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Frontotemporal lobar degeneration (FTLD), also known as frontotemporal dementia
(FTD), results in a progressive decline in executive function, leading to behavioral
changes, speech problems, and movement disorders. FTD is the second most common
cause of young-onset dementia affecting approximately 50-60,000 Americans. FTD
exists in familial and sporadic forms, with GRN progranulin and C9orf72 mutations
being the most common causes. In this study, we compared the sporadic and familial
transcriptome within the cerebellum, frontal cortex, hippocampus, and Brodmann'’s
area 8 of patients with FTD to determine genes and pathways involved in the disease
process. Most dysregulated genes expression occurred in the frontal cortex and
Brodmann’s area 8 for genetic and sporadic forms of FTD, respectively. A meta-analysis
revealed 50 genes and 95 genes are dysregulated in at least three brain regions in
patients with familial mutations and sporadic FTD patients, respectively. Familial FTD
genes centered on the Wnt signaling pathway, whereas genes associated with the
sporadic form of FTD centered on MAPK signaling. The results reveal the similarities and
differences between sporadic and familial FTD. In addition, valproic acid and additional
therapeutic agents may be beneficial in treating patients with FTD.

Keywords: frontotemporal lobars degeneration, frontotemporal dementia, neurodegeneration, Wnt signaling,
MAPK signaling, valproic acid

INTRODUCTION

Frontotemporal Lobar Degeneration (FTLD), also known as frontotemporal dementia (FTD), is a
spectrum of clinical syndromes characterized by the progressive neurodegeneration of the frontal
and temporal lobes of the brain. Damage to these brain regions results in behavioral changes,
deficits in language and executive functions (Bott et al., 2014; Bang et al., 2015; Coyle-Gilchrist
etal,, 2016; Olney et al., 2017). FTD is the third most common cause of dementia after Alzheimer’s
disease and dementia with Lewy bodies in individuals 65 years and younger, with a prevalence of
15-22/100,000 individuals (Coyle-Gilchrist et al., 2016).

FTD is a complex disorder with a highly clinical, genetic, and pathological heterogeneity. FTD
has three clinical subtypes (Bott et al., 2014; Olney et al., 2017; Santiago et al., 2020). The behavioral
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variant FID (Bv-FID) is the most prevalent, and patients
have behavioral deficits and loss of social functioning (Bott
et al., 2014). In addition, there are two pathological variants of
FTD, one with tau positive inclusions (FTD-tau) and the more
prevalent form that is tau and alpha-synuclein negative (FTD-U)
(Chen-Plotkin et al., 2008; Prasad et al., 2019).

In the context of genetics, about 40% of FTD patients
are familial, 15% of which have an autosomal dominant
inheritance pattern. Mutations in over 20 genes have been
reported in FTD patients. For instance, mutations in progranulin
(GRN), microtubule-associated protein tau (MAPT), and
chromosome 9 open reading frame 72 (C9ORF72) are the
most common (Woollacott and Rohrer, 2016; Capozzo
et al, 2017). Other mutations including fused in sarcoma
gene (FUS), TAR-DNA binding protein (TARDBP), valosin-
containing protein (VCP), charged multivesicular protein 2B
(CHMP2B), TATA box binding protein (TBP), sequestosome
1 (SQSTMI1), ubiquilin 2 (UBQLN2), and optineurin
(OPTN) have been recognized in less than 5% of the cases
(Greaves and Rohrer, 2019).

Despite the progress in defining clinical subtypes and
identifying genetic factors, the molecular mechanisms underlying
the pathogenesis of FTD remain poorly understood. Several
transcriptomic studies have provided insights into some of
the dysregulated molecular pathways in FTD. For example,
transcriptomic and pathway analyses of the frontal cortex
showed marked differences in biological pathways between
FTD patients with GRN (+) and without GRN (-) progranulin
mutations (Chen-Plotkin et al, 2008). Upregulated genes
in FTD GRN (-) subjects associated with lipid metabolism
and downregulated genes were involved in the MAPK
signaling pathway. Furthermore, upregulated genes in FTD
GRN (+) were associated with TGF beta signaling and cell
communication, whereas downregulated genes were related to
calcium signaling.

