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Traumatic brain injury (TBI) is linked to several pathologies. The blood-brain barrier
(BBB) breakdown is considered to be one of the initial changes. Further, the
microenvironmental alteration following TBI-induced BBB breakdown can be multi-
scaled, constant, and dramatic. The microenvironmental variations after disruption
of BBB includes several pathological changes, such as cerebral blood flow (CBF)
alteration, brain edema, cerebral metabolism imbalances, and accumulation of
inflammatory molecules. The modulation of the microenvironment presents attractive
targets for TBI recovery, such as reducing toxic substances, inhibiting inflammation,
and promoting neurogenesis. Herein, we briefly review the pathological alterations
of the microenvironmental changes following BBB breakdown and outline potential
interventions for TBI recovery based on microenvironmental modulation.
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INTRODUCTION

Traumatic brain injury (TBI) is a critical public health problem
in many areas worldwide, especially in the developed countries
(Hydera et al., 2007; Corrigan et al., 2010; Roozenbeek et al.,
2013). This injury has both short- and long-term effects
on prognosis, such as TBI-associated disabilities, amnesia,
depression, and other related physical or mental disorders
(Dixon, 2017). The studies have found out that not only
severe TBI, but also mild TBI result in long-term sequelae
and psychological morbidity (Levin and Diaz-Arrastia, 2015).
Despite the well-developed medical management of TBI in the
United States and other countries (Stonesifer, 2008; Coronado
et al., 2012), many of the survivors of TBI do not fully
recover and left permanent sequela. Thus, novel perspective of
pathophysiologic mechanism for TBI and the therapeutic targets
are desperately needed.

The microenvironment around neurons and other cells in
brain parenchyma consists of elements that greatly influence the
conditions around a cell or a cell cluster, and these elements
may play a direct or indirect role in affecting cell behavior
biophysically or biochemically (Charles et al., 2011). Since TBI is
a complex and heterogeneous disease, microenvironment in the
lesion areas following TBI may changes multi-scaled, constantly
and dramatically (Hemphill et al., 2015). The cell–cell and cell–
matrix interactions are greatly regulated by the molecules or
factors which consist in microenvironment, suggesting that the
microenvironmental changes in brain play an essential role
in brain injury and remodeling after TBI (Kan et al., 2012;
Teschemacher et al., 2015).

Because of blood-brain barrier (BBB), most compounds from
blood to brain were impeded (Daneman, 2012; Zhao et al.,
2015). Thus, BBB is one of the most important sites for the
control of the central nerve system (CNS) microenvironment
and homeostasis (Ballabh et al., 2004; Lampron et al., 2013). At
present, many researchers show great interest in the association
of brain microvessels, pericytes, astrocytes, and neurons to form
functional “neurovascular units” (NVU), which contribute to
neurovascular coupling (McCarty, 2009; Chen et al., 2014).
In addition, the BBB is the most important structure of
NVU not only anatomically but also physiologically (Muoio
et al., 2014; Price et al., 2016). When TBI occurred, the BBB
breakdown frequently follows, and might lead to the signaling
cascades and complex interactions between the pathological
processes within the NVU (Korn et al., 2005; Tomkins et al.,
2008), such as edema, neuroinflammation, and cell death
(Shlosberg et al., 2010). These processes are closely associated
with the microenvironmental changes in the damaged brain
(Kan et al., 2012).

In this review, we briefly discussed the pathological alteration
of TBI after BBB breakdown and the microenvironmental
changes related to BBB dysfunction, e.g., the cerebral
metabolic changes, cerebral blood flow (CBF), toxic molecules
accumulation, inflammation, and edema. In addition, we
outlined the potential intervention schemes that target
BBB-related microenvironment balance, homeostasis, and
improvement for post-TBI recovery.

