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Autism spectrum disorder (ASD) is a long-standing neurodevelopmental condition with

prominent effects on social behavior of affected children. This disorder has been linked

with neuroinflammatory responses. NF-κB has been shown to affect these responses in

the orbitofrontal cortex of patients with ASD, thus being implicated in the pathogenesis of

ASD. We measured expression of some NF-κB-associated lncRNAs and mRNAs (DILC,

ANRIL, PACER, CHAST, ADINR, DICER1-AS1, HNF1A-AS1, NKILA, ATG5 and CEBPA)

in the peripheral blood of ASD kids vs. healthy children. Expression quantities of ADINR,

ANRIL, DILC, NKILA and CHAST were meaningfully higher in ASD cases compared with

healthy kids (Posterior Beta = 1.402, P value < 0.0001; Posterior Beta = 2.959, P

value < 0.0001; Posterior Beta = 0.882, P value = 0.012; Posterior Beta = 1.461, P

value < 0.0001; Posterior Beta = 0.541, P value = 0.043, respectively). The Bonferroni

corrected P values for these lncRNAs remained significant except for CHAST and DILC.

Expression levels of other genes were not considerably different between cases and

controls. Expressions of ATG5, DICER-AS1 and DILC were correlated with age of ASD

patients (P< 0.0001). Among ASD cases, the most robust correlation has been detected

between ADINR and NKILA (r = 0.87, P < 0.0001). Expression of none of genes has

been correlated with age of healthy children. Among this group of children, expression

levels of ADINR and CHAST were robustly correlated (r = 0.83, P < 0.0001). ANRIL

had the greatest AUC value (AUC = 0.857), thus the best diagnostic power among the

assessed genes. NKILA ranked the second position in this regard (AUC = 0.757). Thus,

NF-κB-associated lncRNAs might partake in the pathogenesis of ASD.
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INTRODUCTION

Autism spectrum disorder (ASD) is a long-standing
neurodevelopmental condition pigeonholed by defects in
social abilities and speaking communication and the occurrence
of stereotypic behaviors and interests (American Psychiatric
Association, 2013). A wide range of genetic, environmental,
neurological, and immune-related parameters partake in the
etiology of ASD (Neuhaus et al., 2010). Growing evidence
suggests the influence of inflammatory responses in the anterior
areas of the neocortex in the pathophysiology of ASD (Pardo
et al., 2005; Vargas et al., 2005). Moreover, stimulation of
microglia and astrocytes in the brain regions correlated with
cognitive activities has led to neuroinflammatory responses in
these patients (Anderson et al., 2008). Nuclear factor κ-light-
chain-enhancer of activated B cells (NF-κB) has been shown to
regulate response to extracellular stress and expression amounts
of pro-inflammatory cytokines (Pahl, 1999; Perkins, 2004).
A previous study has reported aberrant levels of NF-κB in
orbitofrontal cortex of patients with ASD especially in extremely
activated microglia and its role in the molecular cascade resulting
in the neuroinflammation, particularly in inhabitant immune
cells in brain areas linked with the behavioral changes in ASD

(Young et al., 2011). Moreover, expression of IKKα kinase

which phosphorylates IκBα thus enhances the inhibitory impact

of this factor on NF-κB, has been remarkably elevated in the

cerebellum of patients with ASD. Besides, the expression of

NF-κB and its phosphorylation at Ser536 have been considerably

TABLE 1 | Information about primers and the corresponding amplified region.