Transcriptomic and network biology approaches have been
key in the identification of dysregulated pathways and potential
therapeutic targets in neurodegenerative diseases (Santiago and
Potashkin, 2014; Santiago et al., 2017). Previous work in network-
based studies in FTD has unveiled novel disease mechanisms.
For example, analysis of a weighted protein-protein interaction
network in FTD identified DNA damage response and cell waste
disposal as important mechanisms of disease (Ferrari et al., 2017).
Similarly, gene co-expression network analysis revealed that
FTD genes were enriched in DNA metabolism, transcriptional
regulation, and DNA protection in FTD patients’ frontal and
temporal cortices (Ferrari et al., 2016).

In this study, we compared the transcriptomic profiles from
different brain regions, including the cerebellum, frontal cortex,
hippocampus, and Brodmann’s area 8 from sporadic and familial
FTD subjects to identify potential mechanisms of disease and
therapeutic targets, particularly pathways that may shed light
on the distinction between the familial and sporadic subtypes
(Chen-Plotkin et al., 2008; Olney et al., 2017). We incorporated
network, pathway, and transcription factor analyses as a means
of identifying dysregulated genes in pathways within FTD as well
as in the familial and sporadic subtypes.

MATERIALS AND METHODS

Database Mining, Curation, and

Meta-Analysis

The NCBI GEO database' and ArrayExpress database’ were
searched on June 2020 for studies in which transcriptomic data
was available from FTD patients. Three arrays containing samples
from patients’ brains (E-MTAB-6189, GSE13162 and E-MTAB-
656) were identified. The microarrays were curated using the
database BaseSpace Correlation Engine (BSCE, Illumina, Inc.,
San Diego, CA, United States). Unfortunately, the dataset
E-MTAB-656 did not meet the quality standards required by
the BSCE curation methods. The meta-analysis tool in BSCE
used a normalized ranking approach, allowing the elimination
of any potential biases introduced by the use of different array
platforms or the sample size. Using BSCE for differential gene
expression analysis and meta-analysis, negative values, if any,
were replaced with the smallest positive number in the dataset.
Genes whose mean normalized test and control intensities were
both less than the 20th percentile of the combined normalized
signal intensities were removed. The activity of the gene in
each dataset and the number of datasets in which the gene is
differentially expressed were used to determine the scoring and
ranking of each gene. The analysis included only genes with an
absolute fold-change of 1.2 or greater and a p-value of 0.05 or less.
BSCE computes the overlapping p-values between different gene
expression datasets using a “Running Fisher” algorithm. Post
hoc analysis was not performed. Unfortunately, the demographic
and clinical information about the study participants publicly
available was limited. E-MTAB-6189 sample information only
included the age and the post-mortem interval (PMI). The
patient information from GSE13162 included the number of male
and female patients. Age, sex, and PMI to autopsy were not
significantly different between cases and controls. The controls
used in GSE13162 were defined as neurologically normal controls
and were sampled from the University of Pennsylvania Center
for Neurodegenerative Disease Research Brain Bank. The FTD
cases were reviewed by a board-certified neuropathologist. In
general, the control samples used in these studies were defined
as neurologically healthy. Information about drugs, BMI, and
comorbidities were not available. The sample population is
summarized in Table 1.

Pathway Enrichment Analysis

Entrez gene identifiers from the genes identified in the differential
gene expression analysis and meta-analyses were imported into
NetworkAnalyst for network and pathway analyses (Zhou et al.,
2019). The Kyoto Encyclopedia of Genes and Genome (KEGG)
pathway database was used as annotation source (Kanehisa and
Goto, 2000). The pathways are ranked according to the number
of hits and lowest p-value, with the two factors demonstrating
a linear relationship. A p-value of less than 0.05 was considered
significant. Post hoc analysis was not performed.

Thttps://www.ncbi.nlm.nih.gov/gds
Zhttps://www.ebi.ac.uk/arrayexpress/
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TABLE 1 | Sample population.

Gender
(Male/Female)

Median age (IQR) PMI (IQR)

GSE13162

Control 7/4 67 (54-75) 7 (5-14.5)
Familial (GRN + mutation) 3/4 71 (67-77) 6 (56-7)
Sporadic (GRN- mutation) 4/6 64 (53-72) 7.5 (3-11)
E-MTAB-6189

Control NA 66.5 (63-74) 5 (3.5-6.5)
Familial NA 67.5 (58-80) 10 (5-12)
Sporadic NA 73.5 (65-77) 7.5 (5-13)

IQR: Interquartile range (25th-75th percentile). PMI: Postmortem interval in hours.
NA, Non-available.

