ICPs
and ICD modulators and be treated as potential immune
therapeutic biomarkers.

The Association of Risk Score With
Mutational Status
Higher TMB and somatic mutation rates are associated with
stronger antitumor immunity. First, we identified the prognostic
value of TMB in LGG, and the survival analysis revealed that
patients with higher TMB had a worse prognosis than samples
with lower TMB in TCGA-LGG (Figure 8A). In addition, K–M
curves of risk score combining with TMB indicated that patients
with higher TMB and higher risk scores had worse OS than other
subtypes, while the subtype of lower risk score with lower TMB
was associated with the best prognosis (Figure 8B). Then, we
explored the correlation between TMB and risk score in LGG.
Difference analysis of TMB among low- and high-risk groups
showed that TMB was significantly positively correlated with
risk score (Figure 8C). Moreover, the mutation landscape was
described in low- and high-risk groups. Twenty genes, including
IDH1, TP53, and ATRX, were most frequently mutated in each
subtype (Figures 8D,E). These findings suggested that the risk
score based on GSRS can predict the TMB and somatic mutation
rates in LGG patients and that patients with higher risk scores
may respond positively to anticancer immunity.

Gene Set Variation Analysis
Differences in pathway activities among low- and high-risk
groups were scored using GSVA. We found that signaling
pathways related to oncogenic transformation and tumorigenesis
were primarily enriched in high-risk groups (Figure 9), such as
the PI3k-Akt signaling pathway, P53 pathway, EMT pathway, and
so on. These results suggested that risk score based on GSRS,
as a novel biomarker for LGG, may be involved in some vital
cancer-related signaling pathways.

Identification of Hub Genes of
Glutamatergic Synapse-Related Risk
Signature
We then investigated the prognostic value of the 14-genes GSRS
in the training and validation sets (Figures 10A–H). The K–
M survival analysis of 14 genes (Table 2) indicated that the
expression level of ATAD1, NLGN2, and TNR was positively
correlated with the OS of patients with LGG, while patients with
higher OXTR had inferior OS than others. As a result, ATAD1,
NLGN2, TNR, and OXTR were identified as hub genes in GSRS.
Subsequently, according to the HPA database, we explored the
expression of the hub genes on protein level (Figures 10I–
K), and proteins ATAD1 and TNR were upregulated in LGG
tissues compared with normal brain tissues, while the expressions
of protein NLGN2 in both LGG and normal tissues were not
detected. However, there was no related data of OXTR in
the HPA database.

Moreover, according to the real-time PCR results
(Figure 10L), we detected the samples collected in our hospital;
the control and primer sequences of four hub genes are as follows:

GAPDH: 5′-GGAGCGAGATCCCTCCAAAAT-3′ (For-
ward), 5′-GGCTG TTGTCATACTTCTCATGG-3′ (Rev-
erse).
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FIGURE 5 | The correlation between tumor-infiltrating immune cells (TIICs) and GSRS. Difference analysis of 22 kinds of an abundance of TIICs, immune score, and
stromal score in low and high-risk groups in training (A) and validation sets (B). Spearman’s correlation analysis between risk score and M2 macrophages, regulatory
T cells (Tregs) in TCGA (C,D) and CGGA cohorts (E,F), each dot plot represents a subject, and the correlation is fitted into a straight blue line. R, rho; ***p < 0.001,
**p < 0.01, *p < 0.05.

ATAD1: 5′-ACACTGACCGATAAGTGGTATGG-3′ (For-
ward), 5′-GTTGTAGCTTTATGGCAAGGGA-3′ (Rev-
erse).

NLGN2: 5′-TGGTTCACCGACAACTTGGAG-3′ (For-
ward), 5′-GCACGTAGAGGTTGAGGTACAG-3′ (Rev-
erse).
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FIGURE 6 | Single sample gene sets enrichment analysis (ssGSEA) of immune hallmarks. Heatmap of ssGSEA scores among low- and high-risk groups in training
(A) and validation (B) sets (red = positive, blue = negative). Boxplot of ssGSEA scores, stromal score, immune score, and tumor purity among low- and high-risk
groups in TCGA (C) and CGGA (D) cohorts. ***p < 0.001, **p < 0.01, *p < 0.05.