TRAUMATIC BRAIN INJURY AND
BLOOD-BRAIN BARRIER DYSFUNCTION

The Structure and Function of
Blood-Brain Barrier
Since first observed by Paul Ehrlich in 1885, until recent decades,
basically, the BBB has well-known as a complex, dynamic,
adaptable structure to prevent the uncontrolled leakage of
substances from the blood into the brain. Herein, we briefly
overview the structure and function of BBB.

Anatomically, the elements compose the BBB are the
endothelial cells, astrocyte end-feet, pericytes, and the basement
membranes (BM) (Figure 1, left panel): (1) For endothelial cells,
they are the central component of the BBB, connected with each
other through the tight junction (TJ), adheres junction (AJ), and
gap junction (GJ) proteins (Liebner et al., 2018; Sharif et al.,
2018). TJs composed of at least three major transmembrane
proteins, such as claudin, occludin, and junctional adhesion
molecules (JAMs) (Furuse et al., 1999; Balda et al., 2000;
Mankertz et al., 2002; Wolburg and Lippoldt, 2002). These
proteins form an impermeable barrier to fluid. In addition,
many cytoplasmic proteins involved in TJ formation include
zonula occludens proteins (ZO-1, ZO-2, and ZO-3), cingulin,
7H6, and so on (Matter and Balda, 2003; Tepass and Harris,
2007; Peglion et al., 2014). (2) The end-feet of astrocyte tightly
sheath the vessel wall and the loss of contact between the
end-feet and blood vessels also leads to a loss of TJ (Willis
et al., 2004; Watkins et al., 2014). The astrocytes promote
the BBB creation and maintenance by the release of various
secreted factors which may be important to contribute to vessel
stabilization and junctional proteins regulation (Janzer and Raff,
1987; Wolburg and Lippoldt, 2002; Lee et al., 2003; Alvarez
et al., 2013; Broux et al., 2015). In addition, the astrocytes
produce the biochemical enzymes and regulate blood flow which
is important for BBB maintenance (Wolburg-Buchholz et al.,
2009; MacVicar and Newman, 2015). (3) The pericytes share a
basement membrane with endothelial cell (Attwell et al., 2016),
and anchored to the basement membrane via integrins (Armulik
et al., 2010). They confirmed to play the essential roles in
maintaining BBB integrity (Daneman et al., 2010; Armulik et al.,
2011), regulating capillary diameter, and CBF (Yemisci et al.,
2009; Fernández-Kletta et al., 2010; Hall et al., 2014; Sweeney
et al., 2016), promoting angiogenesis (Winkler et al., 2011)
and phagocytosing toxic metabolites (Hartmann et al., 2015).
Moreover, signaling between the astrocytes and pericytes exerts
significant impact on BBB integrity (Yao et al., 2014; Mishra
et al., 2016). (4) The BM abound all the kinds of cells mainly
consist of type IV collagens, laminins, nidogen, and HSPGs
also vital for BBB structural integrity. Because access of the
molecules and cells to the CNS parenchyma requires not only
crossing the endothelial cell, but traversing both the layers of BM
(Banerjee et al., 2016).

For function of BBB, in the physical condition, BBB are
permeable to O2 and CO2 as well as other gaseous molecules,
such as helium, N2, and many gaseous anesthetics. In addition,
BBB is also permeable to water and lipid soluble. However,
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FIGURE 1 | The stepwise amplified structure of the BBB of the healthy or injured brain. Arterioles branch off into capillaries, and capillaries are covered by pericytes
and astrocytes end-feet. The pericytes and endothelium share a common basement membrane and connect with each other with several transmembrane junctional
proteins. After traumatic brain injury (TBI), coverage rate of the pericytes dramatically decreased and diameter of capillary reduced, junction proteins were
downregulated. There are several pathological changes occur following TBI, e.g., astrocytic dysfunction, inflammation, edema, and metabolic disturbance.