Gene-Transcription Factors Interaction
Analysis

Gene-transcription factors interactome was performed in
NetworkAnalyst. Transcription factor and gene target data were
derived from the Encyclopedia of DNA Elements (ENCODE)
ChIP-seq data, ChIP Enrichment Analysis (ChEA), or JASPAR
database (Lachmann et al, 2010; Wang et al., 2013; Fornes
et al., 2020). ENCODE uses the BETA Minus Algorithm in
which only peak intensity signal < 500 and the predicted
regulatory potential score < 1 is used. ChEA transcription factor
targets database inferred from integrating literature curated
Chip-X data. JASPAR is an open-access database of curated,
non-redundant transcription factor-binding profiles. A Venn
diagram analysis was performed with the transcription factors
identified with each database. Transcription factors were ranked
according to network topology measurements, including degree
and betweenness centrality.

Gene-miRNA Interaction Analysis

The gene-miRNA  interactome was performed in
NetworkAnalyst. The Gene-miRNA interactome was carried
out from comprehensive experimentally validated miRNA-gene
interaction data collected from TarBase v.8.0 and miRTarBase
v.8.0 (Chou et al., 2016, 2018; Karagkouni et al., 2018). miRNAs
were ranked according to network topology measurements such
as degree and betweenness centrality. Venn diagram analysis
was used to identify the shared and unique set of miRNAs
between familial and sporadic FTD patients. Biological and
functional analysis of miRNAs was performed using miRNet 2.0

(Chang et al., 2020). The pathways are ranked according to the
number of hits and lowest p-value. A p-value of less than 0.05
was considered significant. Post hoc analysis was not performed.
This network software is publicly available and can be accessed at
https://www.mirnet.ca/miRNet/upload/MirUploadView.xhtml.

Gene-Chemical Analysis

Protein-chemical associated analysis performed in
NetworkAnalyst, which wuses the literature curated gene-
chemical database Comparative Toxicogenomics, a genomic
resource available to the public that is derived from genes and
proteins of toxicologic significance to humans (Mattingly et al.,
2003). Chemicals were ranked according to network topology
measurements, degree, and betweenness centrality.

was

RESULTS

Database Mining for Brain

Transcriptomic Studies

The Array Express and NCBI GEO databases were searched to
identify studies that contained expression data from postmortem
brain tissue of FID patients and age-matched controls. Two
independent studies that met our inclusion criteria were
identified. Transcriptomic data obtained included sporadic
and familial FTD data from four brain regions (frontal
cortex, cerebellum, hippocampus, and Brodmann’s area 8). The
description of the datasets analyzed in this study is presented in
Table 2. The overall analysis strategy is shown in Figure 1.

Analysis of Differentially Expressed
Genes in Familial and Sporadic
Frontotemporal Dementia Individuals

To identify consensus among the different transcriptomic
datasets from FTD patients, we performed a meta-analysis
using BSCE (Supplementary Table 1). Meta-analysis of the four
regions of familial or sporadic FTD microarrays was performed
using only the set of dysregulated genes in the same direction with
a fold-change of 1.2 or more (Figure 2). There were no shared
genes between the four brain areas in the transcriptomic profiles
from familial FTD subjects. Meta-analysis of the transcriptomic
profiles from familial FTD identified 50 genes dysregulated in at
least 3 out of 4 studies, including 9 downregulated genes and
41 upregulated genes (Figure 3 and Supplementary Table 2).

TABLE 2 | Datasets used in the study.

Arrays Platform Conditions Brain region #of Patients (Familial | Gene features (Familial |
sporadic) sporadic)
GSE13162 Affymetrix human genome FTD patients with/without Frontal cortex 106 2921|5835
U133A 2.0 Array progranulin (GRN) mutations
(i.e., familial vs. sporadic)
Cerebellum 6|4 273911018
Hippocampus 815 7951543
E-MTAB-6189 A-GEOD-22844 Affymetrix ~ Familial and sporadic FTD with Brodmann area 8 10110 635 | 4171

human clarion D assay C90RF72 repeat expansion
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Likewise, a meta-analysis of sporadic FTD transcriptomic profiles
identified 4 genes downregulated in the four brain areas:
protocadherin 1 (PCDH1), mitogen-activated protein kinase 11
(MAPKI11), ectonucleoside triphosphate diphosphohydrolase 4
(ENTPD4), and programmed cell death 5 (PDCD5). In addition,
91 genes were dysregulated in 3 out of the 4 brain areas, including
72 downregulated genes and 19 upregulated genes (Figure 4
and Supplementary Table 2). Interestingly, 3 genes were shared
between the familial and sporadic analysis: F-box and leucine-
rich repeat protein 8 (FBXLS), versican (VCAN), and sarcospan
(SSPN) (Figures 3, 4).