FIGURE 7 | Association between risk subtypes and ICPs and ICD modulators. Differential expression of ICP genes among the risk subtypes in (A) TCGA and
(B) CGGA cohorts. Differential expression of ICD modulator genes among the risk subtypes in (C) TCGA and (D) CGGA cohorts. *p < 0.01, **p < 0.001, and
***p < 0.0001.
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FIGURE 8 | Association between risk subtypes and TMB and mutation. (A) Survival analysis of TMB and OS of the patients with LGG in TCGA. (B) K–M curves of
TMB combining with risk score in TCGA-LGG. (C) Difference analysis of TMB among low- and high-risk subtypes in LGG patients. (D) Top 30 highly mutated genes
in LGG low-risk group. (E) Top 30 highly mutated genes in LGG high-risk group. ***p < 0.0001.

OXTR: 5′-CTGCTACGGCCTTATCAGCTT-3′ (Forward),
5′-CGCTCCACATCTGCACGAA-3′ (Reverse).
TNR: 5′-AAGAATTGCTCGGAGCCCTAC-3′ (Forward),
5′-GCTGTACTCGCTGTCACAGAT-3′ (Reverse).

We found that mRNA expression of ATAD1, NLGN2, OXTR,
and TNR were significantly upregulated in LGG compared with
normal brain tissues, which were consistent with the expression
patterns in the public database.

DISCUSSION

The formation of excitatory synapses between neurons and
tumor cells promotes cancer growth (Li C. et al., 2020).
Enhancing synaptogenesis and influencing synaptic transmission
may participate in the growth and progress of gliomas (Miller,
2009). Moreover, synapses play a crucial role in many ways

related to immune including self-tolerance, adaptive immunity,
and prevention of autoimmunity (Siciliano et al., 2020). And
the diversity and complexity of the immune context in TME
influence metastasis and tumorigenesis of tumors (Siciliano
et al., 2020). However, at present, though evidence has shown
that glutamatergic synapses might affect the invasion and
proliferation of glioma and have a significant correlation with the
TIME (Venkataramani et al., 2019; Venkatesh et al., 2019), almost
no specific biomarker had been developed based on GSRGs
and immune status within gliomas. This study started with the
gene sets associated with glutamatergic synapses to explore the
expression, correlation, and genetic alterations of these genes in
LGG. Then, we constructed a 14-genes GSRS and identified it
as a novel prognostic biomarker in LGG by both internal and
external validation.

Furthermore, we explored the association of risk scores
with clinicopathological characteristics and immunity profiles.
Moreover, the underlying molecular mechanism that might be
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FIGURE 9 | Heatmap for the contribution of gene set variation analysis (GSVA) scores of hallmarks in low- and high-risk groups. Terms with red color are significantly
up-regulated in the high-risk group, blue color represent down-regulation in low-risk group.

TABLE 2 | K–M survival analysis of 14 GSRS genes in TCGA and CGGA.

Gene TCGA CGGA

HR (high) Log-rank P HR (high) Log-rank P

ADORA1 1.60 >0.05 2.00 >0.05

ATAD1 0.49 <0.001 0.52 <0.01

CCR2 1.60 >0.05 1.80 >0.05

DRD2 1.00 >0.05 0.99 >0.05

EGFR 1.30 >0.05 1.22 >0.05

GRIK2 0.48 >0.05 0.55 >0.05

GRIK3 1.20 >0.05 1.44 >0.05

KMO 1.62 >0.05 1.11 >0.05

NLGN2 0.48 <0.001 0.33 <0.05

NPY2R 1.61 >0.05 1.88 <0.001

OXTR 2.30 <0.001 2.90 <0.01

SHANK2 0.37 <0.001 0.89 >0.05

TNR 0.42 <0.001 0.36 <0.001

TSHZ3 1.50 <0.05 1.22 >0.05

Factors with p-values less than 0.05 in TCGA and CGGA cohorts are marked in bold.
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FIGURE 10 | Verification of the prognostic value and expression of hub genes of GSRS. Survival analysis of ATAD1, NLGN2, OXTR, and TNR for patients in TCGA
(A–D) and CGGA (E–H) cohorts. The protein expression level of ATAD1 (I), NLGN2 (K), and TNR (J) in normal and LGG tissues according to the HPA database.
(L) The relative mRNA expression levels of ATAD1, NLGN2, OXTR, and TNR are compared among LGG and non-tumor tissues based on real-time PCR results.
***p < 0.001, **p < 0.01, *p < 0.05.

regulated by GSRS was predicted by GSVA. In addition, the
real-time PCR of tissues of the patients in our hospital confirmed
the expression of hub genes in GSRS, and we also verified the
expression of these genes at the protein level in LGG.