Name Type Sequence Primer Length PCR Product Length

NKILA-F lncRNA AACCAAACCTACCCACAACG 20 108

NKILA-R ACCACTAAGTCAATCCCAGGTG 20

ADINR-F lncRNA AGGGTGGATGTGCTGTGATGAAGA 24 98

ADINR-R AGTCCATAACACCTCCGCAGACAA 24

CEBPA-F mRNA ATTGCCTAGGAACACGAAGCACGA 24 161

CEBPA-R TTTAGCAGAGACGCGCACATTCAC 24

DICER1-AS1-F lncRNA CGAAGAAATGGAATAACTTCCAAC 24 125

DICER1-AS1-R TTGGTCCAAACACAGAAGATC 21

ATG5-F mRNA TTCGAGATGTGTGGTTTGGAC 21 134

ATG5-R CACTTTGTCAGTTACCAACGTCA 23

HNF1A-AS1-F lncRNA TCAAGAAATGGTGGCTAT 18 148

HNF1A-AS1-R GCTCTGAGACTGGCTGAA 18

CHAST-F lncRNA GCAGAGGGTGCCAACTTGTA 20 109

CHAST-R TCTCAGGGAAATCAGATTGCGG 22

B2M-F mRNA AGATGAGTATGCCTGCCGTG 20 105

B2M-R GCGGCATCTTCAAACCTCCA 20

ANRIL-F lncRNA TGCTCTATCCGCCAATCAGG 20 108

ANRIL-R GCGTGCAGCGGTTTAGTTT 19

DILC-F lncRNA GGAAAGGAGAGAAGAATGG 19 144

DILC-R GTAAGATGTGGTTGTCGG 18

PACER-F lncRNA TGGTCCTAAGCAGTTACCCTGTA 23 177

PACER-R ACCAAAATAATCCACGCATCAGG 23

altered in the cerebellum and cortex of ASD patients and
animal model of this disorder (Malik et al., 2011). We have
newly identified dysregulation of some of the NF-κB-associated
genes and lncRNAs in the peripheral blood of patients with
schizophrenia vs. healthy controls (Safa et al., 2020a). In the
current project, we measured expression of these lncRNAs and
mRNAs (DILC, ANRIL, PACER, CHAST, ADINR, DICER1-AS1,
HNF1A-AS1, NKILA, ATG5 and CEBPA) in the peripheral blood
of patients with ASD vs. healthy children. LncRNAs are a group
of regulatory transcripts with sizes more than 200 nt to several
kbs. These transcripts have influential effects on expression
of genes through modulating chromatin structure, serving as
enhancers for transcription, serving as molecular decoys to limit
availability of other regulatory molecules and making scaf-folds
for recruitment of other biomolecules (Fang and Fullwood,
2016). A bulk of evidence has shown particular involvement of
these transcripts in the pathoetiology of neurodevelopmental
diseases (Roberts et al., 2014).

MATERIALS AND METHODS

ASD Patients and Normally Developed
Children
The current research project was accomplished using the blood
samples acquired from 30 ASD children (male/female ratio:
19/11) with mean age of 6 years (Standard deviation = 1.39).
Forty-one age- and sex-matched healthy children (male/female
ratio: 30/11) from the same ethnic group were selected as
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controls. ASD status was diagnosed by a psychiatric according to
the DSM-V (American Psychiatric Association, 2013). Children
having other neuropsychiatric, metabolic or immune-related
conditions were omitted from the project. None of the ASD
patients had a comorbid disorder such as attention deficit
hyperactive disorder. Children registered as controls had no
personal or familial history of neuropsychiatric disorders or
developmental problem. Written informed consent forms were
signed by all parents. The study protocol was approved by the
ethical committee of Shahid Beheshti University of Medical
Science and all methods were performed in accordance with
the relevant guidelines and regulations (IR.SBMU.RETECH.
REC.1399.740).

Evaluation of Transcript Levels of Genes
RNA was retrieved from blood specimens using the extraction
kit (Hybrid-RTM Blood RNA) purchased fromGeneAll Company
(Seoul, South Korea). Next, 10 µg of extracted RNA specimens
was converted to cDNA using the BioFact RT kit (Seoul, South
Korea). Expression of genes was quantified in all specimens
using the RealQ Plus 2x Master Mix (Amplicon, Denmark)
and the primers which are shown in Table 1. All experiments
were performed in duplicate. Each PCR run included a negative
control (no template control) for each set of primers. Based
on our previous studies validating the constant levels of B2M
gene in the blood (Fallah et al., 2019), expression quantities of
B2M gene were measured to normalize the expression data of
target genes.

Statistical Strategies
Statistical methods were executed in Stan, “ggplot2,” “brms”
and pROC packages in the R v.4 environment. The Spearman
correlation coefficients were calculated to judge the correlation
between expressions of the selected genes. Expression of these
genes were compared betweenASD children and normal children
using the Bayesian regression model, the asymmetric Laplace
family prior with 2,000 burnouts and 5,000 iterations. Rhat,
posterior predictive plots and Loo were used. P values were
corrected for multiple comparisons. To obtain the Bonferroni
corrected P value, the original α-values were divided by the
quantities of analyses on the dependent variable. Receiver
operating characteristic (ROC) curves were illustrated to evaluate
the diagnostic power of genes.

RESULTS

Expression quantities of ADINR, ANRIL, DILC, NKILA and
CHAST were meaningfully higher in ASD cases compared with
healthy kids (Posterior Beta = 1.402, P value < 0.0001; Posterior
Beta= 2.959, P value< 0.0001; Posterior Beta= 0.882, P value=
0.012; Posterior Beta= 1.461, P value < 0.0001; Posterior Beta=
0.541, P value= 0.043, respectively). The Bonferroni corrected P
values for these lncRNAs remained significant except for CHAST
and DILC.