Pathway Analysis of Familial and
Sporadic Frontotemporal Dementia

Genes

Biological and functional analysis of the familial and
sporadic genes was performed using the KEGG database
in NetworkAnalyst. Pathway analysis identified 11 and 13
dysregulated pathways in familial and sporadic FTD, respectively
(Figure 5). All the pathways identified were unique to each
FTD. Wnt signaling pathway was the most represented pathway
in familial FTD with 3 genes associated (TBL1X, GPC4, and
CREBBP). Sporadic FTD genes were predominantly associated
with the MAPK signaling pathway. Seven sporadic FID
genes were linked to the MAPK signaling pathway (MAPK11,
RASGRP1, CACNA1I RPSKA4, TAOK2, and NTRK2).

Gene-Transcription Factors Interaction

Analysis

To identify the main regulators of familial and sporadic
FTD genes, transcription factor analysis was performed on
NetworkAnalyst using three different databases (ENCODE,
ChEA, and JASPAR). Venn diagram analysis revealed 13
shared transcription factors regulating the familial FTD genes
(Figure 6A and Supplementary Table 3). Transcription factors
CEBPB, GATA3, KLF4, and MYB were identified as unique
master regulators of familial FTD genes. These transcription
factors have been implicated in Alzheimer’s disease (Wang et al.,
2019; Ndoja et al., 2020). To the best of our knowledge, these
transcription factors have not been investigated in FTD models.
Likewise, 17 transcription factors were identified as regulating the
sporadic FTD genes (Figure 6B and Supplementary Table 3).
In addition, 9 transcription factors were shared between familial
and sporadic FTD datasets (Figure 6C). Interestingly, sporadic
FTD genes were regulated by 8 unique transcription factors,
including CTCEF, IRF1, MEF2A, REST, SREBF1, SREBF2, STAT3,
and ZFX. Among these factors, CTCE, MEF2A, and STAT3 have
been associated with Alzheimer’s, Huntington’s, and Parkinson’s
diseases (Gonzalez et al., 2007; De Souza et al., 2016; Wu et al.,
2017). Transcription factor REST has been associated with the
preservation of cognition in Alzheimer’s disease, dementia with
Lewy bodies, and FTD (Lu et al., 2014).

Gene-miRNA Interaction Analysis
To further study the regulation of the FTD genes expression,
a gene-miRNA interaction network analysis was performed in

Meta-analysis of sporadic and familial FTD
within the 4 brain regions

4

Network analysis of differently expressed
familial and sporadic FTD genes
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FIGURE 1 | Flowchart of the study. The ArrayExpress and NCBI GEO
databases were searched to identify studies that contained expression data
from postmortem brain tissue of FTD patients. Microarray data from familial
and sporadic FTD patients were curated, and meta-analysis was performed
using the BaseSpace Correlation Engine (BSCE, lllumina, Inc., San Diego, CA,
United States). The genes were then analyzed for functional pathways,
transcription factors, miRNA, and chemical associations.

NetworkAnalyst using 2 different databases (TarBase v.8.0. and
miRtarBase v.8.0.). Venn diagram analysis showed that 330 and
338 miRNAs were shared between the databases that potentially
regulate the familial and sporadic FTD genes, respectively
(Figure 7 and Supplementary Table 4). In addition, 199 miRNAs
were shared between the familial and sporadic FTD analyses
(Supplementary Table 4).