Most genes related to glutamatergic synapses were found
differentially expressed among normal and tumor tissues.

Furthermore, few CNV and single-nucleotide polymorphisms
(SNP) of GSRGs in LGG suggested these genes may involve
in the progression of glioma and indicated GSRGs maintained
high genome stability that prevented the occurrence of genomic
mutation. In this research, the 14-genes GSRS was constructed
and verified. We found that the risk signature had a more
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vital prognosis prediction ability than other clinical independent
prognostic factors, which might provide an effective individual
mortality risk prediction and risk stratification in LGG patients.
Consistently, the risk score was significantly increased with the
WHO glioma grading, which indicated that risk signature can
distinguish the degree of malignancy and may be involved in
tumor progression. In addition, the status of IDH type and
1p/19q co-deletion among tumors could be distinguished by risk
scores; IDH wild type and 1p19q non-co-deletion gliomas were
the poor prognostic factors and had an inadequate response to
traditional radiotherapy or chemotherapy of LGG patients (Li
Y. et al., 2020). Consequently, LGG patients with higher risk
scores may be less sensitive to radiotherapy or chemotherapy
(Prados et al., 2009).

Tumor evolution to evade immune surveillance is a hallmark
of carcinogenesis, and tumor-specific immunity can be directly
affected by the modulation of the immune synapse between
antigen-presenting cells and effector T cells (Lamantia et al.,
2014). It had been reported that the induction of the
immunosuppressive tumor microenvironment was owed mainly
to the population of type M2 macrophages (Prados et al., 2009),
and overcoming immunosuppressive tumor microenvironments
is necessary for effective immunotherapy (Marigo et al., 2016).
Similarly, the infiltration of M2 macrophages and Tregs was
correlated with decreased tumor survival (Shah et al., 2011; Tian
et al., 2020). In this study, high-risk patients tend to have higher
M2 and Treg infiltration and a worse prognosis. At the same
time, the risk score of LGG samples was positively correlated
with the infiltrating level, including immune and stromal scores.
It suggested a higher fraction of immune-inflammatory tumor-
infiltrating cells that established immunosuppressive tumor
microenvironment in high-risk groups. Therefore, repolarization
of M2 into M1 macrophages and consuming the number
and activity of infiltrating Tregs in the tumor could represent
promising ways for patients with higher risk scores to treat LGG
(Jézéquel et al., 2015).

On the flip side, ICB that aims to reverse signals from the
immunosuppressive TME is being driven as a significant therapy
(Huang et al., 2019), and ICD has been reported as a stimulant
condition that changes “cold” immune microenvironment into
a “hot” immune microenvironment (Duan et al., 2019). The
expression of ICPs is vital for immune escape and treatment
with ICB (Yang et al., 2021). Therefore, the focus of recent
developments in immunotherapy for cancer had shifted toward
immune checkpoint inhibitors (ICIs; Wierstra et al., 2019). Based
on our constructed GSRS in this research, the expression of
vital ICPs (PD-1, PD-L1, and CTLA4) and TMB correlated
significantly with a risk score, and the results indicated that
high-risk patients tend to be in a state of more sensitivity to
ICB therapy. The expression level of ICD had no significant
difference among low- and high-risk groups, which may not
provide sufficient theoretical support for further research. The
potential complex interaction of GSRS developed in this study
with ICPs and immune infiltration might be a promising research
direction to improve the effect of ICB for solid cancers.