Expression levels of other genes were not considerably
different between cases and controls. Table 2 reports the
detailed parameters obtained from Bayesian regression model

TABLE 2 | Detailed parameters obtained from Bayesian regression model for

comparison of gene expression between ASD children and control subjects

(Expression Ratio: case/control; Gender: girl/boy; P-Value was calculated from

Median regression model using bootstrap).

Posterior Beta of ER SE P-Value 95% CrI for ER

CEBPA

Group −0.122 0.56 0.409 [−1.21, 0.92]

Gender −0.019 0.41 0.801 [−0.85, 0.77]

Age (>6 y to <6 y) 0.903 0.42 0.128 [0.1, 1.73]

ADINR

Group 1.402 0.33 <0.0001 [0.73, 2.03]

Gender −0.004 0.33 0.851 [−0.65, 0.61]

Age (>6 y to <6 y) 0.208 0.41 0.717 [−0.61, 1.04]

ANRIL

Group 2.959 0.47 <0.0001 [2.07, 3.91]

Gender 0.35 0.45 0.53 [−0.5, 1.23]

Age (>6 y to <6 y) −0.033 0.53 0.671 [−1.04, 1.03]

ATG5

Group −0.363 0.23 0.078 [−0.81, 0.08]

Gender 0.423 0.22 0.198 [−0.01, 0.84]

Age (>6 y to <6 y) 0.44 0.25 0.249 [−0.05, 0.95]

DICER-AS1

Group −2.076 0.44 0.603 [−2.87, −1.13]

Gender 0.149 0.43 0.568 [−0.7, 0.98]

Age (>6 y to <6 y) 0.102 0.43 0.519 [−0.65, 1]

DILC

Group 0.882 0.32 0.012 [0.23, 1.5]

Gender 0.146 0.34 0.737 [−0.53, 0.84]

Age (>6 y to <6 y) −0.726 0.61 0.702 [−1.95, 0.44]

HNF1A-AS1

Group 0.578 0.43 0.177 [−0.2, 1.47]

Gender −0.129 0.45 0.732 [−1.07, 0.7]

Age (>6 y to <6 y) −0.071 0.49 0.743 [−1.06, 0.9]

NKILA

Group 1.461 0.36 <0.0001 [0.79, 2.18]

Gender 0.112 0.39 0.536 [−0.69, 0.85]

Age (>6 y to <6 y) 0.246 0.47 0.983 [−0.74, 1.1]

PACER

Group −0.013 0.46 0.805 [−0.96, 0.89]

Gender −0.197 0.44 0.461 [−1.05, 0.61]

Age (>6 y to <6 y) −0.128 0.47 0.738 [−1.06, 0.78]

CHAST

Group 0.541 0.27 0.043 [0.003, 1.09]

Gender 0.132 0.3 0.788 [−0.46, 0.73]

Age (>6 y to <6 y) 0.216 0.33 0.449 [−0.39, 0.9]

for evaluation of gene expression between ASD children and
control subjects.

Figure 1 demonstrates the levels of assessed genes amongASD
children and normal children.

Correlation Between Expressions of Genes
Expressions ofATG5,DICER-AS1 andDILC were correlated with
age of ASD patients (P < 0.0001). Among ASD cases, the most
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FIGURE 1 | Relative levels of assessed genes among ASD children and healthy children.

considerable correlation has been detected between ADINR and
NKILA (r = 0.87, P < 0.0001) (Figure 2).

Expression of none of genes has been correlated with age
of healthy children. Among this group of children, expression
levels of ADINR and CHAST were robustly correlated (r = 0.83,
P < 0.0001) (Figure 3).

ROC Curves
ANRIL had the greatest AUC value (AUC = 0.857), thus the
best diagnostic power among the assessed genes. NKILA ranked
the second position in this regard (AUC = 0.757). Figure 4
displays the plotted ROC curves for distinguishing ASD from
healthy status.