To investigate the functional role of miRNAs in familial and
sporadic FTD, we performed a pathway analysis using miRNet
2.0, a web-based platform for miRNAs functional analysis
(Chang et al., 2020). Functional analysis of the top miRNAs
regulating familial FTD genes associated predominantly with
the immune system, angiogenesis, virus replication, and aging
whereas miRNAs regulating sporadic FTD genes were enriched in
pathways related to cell cycle, cell division, virus replication, cell
death, hematopoiesis, T cell differentiation, and cell proliferation
(Supplementary Table 5).
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least 3 out of the 4 arrays for sporadic FTD (C,D). Genes dysregulated in all 4 brain areas are shown in red, and those dysregulated in 3 out of 4 brain areas are
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Protein-Chemical Interaction Analysis

A protein—chemical interaction network analysis revealed drugs
potentially helpful in treating familial and sporadic FTD. 370 and
504 chemicals were identified from familial and sporadic genes,
respectively. The top 10 drugs associated with each FTD were
identified in Figure 8. 223 chemicals were shared between the
familial and sporadic FTD analyses (Supplementary Table 6).

DISCUSSION

Meta-Analysis of Familial and Sporadic

Frontotemporal Dementia Microarrays

A meta-analysis of the 4 brain regions of familial FITD
microarrays identified 50 genes, 41 genes downregulated and
9 upregulated, in 3 out of the 4 studies. Annexin 6 (ANXAG6)
and adipocyte enhancer binding protein 1 (AEBP1) were
the most significantly downregulated and upregulated genes,
respectively, in familial FTD subjects compared to non-demented

controls. Similarly, analysis of sporadic FTD identified 4 genes
downregulated in the four brain areas: PCDH1, MAPKI11,
ENTPD4, and PDCD5. Although these genes have not been
directly implicated in FTD, some have been associated with
neurodegeneration. For example, ANXA6 interacts with tau
and contributes to tau axonal localization (Gauthier-Kemper
et al, 2018). AEBPI is a transcriptional repressor involved
in adipogenesis, macrophage cholesterol homeostasis, and
activation of the NFKB pathway (Majdalawieh et al., 2020).
Further, AEBP1 is associated with Braak staging and the degree
of amyloid deposition, suggesting it is a marker of disease
progression in Alzheimer’s disease (AD) (Shijo et al., 2018; Piras
etal., 2019).

Interestingly, 3 genes were shared between the familial and
sporadic FTD subjects, including FBXL8, VCAN, and SSPN.
Genetic variants in VCAN are associated with cerebrovascular
disease and dementia (Rutten-Jacobs et al., 2018). In addition,
VCAN expression is dysregulated in ALS animal models
(Mizuno et al, 2008; Forostyak et al., 2014). SSPN is
differentially expressed in the blood of Alzheimer’s disease
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FIGURE 3 | Network analysis from familial FTD genes. Network analysis of the 50 genes dysregulated in sporadic FTD was performed using GeneMANIA in
Cytoscape v3.8.0. Input genes are shown in black circles. Purple, blue, and pink lines represent co-expression, co-localization, and physical interactions,
respectively. FBXL8, VCAN, and SSPN were dysregulated in both familial and sporadic FTD.

patients (Leandro et al., 2018). The involvement of these genes,
however, in FTD is unknown and warrants further investigation.

Biological and Functional Analysis of
Familial and Sporadic Frontotemporal

Dementia Genes

Biological and functional analysis of dysregulated genes in
familial FTD identified several pathways, including WNT
signaling, adherens junctions, GABAergic, HIF-1 signaling,
glutamatergic synapse, spliceosome, and insulin signaling as the
most overrepresented pathways. Familial FTD genes centered on
the WNT signaling pathway. This finding reinforces previous
investigations reporting a key role of WNT signaling in FID.
For instance, progranulin deficiency compromised neuronal cell
survival by targeting WNT signaling in vitro and in vivo models of
FTD (Rosen et al., 2011). Furthermore, the same study reported
that upregulation of the WNT receptor Fzd2 promoted neuronal
survival in vitro (Rosen et al., 2011). Collectively, these findings
suggest that targeting WNT signaling is a potential therapeutic
route for familial FTD.

Pathway analysis of sporadic FTD genes identified several
pathways, including MAPK signaling, platelet activation, starch
and sucrose metabolism, dopaminergic synapse, atherosclerosis,
and VEGEF signaling. Interestingly, sporadic FTD genes centered

on MAPK signaling, the most overrepresented pathway. This
is not surprising since MAPK signaling has been implicated
in several neurodegenerative diseases, including FTD (Chen-
Plotkin et al., 2008; Ahmed et al., 2020; Santiago et al., 2020).
Of note, dysregulation of genes involved in the MAPK signaling
has been reported in FID subjects with progranulin mutations
(Chen-Plotkin et al., 2008). In addition, genetic variants in
VEGF conferred susceptibility to sporadic FTD in an Italian
population (Borroni et al., 2008). However, there is no evidence
of platelet activation, starch and sucrose metabolism, and
atherosclerosis in FTD.