When investigating potential mechanisms related to GSRS,
we found that the highly enriched terms in high-risk samples

were mostly cancer-related pathways. Recent studies have
shown that the formation of synaptic potassium current
contributes to the transmission of neuron-glioma synapse
(NGS) signal, and calcium ion, as a signal communication
between glioma cells, plays a crucial role in activating the
whole glioma network (Venkataramani et al., 2019; Venkatesh
et al., 2019), given the existence of glutamatergic synapse
among TME of gliomas and the effect of potassium and
calcium on the electrochemical signal transduction in glioma.
Hamerlik et al. (2012) mentioned that glutamate might affect
the proliferation, invasion, and angiogenesis of glioblastoma
by activating the epidermal growth factor receptor (EGFR)
signaling pathway.

Due to the highly heterogeneous character of gliomas
(Hamerlik et al., 2012), it is not reliable to use a single
differentially expressed gene as the biomarker in individual
glioma patients. Simultaneously, it is difficult to discriminate
the subtypes in glioma using classical biotyping methods
and molecular schedules (Radoul et al., 2021). In this
study, a novel prognostic biomarker constructed in LGG
could distinguish the malignant degree and immune
status of glioma and predict the effect of ICB therapy
for patients.

However, it cannot be neglected that the current research
on glioma-related electrophysiology is in the pioneering and
developing stage, which needs further multicenter, prospective,
and well-designed studies.

CONCLUSION

Based on 14 GSRGs, a prognostic signature was constructed and
validated for the sake of predicting the OS for patients with LGG.
In addition, combining immune profiles with genetic multi-
omics assays, our GSRS provided a novel and comprehensive
perspective for clarifying the potential mechanisms underlying
the prognosis of LGG.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding authors.

ETHICS STATEMENT

Written informed consent was obtained from the individual(s)
for the publication of any potentially identifiable images or data
included in this article.

AUTHOR CONTRIBUTIONS

LY, YX, QC, and DT contributed to the conception and design
of the study. LW, JY, PH, YW, CZ, and FY contributed to the

Frontiers in Molecular Neuroscience | www.frontiersin.org 15 October 2021 | Volume 14 | Article 720899

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-neuroscience#articles


fnmol-14-720899 October 22, 2021 Time: 14:51 # 16

Ye et al. Glutamatergic Synapses-Associated Signature in LGG

analysis and interpretation of data. All authors read and approved
the final manuscript.

FUNDING

This work was supported by the National Natural Science
Foundation of China (No. 82072764).

ACKNOWLEDGMENTS

We gratefully acknowledge The Cancer Genome Atlas Pilot
Project, Chinese Glioma Genome Atlas, Genotype-Tissue

Expression Project, and The Human Protein Atlas, which made
the genomic and clinical data of glioma available.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnmol.
2021.720899/full#supplementary-material

Supplementary Figure 1 | CNV and SNP of GSRGs in LGG according to
cBioPortal database. T, tumor; N, normal; CNV, copy number variation; SNP,
single-nucleotide polymorphism.

REFERENCES
Bindea, G., Mlecnik, B., Tosolini, M., Kirilovsky, A., Waldner, M., Obenauf, A. C.,

et al. (2013). Spatiotemporal dynamics of intratumoral immune cells reveal the
immune landscape in human cancer. Immunity 39, 782–795. doi: 10.1016/j.
immuni.2013.10.003

Bolstad, B., Irizarry, R., Astrand, M., and Speed, T. P. (2003). A comparison of
normalization methods for high density oligonucleotide array data based on
variance and bias. Bioinformatics 19, 185–193. doi: 10.1093/bioinformatics/19.
2.185

Chen, T., Yi, L., Li, F., Hu, R., Hu, S., Yin, Y., et al. (2015). Salinomycin
inhibits the tumor growth of glioma stem cells by selectively suppressing
glioma-initiating cells. Mol. Med. Rep. 11, 2407–2412. doi: 10.3892/mmr.2014.
3027

Ciardullo, S., Muraca, E., Perra, S., Bianconi, E., Zerbini, F., Oltolini, A., et al.
(2020). Screening for non-alcoholic fatty liver disease in type 2 diabetes using
non-invasive scores and association with diabetic complications. BMJ Open
Diabetes Res. Care 8:e000904. doi: 10.1136/bmjdrc-2019-000904

Davis, D., and Dustin, M. (2004). What is the importance of the immunological
synapse?. Trends Immunol. 25, 323–327. doi: 10.1016/j.it.2004.03.007