DISCUSSION

NF-κB has an essential role in the regulation of immune
responses which partake in the pathogenesis of ASD. Based on

our recent experience in patients with schizophrenia regarding
the possible role of NF-κB-related genes, we hypothesized that
these genes might also be involved in ASD. This hypothesis has
been supported by the existence of inflammatory responses at the
cross point of shared underlying mechanisms for schizophrenia
and autism (Meyer et al., 2011). Notably, we detected over-
expression of ADINR, ANRIL, DILC, NKILA and CHAST in the
peripheral blood of ASD cases compared with controls. However,
the Bonferroni corrected P values for CHAST and DILC did not
remain significant. ADINR is an lncRNA which is transcribed
from a region upstream of the CEBPA gene, regulating its
expression. This lncRNA binds with PA1 and recruits histone
methyl-transferase complexes to alter histone epigenetic marks
in the CEBPA locus (Xiao et al., 2015). Although the role of
CEBPA in the pathogenesis of ASD has not been elucidated yet,
CEBPA has functional interactions with the ASD-related protein
CHD8 (Kita et al., 2018). Moreover, CEBPA has been shown
to modulate nfkb1 expression and relocate histone deacetylases
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FIGURE 2 | Correlation between expressions of genes among patients with ASD.

from NF-κB p50 homodimers to activate expression of NF-κB
target genes (Paz-Priel et al., 2011). Therefore, ADINR might
participate in the pathogenesis of ASD through modulating
CEBPA or CHD8 activity or expression levels. We have recently
demonstrated a trend toward association between some ANRIL
haplotypes and risk of ASD among Iranians (Safa et al., 2020b).
Moreover, ANRIL has an acknowledged role in the regulation
of immune responses as an element of NF-κB pathway (Zhou
et al., 2016). DILC has an appreciated role in the pathogenesis
a the immune-mediated disorder rheumatoid arthritis through
modulating IL-6 expression (Wang et al., 2019). IL-6 is possibly
involved in the pathogenesis of ASD since its expression has
been elevated IL-6 is increased in the cerebellum of patients with
ASD and it changes adhesion and migration of neurons and
modulates development of synapses (Wei et al., 2011).NKILA has
been shown to decline TNF-α-associated inflammatory responses

(Han et al., 2020). Notably, cytokine profiling has recognized
TNF-α as an important dysregulated cytokine in patients with
ASD (Xie et al., 2017). Finally, CHAST over-expression has also
been detected in patients with schizophrenia (Safa et al., 2020a).
Expression levels of other genes were not considerably different
between cases and controls.

It is worth mentioning that levels of lncRNAs circulating in
peripheral blood do not necessarily correlate with their levels
in the brain. Since brain tissues are not available from these
patients, we could not evaluate correlations between these two
sets of samples.

Notably, expressions of ATG5, DICER-AS1 and DILC were
correlated with age of ASD patients, but not healthy subjects,
indicating different impact of age-related factors among patients
and healthy controls. Previous studies have reported age-
dependent changes in genes expressions in the brain tissues
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FIGURE 3 | Correlation between expressions of genes among healthy controls.

of ASD cases. For instance, Chow et al. have shown altered
expressions of pathways controlling cell number, cortical
patterning, and differentiation in prefrontal cortex samples of
young ASD cases. On the other hand, signaling and repair
pathways have been found to be dysregulated in prefrontal
cortex samples of adult ASD cases. They have concluded that
age-dependent alterations in gene signature in ASD might
represent distinctive abnormal processes in different phases of
neurodevelopment (Chow et al., 2012). Moreover, experiments in
lymphoblastoid cell lines have shown an obvious inconsistency
between neuroanatomical and cellular aberrations detected in
ASD cases at younger ages and molecular abnormalities at
higher age (Ansel et al., 2017). Thus, identification of age-related
changes in gene expression might facilitate recognition of the
most important biomedical pathways in pathoetiology of ASD in
each age.

The most robust correlations have been detected between
ADINR and NKILA among cases, and between ADINR and
CHAST among healthy persons, indicating the impact of ASD on
modulation of the correlation between NF-κB-associated genes.

Finally, we appraised the suitability of genes in distinguishing
between ASD and healthy status. ANRIL had the greatest AUC
value, thus the best diagnostic power among the assessed genes.
NKILA ranked the second position in this regard. Thus, NF-κB-
associated lncRNAs might partake in the pathogenesis of ASD
and can be used as diagnostic markers in ASD. However, the
AUC data need to be replicated in a larger sample in which
ASD diagnosis is established using a standardized diagnostic tool
such as the ADOS or ADI-R before it can be clinically useful.
Moreover, functional experiments are desired to appraise the
molecular cascade of involvement of NF-κB-associated lncRNAs
in ASD.
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FIGURE 4 | Receiver Operating Characteristics (ROC) curves for appraisal of diagnostic value of ADINR, ANRIL, DILC, NKILA and CHAST in ASD.
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