Although the association between the WNT and MAPK
signaling pathways in familial and sporadic FTD, respectively,
could be potentially interesting in the development of
personalized treatments, these pathways are also involved in
other neurodegenerative diseases. For example, these pathways
have been implicated in the pathogenesis of amyotrophic lateral
sclerosis (ALS), a fatal neurodegenerative disease that shares a
clinical continuum and overlapping genetic factors with FTD.
The WNT/B-catenin signaling pathway is responsible for the
differentiation of neural stem cells into neurons as well as
synaptic stability and plasticity (Jiang et al., 2021). Upregulation
of receptors, co-receptors, and modulators of the WNT/B-catenin
signaling pathway has been reported in several transgenic animal
models and human spinal cord tissues from ALS patients
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FIGURE 4 | Network analysis from sporadic FTD genes. Network analysis of the set of 96 genes dysregulated in sporadic FTD was performed using GeneMANIA in
Cytoscape v3.8.0. Input genes are shown in black circles. Purple, blue, and pink lines represent co-expression, co-localization, and physical interactions,
respectively. FBXL8, VCAN, and SSPN were dysregulated in both familial and sporadic FTD.

(Yao et al., 1988; Gonzalez-Fernandez et al., 2019; Jiang et al,,
2021). Most of the altered expression of WNT/B-catenin
pathway components occur in astrocytes and motor neurons
in ALS models (Yao et al., 1988). Interestingly, it is reported
that the main drug to treat ALS patients, Riluzole, enhanced
WNT/B-catenin signaling in neuronal cells (Biechele et al., 2010).
Thus, targeting components of the WNT/B-catenin signaling
pathway may be a possible therapeutic route for ALS and FID.
Similarly, dysregulation of MAPK signaling has been associated
with ALS. MAPK members are the serine and threonine kinases
that play a pivotal role in cellular proliferation, differentiation,
apoptosis, and survival (Sahana and Zhang, 2021). Aggregates
of abnormally phosphorylated MAPK components and TDP-43
have been found in motor neurons and spinal cord cells of ALS
patients under stress conditions (Ayala et al., 2011). This aberrant
hyperphosphorylation of MAPK members is associated with
several pathophysiological defects involved in ALS including
oxidative stress, neuroinflammation, and axonal transport
disruption (Ayala et al., 2011). Several MAPK inhibitors have
shown promise in various cellular and animal models of ALS and
one inhibitor is currently being tested in clinical trials (Sahana
and Zhang, 2021). The pathway convergence between ALS and

FTD suggests that MAPK inhibitors might represent a potential
therapeutic option for FTD patients.

Transcription Factor Analysis
Transcription factor analysis revealed differences in the
transcriptional regulation of familial and sporadic FTD genes.
Analysis of familial and sporadic FTD genes identified 13 and
17 transcription factors, respectively. Four transcription factors,
including CEBPB, GATA3, KLF4, and MYB were identified as
unique master regulators of familial FTD genes. Among these
transcription factors, the CCAAT enhancer-binding protein
beta (CEBPB) and krupple like factor 4 (KLF4) have been
documented previously in neurodegenerative diseases. For
example, CEBPB regulates pro-inflammatory factors in microglia
and is upregulated in AD (Wang et al., 2019; Ndoja et al., 2020).
Furthermore, CEBPB is also increased in the frontal cortex
of HIV neurocognitive disorder patients and plays a role
in regulating inflammation, metabolism, and autophagy in
astroglia (Canchi et al., 2020). Although CEBPB has not been
reported in FTD per se, the interplay between microglia and
neuroinflammation is a central process in all neurodegenerative
diseases. Likewise, KLF4 is involved in the microglial release
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(A) Network analysis of dysregulated pathways in familial FTD subjects. (B) Dysregul

p-value, with the two factors demonstrating a linear relationship.
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FIGURE 5 | Pathway analysis. Genes identified in the meta-analysis from familial and sporadic FTD subjects were imported into NetworkAnalyst for pathway analysis

pathways in sporadic FTD subjects. (D) Dysregulated pathways in sporadic FTD subjects. The pathways are ranked according to the number of hits and lowest

ated pathways in familial FTD subjects. (C) Network analysis of dysregulated

of pro-inflammatory factors. Overexpression of KLF4 promoted
the peptide AB42 induced neuroinflammation and neurotoxicity
in the brains of transgenic AD model mice (Li et al., 2017).
The involvement of these transcription factors in FID warrants
further investigations.