Duan, X., Chan, C., and Lin, W. (2019). Nanoparticle-Mediated Immunogenic
Cell Death Enables and Potentiates Cancer Immunotherapy. Angew. Chem. 58,
670–680. doi: 10.1002/anie.201804882

Findley, C. A., Bartke, A., Hascup, K. N., and Hascup, E. R. (2019).
Amyloid Beta-Related Alterations to Glutamate Signaling Dynamics During
Alzheimer’s Disease Progression. ASN Neuro 11:1759091419855541. doi: 10.
1177/1759091419855541

Finotello, F., and Trajanoski, Z. (2018). Quantifying tumor-infiltrating immune
cells from transcriptomics data. Cancer Immunol. Immunother. 67, 1031–1040.
doi: 10.1007/s00262-018-2150-z

Grabovska, Y., Mackay, A., O’Hare, P., Crosier, S., Finetti, M., Schwalbe, E. C., et al.
(2020). Pediatric pan-central nervous system tumor analysis of immune-cell
infiltration identifies correlates of antitumor immunity. Nat. Commun. 11:4324.
doi: 10.1038/s41467-020-18070-y

Guo, Y., Hong, W., Wang, X., Zhang, P., Körner, H., Tu, J., et al. (2019).
MicroRNAs in Microglia: how do MicroRNAs Affect Activation, Inflammation,
Polarization of Microglia and Mediate the Interaction Between Microglia and
Glioma?. Front. Mol. Neurosci. 12:125. doi: 10.3389/fnmol.2019.00125

Hamerlik, P., Lathia, J. D., Rasmussen, R., Wu, Q., Bartkova, J., Lee, M., et al.
(2012). Autocrine VEGF-VEGFR2-Neuropilin-1 signaling promotes glioma
stem-like cell viability and tumor growth. J. Exp. Med. 209, 507–520. doi:
10.1084/jem.20111424

Han, X., Xue, X., Zhou, H., and Zhang, G. (2017). A molecular view of
the radioresistance of gliomas. Oncotarget 8, 100931–100941. doi: 10.18632/
oncotarget.21753

Hänzelmann, S., Castelo, R., and Guinney, J. (2013). GSVA: gene set variation
analysis for microarray and RNA-seq data. BMC Bioinformatics 14:7. doi: 10.
1186/1471-2105-14-7

Huang, L., Li, Y., Du, Y., Zhang, Y., Wang, X., Ding, Y., et al. (2019). Mild
photothermal therapy potentiates anti-PD-L1 treatment for immunologically

cold tumors via an all-in-one and all-in-control strategy. Nat. Commun.
10:4871. doi: 10.1038/s41467-019-12771-9

Jézéquel, P., Loussouarn, D., Guérin-Charbonnel, C., Campion, L., Vanier, A.,
Gouraud, W., et al. (2015). Gene-expression molecular subtyping of triple-
negative breast cancer tumours: importance of immune response. Breast Cancer
Res. 17:43. doi: 10.1186/s13058-015-0550-y

Lai, S., Liu, Y., Lu, D., and Tsai, C. F. (2019). Melatonin Modulates the
Microenvironment of Glioblastoma Multiforme by Targeting Sirtuin 1.
Nutrients 11:1343. doi: 10.3390/nu11061343

Lamantia, C., Tremblay, M., and Majewska, A. (2014). Characterization of the
BAC Id3-enhanced green fluorescent protein transgenic mouse line for in vivo
imaging of astrocytes.Neurophotonics 1:011014. doi: 10.1117/1.NPh.1.1.011014

Lapointe, S., Perry, A., and Butowski, N. (2018). Primary brain tumours in adults.
Lancet 392, 432–446. doi: 10.1016/s0140-6736(18)30990-5

Li, C., Zheng, Y., Pu, K., Zhao, D., Wang, Y., Guan, Q., et al. (2020). A four-DNA
methylation signature as a novel prognostic biomarker for survival of patients
with gastric cancer. Cancer Cell Int. 20:88. doi: 10.1186/s12935-020-1156-8

Li, Y., Deng, G., Qi, Y., Zhang, H., Jiang, H., Geng, R., et al. (2020). Downregulation
of LUZP2 Is Correlated with Poor Prognosis of Low-Grade Glioma. BioMed Res.
Int. 2020:9716720. doi: 10.1155/2020/9716720