transfer of some molecules, especially the macromolecules
through BBB are limited, it seems that the regulation of
macromolecules is more complicated and usually mediated with
transporters (Pardridge, 2005; Obermeier et al., 2013; Serlin et al.,
2015). BBB permeability contains two aspects: (1) the ions and
other small molecules cross the BBB by paracellular diffusion
through the junctional complex or by the transcellular pathway
across the cells. However, in some circumstances, the tight
junctions may limit the paracellular flux of hydrophilic molecules
across the BBB (Cancilla and DeBault, 1983; Simard and
Nedergaard, 2004; Jeong et al., 2006). (2) For the macromolecules,
accumulating evidence suggests that the large molecular weight
serum proteins infiltration though a dysfunctional BBB carries a
potential risk for pathological outcomes (Tajes et al., 2014). Thus,
nearly 98% of all these molecules are not freely transported across
the BBB (Pardridge, 2005). The delivery of large molecules, such
as the proteins and peptides are mainly regulated by adsorptive-
mediated transcytosis (AMT) and receptor-mediated transcytosis
(RMT) (Dogrukol-Ak et al., 2009). Both of these processes result
in passage across the BBB.

A new concept is that the BBB changes from “barrier” to
“interface,” which means this structure is not only a substantial
barrier for drug delivery to the brain but also a complex, dynamic

interface that adapts to the needs of the CNS (Banks, 2016). BBB
itself is now considered to be a therapeutic target for CNS disease
and is often more accessible to the manipulation than the cells
that it protects (Cho et al., 2017).

Blood-Brain Barrier Breakdown
Following Traumatic Brain Injury
Under the physiological conditions, the BBB acts as a barrier
that impairs the access of molecules and immune cells, such
as monocytes, lymphocytes, and other leukocytes. However,
BBB can easily breakdown in many neurological diseases, such
as brain trauma, stroke, as well as other neurodegenerative
disorders, such as Alzheimer’s disease and Parkinson’s disease
(Kortekaas et al., 2005; Bowman et al., 2007; Zlokovic, 2008).

In general, TBI can be divided into two phases: primary
and secondary injury (Hawryluk and Manley, 2015; Hay et al.,
2015). The primary injuries are the result of mechanical forces
causing compressive and shearing injuries, the secondary injuries
are the consequence of subsequent damages, such as hypoxia,
inflammation, and metabolic disturbances (Sahuquillo et al.,
2001; Shlosberg et al., 2010; Lozano et al., 2015). Both the
animal model and substantial clinical data indicated that BBB
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disruption frequently follows brain trauma and can last from
several days to weeks (Tomkins et al., 2001; Korn et al., 2005).
In the focal controlled cortex impact CCI animal model, the
severe force delivered to the brain directly cause BBB disruption
(Barzo et al., 1996; Esen et al., 2003), which is called as primary
BBB damage. Following the infliction of a focal head impact,
the small blood vessels often incur a concomitant shear injury,
which lead to the impairments in the regulation of the BBB, CBF,
and metabolic processes (Rodriguez-Baeza et al., 2003; Akbik
et al., 2016). During the secondary phase, the abnormalities
in the BBB can arise the abnormal brain activity, astrocytic
dysfunction (Wolburg-Buchholz et al., 2009; Heinemann et al.,
2012), inflammatory responses (Harting et al., 2008; Plesnila,
2016), brain edema (Unterberg et al., 2004), and metabolic
disturbances (Alluri et al., 2015).

For BBB structures damage, an inevitable consequence of
BBB breakdown is an increase in the permeability of the
damaged endothelium (Bhowmick et al., 2019). Following TBI,
the endothelium-associated tight junction proteins JAM-A, ZO-
1, occludin, and claudin-5 were down-regulated indicating acute
TBI-associated tight junction protein disruption (Evran et al.,
2020; Sivandzade et al., 2020; Kempuraj et al., 2021). The studies
showed that after animal TBI model, as many as 40% of the
pericytes loss the contact of basement membrane within the
first hours of the injury (Dore-Duffy et al., 2000). Then, the
diameter of the arteriolar and capillary was reduced at a later
time point following TBI (Prager et al., 2019). For astrocyte end-
feet, AQP4 proteins are expressed abundantly on the perivascular
end-foot membranes and astrocytic membranes in a polarized
pattern, which mainly contribute to edema that evolves after
TBI. The studies demonstrated that expression of AQP4 on the
perivascular end-foot membrane reduced rapidly following TBI
(Lu et al., 2020; Ma et al., 2021; Figure 1, right panel). In chronic
phase, the mural cells (pericytes and smooth muscle cells) can be
degenerated up to 12 months post injury, causing the alterations
in tau uptake may further contribute to tau deposition in the
brain (Ojo et al., 2021).