Transcription factor analysis identified 8 unique master
regulators of sporadic FTD genes, including CTCE IRF1,
MEF2A, REST, SREBF1, SREBF2, STAT3, and ZFX. Several

of these transcription factors have been implicated in
neurodegenerative diseases. For instance, CTCF may play a
role in regulating Huntington’s (HTT) promoter function in
Huntington’s disease (De Souza et al., 2016). Moreover, the
deletion of interferon regulatory factor 1 (IRF1) resulted in
cognitive impairment in mice (Mogi et al., 2018). The myocyte
enhancer factor 2A (MEF2A) promoted neuronal cell apoptosis
in vitro and in vivo experimental models of Parkinson’s disease
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FIGURE 6 | Transcription factors regulating FTD genes. (A) Transcription factor analysis from the familial FTD genes. (B) Transcription factor analysis from the
sporadic FTD genes. Transcription factors and gene target data were derived from the ENCODE, ChEA, and JASPAR databases. Shared transcription factors
between the 3 databases are shown in (C). The transcription factors shared between familial and sporadic FTD are shown in red, and those unique to the specific
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and some of its genetic variants associated with an increased
risk of late-onset AD (Gonzalez et al., 2007; Wu et al., 2017).
In addition, gene network analysis showed that Amyloid
precursor protein (APP) is co-regulated by MEF2A (Wang
et al,, 2010). The repressor element 1 silencing transcription
factor (REST) regulates a network of genes that mediates cell
death and stress resistance in AD. Dysregulation of REST
has been documented in AD, FID, and dementia with Lewy
bodies, and elevated levels of REST are associated with the
preservation of cognition (Lu et al., 2014). Genetic variation
in the sterol regulatory element-binding transcription factor
1 (SREBF1), known to play a role in lipid and cholesterol
metabolism, is associated with increased susceptibility to
dementia and AD (Spell et al., 2004; Carter, 2007; Reynolds et al.,
2010). The signal transducer and activator of transcription 3
(STAT3), a major inducer of genes involved in apoptosis, cell
growth, and inflammation, has been extensively implicated in
neurodegenerative diseases. For example, STAT3 modulates glial
activation and AP deposition leading to cognitive impairment
in AD transgenic models (Toral-Rios et al., 2020). Moreover,
inhibition of STAT3 rescued deficits in learning and memory in
5xFAD mice, suggesting it may be a potential therapeutic target
for AD (Choi et al., 2020).

miRNAs Regulating Familial and
Sporadic Frontotemporal Dementia
Genes

To investigate further the differences in regulation between
familial and sporadic FTD genes, we performed a miRNA
analysis. Functional analysis revealed that miRNAs regulating
familial FTD genes were involved in the regulation of the
immune system, angiogenesis, virus replication, and aging.
In contrast, miRNAs regulating sporadic FTD genes were
enriched in pathways related to cell cycle, cell division, virus
replication, cell death, hematopoiesis, T cell differentiation,
and cell proliferation. These findings, along with the pathways
identified at the mRNA level, suggest that different regulatory
mechanisms may be involved in the pathogenesis of familial and
sporadic FTD patients.

Chemical-Gene Interaction Analysis

Protein chemical network analysis identified several potential
therapeutic agents for FTD. Valproic acid was identified as
the highest-ranked chemical interacting with both sporadic and
FTD genes. Indeed, some studies indicate that valproic acid
is involved in WNT/B-catenin and MAPK signaling, pathways
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(D) Network topology measurements for the top miRNAs regulating sporadic FTD genes.

identified in this study as central in familial and sporadic FTD,
respectively. For example, valproic acid stimulated neurogenesis
in the adult hippocampus of transgenic AD mice through the
activation of the WNT/B-catenin signaling pathway (Zeng et al.,
2019). In addition, valproic acid promoted the differentiation
of spiral ganglion neural stem cells and neurite outgrowth via
the activation of the WNT/B-catenin signaling pathway (Moon
et al., 2018). Furthermore, valproic acid elicited neuroprotective
effects in the 1-methyl-4-phenylpyridinium (MPP*) model of
PD in primary dopamine neurons via the activation of the
MAPK pathway (Zhang et al., 2017). Further molecular studies
in animal and cellular models of FTD will be key to understand
the potential therapeutic value of valproic acid in FT'D-associated
neurodegeneration.