Lim-Fat, M., and Wen, P. (2020). Glioma progression through synaptic activity.
Nat. Rev. Neurol. 16, 6–7. doi: 10.1038/s41582-019-0290-1

Lu, H., Shi, T., Wang, M., Li, X., Gu, Y., Zhang, X., et al. (2020). B7-H3 inhibits
the IFN-γ-dependent cytotoxicity of Vγ9Vδ2 T cells against colon cancer cells.
Oncoimmunology 9:1748991. doi: 10.1080/2162402x.2020.1748991

Luk, K., and Sadikot, A. (2004). Glutamate and regulation of proliferation in
the developing mammalian telencephalon. Dev. Neurosci. 26, 218–228. doi:
10.1159/000082139

Marigo, I., Zilio, S., Desantis, G., Mlecnik, B., Agnellini, A. H. R., Ugel, S., et al.
(2016). T Cell Cancer Therapy Requires CD40-CD40L Activation of Tumor
Necrosis Factor and Inducible Nitric-Oxide-Synthase-Producing Dendritic
Cells. Cancer Cell 30, 377–390. doi: 10.1016/j.ccell.2016.08.004

Miller, G. (2009). Brain cancer .A viral link to glioblastoma?. Science 323, 30–31.
doi: 10.1126/science.323.5910.30

Olubajo, F., Achawal, S., and Greenman, J. (2020). Development of a Microfluidic
Culture Paradigm for Ex Vivo Maintenance of Human Glioblastoma Tissue: a
New Glioblastoma Model? Transl. Oncol. 13, 1–10. doi: 10.1016/j.tranon.2019.
09.002

Prados, M., Chang, S., Butowski, N., DeBoer, R., Parvataneni, R., Carliner, H.,
et al. (2009). Phase II study of erlotinib plus temozolomide during and after
radiation therapy in patients with newly diagnosed glioblastoma multiforme or
gliosarcoma. J. Clin. Oncol. 27, 579–584. doi: 10.1200/jco.2008.18.9639

Radoul, M., Hong, D., Gillespie, A. M., Najac, C., Viswanath, P., Pieper, R. O., et al.
(2021). Early Noninvasive Metabolic Biomarkers of Mutant IDH Inhibition in
Glioma. Metabolites 11:109. doi: 10.3390/metabo11020109

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., et al. (2015). limma
powers differential expression analyses for RNA-sequencing and microarray
studies. Nucleic Acids Res. 43:e47. doi: 10.1093/nar/gkv007

Scott-Hewitt, N., Perrucci, F., Morini, R., Erreni, M., Mahoney, M., Witkowska,
A., et al. (2020). Local externalization of phosphatidylserine mediates

Frontiers in Molecular Neuroscience | www.frontiersin.org 16 October 2021 | Volume 14 | Article 720899

https://www.frontiersin.org/articles/10.3389/fnmol.2021.720899/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnmol.2021.720899/full#supplementary-material
https://doi.org/10.1016/j.immuni.2013.10.003
https://doi.org/10.1016/j.immuni.2013.10.003
https://doi.org/10.1093/bioinformatics/19.2.185
https://doi.org/10.1093/bioinformatics/19.2.185
https://doi.org/10.3892/mmr.2014.3027
https://doi.org/10.3892/mmr.2014.3027
https://doi.org/10.1136/bmjdrc-2019-000904
https://doi.org/10.1016/j.it.2004.03.007
https://doi.org/10.1002/anie.201804882
https://doi.org/10.1177/1759091419855541
https://doi.org/10.1177/1759091419855541
https://doi.org/10.1007/s00262-018-2150-z
https://doi.org/10.1038/s41467-020-18070-y
https://doi.org/10.3389/fnmol.2019.00125
https://doi.org/10.1084/jem.20111424
https://doi.org/10.1084/jem.20111424
https://doi.org/10.18632/oncotarget.21753
https://doi.org/10.18632/oncotarget.21753
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1038/s41467-019-12771-9
https://doi.org/10.1186/s13058-015-0550-y
https://doi.org/10.3390/nu11061343
https://doi.org/10.1117/1.NPh.1.1.011014
https://doi.org/10.1016/s0140-6736(18)30990-5
https://doi.org/10.1186/s12935-020-1156-8
https://doi.org/10.1155/2020/9716720
https://doi.org/10.1038/s41582-019-0290-1
https://doi.org/10.1080/2162402x.2020.1748991
https://doi.org/10.1159/000082139
https://doi.org/10.1159/000082139
https://doi.org/10.1016/j.ccell.2016.08.004
https://doi.org/10.1126/science.323.5910.30
https://doi.org/10.1016/j.tranon.2019.09.002
https://doi.org/10.1016/j.tranon.2019.09.002
https://doi.org/10.1200/jco.2008.18.9639
https://doi.org/10.3390/metabo11020109
https://doi.org/10.1093/nar/gkv007
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-neuroscience#articles