Interestingly, several recent studies have indicated that
valproic acid may be a potential drug for neurodegenerative
diseases. For instance, valproic acid treatment reduced the
expression of pro-inflammatory cytokines and NF-«kB signaling
in PCI12 cells treated with amyloid protein fragments suggesting
that it may be neuroprotective via the attenuation of the
inflammatory pathways (Zhao et al., 2018). Similarly, valproic
acid treatment selectively reduced AB42 in vitro using 7PA2
cells transfected with human APP (Williams and Bate, 2018).

Furthermore, valproic acid restored the physiological function
of synapsin I, a synaptic protein important for neurotransmitter
release in rat hippocampal neurons exposed to neurotoxic
AB42 oligomers (Marsh et al., 2017). Recently, a bioinformatic
analysis identified valproic acid as a potential drug for
dementia (Potashkin et al., 2020). In the context of FTD,
valproic acid improved neuropsychiatric symptoms including
agitation, without exacerbating Parkinsonism in FTD subjects
(Chow and Mendez, 2002).

Nevertheless, some studies have reported negative findings
of the use of valproic acid for dementia. For example, an
epidemiological study comprising 5,158 patients with bipolar
disorder showed that valproic acid treatment increased the risk
of dementia by 73-95% (Tsai et al., 2016). In addition, the use of
valproic acid is associated with an increased risk of mortality in
dementia patients (Kales et al., 2012). Therefore, more research
studies into the potential mechanisms of valproic acid are needed
to confirm its utility for dementia.

Limitations and Future Research

Several caveats should be kept in mind when interpreting the
results from this study. Although the curation methods of BSCE
are rigorous, differences in microarray platforms and sample
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FIGURE 8 | Top 10 Drugs associated with the FTD genes. (A) Drug analysis from the familial FTD genes. (B) Drug analysis from the sporadic FTD genes. The FTD
genes were uploaded to https://www.networkanalyst.ca/NetworkAnalyst/faces/home. A Chemical-gene interactome was performed. Most of the chemicals were
shared between familial and sporadic FTD analyses.

collection may bias the results. In addition, the demographic
and clinical information about the study participants publicly
available was limited. For example, information about drugs,
comorbidities, and BMI was not available. Control samples were
defined as neurologically healthy, but information about other
diseases was not available. These confounding variables might
have impacted the results of this study. In addition, FID is a
highly heterogeneous disorder that shares many genetic factors
and pathological features with ALS. The results presented in
this study are limited to sporadic and FTD with progranulin
mutations or COORF72 repeat expansion. Therefore, future
studies investigating the pathways dysregulated in FTD patients
with other common mutations including MAPT, FUS, CHMP2B
mutation and will be important to understand the underlying
mechanisms in different genetic forms of FTD.

Finally, even though bioinformatic studies, in general, can
lead to the identification of novel mechanisms of disease and
therapeutics, findings should be confirmed in preclinical cellular
and animal models.

CONCLUSION

This study investigated the transcriptomic profiles from different
brain regions from FTD subjects to identify pathways that may
shed light on the distinction between the familial and sporadic
FTD subtypes. We determined that most dysregulated gene
expression occurred in the frontal cortex and Brodmann’s area
8 for genetic and sporadic forms of FTD, respectively. There were
notable differences in the dysregulated pathways between familial
and sporadic FTD subjects. We found that familial FTD genes
were associated predominantly with the Wnt signaling pathway,
whereas sporadic FTD genes were involved in the MAPK

signaling. Top miRNAs regulating familial FTD genes associated
predominantly with the immune system, angiogenesis, virus
replication, and aging, whereas those regulating sporadic FTD
genes were related to cell cycle, cell division, virus replication, cell
death, hematopoiesis, T cell differentiation, and cell proliferation.
In addition, valproic acid was identified as a potential treatment
for FTD patients. Nonetheless, valproic acid has been suggested
as a treatment for other neurodegenerative diseases, including
AD and amyotrophic lateral sclerosis. Collectively, these findings
suggest that different mechanisms may drive the disease process
in familial and sporadic FTD patients. Further research on the
transcriptional regulation and the molecular pathways involved
in familial and sporadic FID forms is warranted.
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