fnmol-14-720899 October 22, 2021 Time: 14:51 # 17

Ye et al. Glutamatergic Synapses-Associated Signature in LGG

developmental synaptic pruning by microglia. EMBO J. 39:e105380. doi: 10.
15252/embj.2020105380

Shah, W., Yan, X., Jing, L., Zhou, Y., Chen, H., and Wang, Y. (2011). A reversed
CD4/CD8 ratio of tumor-infiltrating lymphocytes and a high percentage of
CD4(+)FOXP3(+) regulatory T cells are significantly associated with clinical
outcome in squamous cell carcinoma of the cervix. Cell. Mol. Immunol. 8,
59–66. doi: 10.1038/cmi.2010.56

Sharma, P., Hu-Lieskovan, S., Wargo, J. A., and Ribas, A. (2017). Primary,
Adaptive, and Acquired Resistance to Cancer Immunotherapy. Cell 168, 707–
723. doi: 10.1016/j.cell.2017.01.017

Siciliano, M., Dastoli, S., d’Apolito, M., Staropoli, N., Tassone, P., Tagliaferri,
P., et al. (2020). Pembrolizumab-Induced Psoriasis in Metastatic Melanoma:
activity and Safety of Apremilast, a Case Report. Front. Oncol. 10:579445. doi:
10.3389/fonc.2020.579445

Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science 240,
1285–1293. doi: 10.1126/science.3287615

Tian, Y., Ke, Y., and Ma, Y. (2020). High expression of stromal signatures
correlated with macrophage infiltration, angiogenesis and poor prognosis in
glioma microenvironment. PeerJ 8:e9038. doi: 10.7717/peerj.9038

Venkataramani, V., Tanev, D., Strahle, C., Studier-Fischer, A., Fankhauser, L.,
Kessler, T., et al. (2019). Glutamatergic synaptic input to glioma cells drives
brain tumour progression. Nature 573, 532–538. doi: 10.1038/s41586-019-
1564-x

Venkatesh, H., Morishita, W., Geraghty, A., Silverbush, D., Gillespie, S. M., Arzt,
M., et al. (2019). Electrical and synaptic integration of glioma into neural
circuits. Nature 573, 539–545. doi: 10.1038/s41586-019-1563-y

Venkatesh, H., Tam, L. T., Woo, P. J., Lennon, J., Nagaraja, S., Gillespie,
S. M., et al. (2017). Targeting neuronal activity-regulated neuroligin-3
dependency in high-grade glioma. Nature 549, 533–537. doi: 10.1038/nature
24014

Venkatesh, H. S., Johung, T. B., Caretti, V., Noll, A., Tang, Y., Nagaraja, S., et al.
(2015). Neuronal Activity Promotes Glioma Growth through Neuroligin-3
Secretion. Cell 161, 803–816. doi: 10.1016/j.cell.2015.04.012

Waaler, J., Mygland, L., Tveita, A., Strand, M. F., Solberg, N. T., Olsen, P. A., et al.
(2020). Tankyrase inhibition sensitizes melanoma to PD-1 immune checkpoint

blockade in syngeneic mouse models. Commun. Biol. 3:196. doi: 10.1038/
s42003-020-0916-2

Wei, X., Wu, Q., Chen, D., Zeng, Z. L., Lu, J. B., Liu, Z. X., et al. (2018). The
Clinical and Biomarker Association of Programmed Death Ligand 1 and its
Spatial Heterogeneous Expression in Colorectal Cancer. J. Cancer 9, 4325–4333.
doi: 10.7150/jca.27735

Wierstra, P., Sandker, G., Aarntzen, E., Gotthardt, M., Adema, G., Bussink, J., et al.
(2019). Tracers for non-invasive radionuclide imaging of immune checkpoint
expression in cancer. EJNMMI Radiopharm. Chem. 4:29. doi: 10.1186/s41181-
019-0078-z

Yang, Z., Wei, X., Pan, Y., Xu, J., Si, Y., Min, Z., et al. (2021). A new risk factor
indicator for papillary thyroid cancer based on immune infiltration. Cell Death
Dis. 12:51. doi: 10.1038/s41419-020-03294-z

Zhao, L., Li, Y., Zhu, J., Sun, N., Song, N., Xing, Y., et al. (2019). Chlorotoxin
peptide-functionalized polyethylenimine-entrapped gold nanoparticles for
glioma SPECT/CT imaging and radionuclide therapy. J. Nanobiotechnol. 17:30.
doi: 10.1186/s12951-019-0462-6

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Ye, Xu, Hu, Wang, Yang, Yuan, Wang, Zhang, Tian and Chen.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Molecular Neuroscience | www.frontiersin.org 17 October 2021 | Volume 14 | Article 720899

https://doi.org/10.15252/embj.2020105380
https://doi.org/10.15252/embj.2020105380
https://doi.org/10.1038/cmi.2010.56
https://doi.org/10.1016/j.cell.2017.01.017
https://doi.org/10.3389/fonc.2020.579445
https://doi.org/10.3389/fonc.2020.579445
https://doi.org/10.1126/science.3287615
https://doi.org/10.7717/peerj.9038
https://doi.org/10.1038/s41586-019-1564-x
https://doi.org/10.1038/s41586-019-1564-x
https://doi.org/10.1038/s41586-019-1563-y
https://doi.org/10.1038/nature24014
https://doi.org/10.1038/nature24014
https://doi.org/10.1016/j.cell.2015.04.012
https://doi.org/10.1038/s42003-020-0916-2
https://doi.org/10.1038/s42003-020-0916-2
https://doi.org/10.7150/jca.27735
https://doi.org/10.1186/s41181-019-0078-z
https://doi.org/10.1186/s41181-019-0078-z
https://doi.org/10.1038/s41419-020-03294-z
https://doi.org/10.1186/s12951-019-0462-6
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-neuroscience#articles

	Development and Verification of Glutamatergic Synapse-Associated Prognosis Signature for Lower-Grade Gliomas
	Introduction
	Data and Methods
	Public Data and Samples Collection
	Patient Samples
	Obtaining Glutamatergic Synapse-Related Gene Sets
	Identify Differentially Expressed Genes Between Lower-Grade Glioma and Normal Tissues
	Protein–Protein Interaction Network Analysis
	Genomic Alterations of 39 Glutamatergic Synapse-Related Genes
	Construction of Glutamatergic Synapse-Related Risk Signature
	Principal Components Analysis
	Prognostic Analysis of Glutamatergic Synapse-Related Risk Signature
	Clinicopathological Relevance of the Glutamatergic Synapse-Related Risk Signature
	Tumor-Infiltrating Immune Cells Profiles
	Single-Sample Gene Sets Enrichment Analysis
	Mutational Status Analysis
	Gene Set Variation Analysis
	Verification of Hub Genes of Glutamatergic Synapse-Related Risk Signature
	RNA Extraction and Quantitative Real-Time PCR

	Results
	Genetic Alterations of Glutamatergic Synapse-Related Genes in Lower-Grade Glioma
	Construction and Verification of Glutamatergic Synapse-Related Risk Signature
	The Risk Score Could Be an Independent Factor to Predict the Overall Survival of Lower-Grade Glioma Patients
	Relationship Between Glutamatergic Synapse-Related Risk Signature and the Clinicopathological Features
	Tumor-Infiltrating Immune Cells Profiles
	Association Between Risk Score and Immune Modulators
	The Association of Risk Score With Mutational Status
	Gene Set Variation Analysis
	Identification of Hub Genes of Glutamatergic Synapse-Related Risk Signature

	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