It seems that following TBI-induced BBB breakdown,
together with the damage of BBB structure, microenvironmental
homeostasis is quickly destructed. The imbalance of
microenvironment may lead to further damage to BBB, on
the other side, targeting some novel factors to improve the
brain microenvironment may provide a potential approach
to TBI recovery.

MICROENVIRONMENTAL CHANGES
FOLLOWING TRAUMATIC BRAIN
INJURY-INDUCED BLOOD-BRAIN
BARRIER BREAKDOWN

Although the underlying molecular changes in the
microenvironment following TBI are not completely clear, with
the development of microdialysis, angiography, imaging, and
other techniques, our understanding of the microenvironmental
changes after TBI become deeper. This section discusses the

new perspective on the microenvironmental changes following
TBI-induced BBB breakdown (Figure 2).

Cerebral Blood Flow Alteration
It is already clear that both O2 and glucose are delivered to the
neurons by CBF and are transported across the BBB (Moskowitz
et al., 2010). CBF regulation involves complicated mechanism
and contains many types of cells, such as pericyte and astrocyte
(Hall et al., 2014; Hill et al., 2015; MacVicar and Newman,
2015; Kisler et al., 2017). Proper structural and functional BBB
connectivity, synaptic activity, and information processing all
requires precise regulation of CBF (Attwell et al., 2010). In
TBI, the measurement of CBF can be invasive or non-invasive
(Rostami et al., 2014), the markers of CBF, such as brain tissue
oxygenation (PbtO2), Jugular venous bulb oximetry (SjvO2), ICP,
and CPP, each has inherent limitations (Akbik et al., 2016).

Numerous findings from the animal TBI models have
linked the endothelium cells to decreased CBF and poor
outcome following brain injury. In brain vascular system, the
endothelium cells, which is the main structure of BBB, play a
key role to maintain vascular integrity and microenvironmental
homeostasis (Graves and Kreipke, 2015). Endothelin-mediated
vasoconstriction that decreases arterial luminal areas is the
main reason of CBF reduction in TBI. The main mechanism
is that vasoconstriction through the synthesis of endothelin-1
or upregulate endothelin receptors A and B (Faraci and Breese,
1993; Steiner et al., 2004; Kallakuri et al., 2010; Schwarzmaier
et al., 2015b). In addition, in the mild to moderate TBI
model, mitochondrial Ca2+ uptake improves CBF, and the
intervention of this pathway may reduce behavioral deficit
(Murugan et al., 2016). The pericytes and astrocyte end-feet
swelling are found to contribute to CBF regulation (Ostergaard
et al., 2014). Astrocytic end-feet swelling has been observed as
early as 1 h after TBI (Dietrich et al., 1994), and lasts until
11 days after the initial injury (Bullock et al., 1991), which
cause compression of the capillary lumen that negatively affect
CBF in the injured brain. The pericytes are involved in the
regulation of capillary diameter to affect CBF. After brain insult,
the pericytes leave their pericapillary location within the first
hour (Dore-Duffy et al., 2000), and decline in the acute phase.
However, in the trauma zone, the pericytes increase days after
the initial injury (Zehendner et al., 2015). It seems that the
brain trauma causes a biphasic response of pericytes in the early
phase of brain trauma. Loss of pericytes or the impairment of
pericyte-endothelium interaction increases the BBB permeability,
facilitates the formation of brain edema, and decreases the
CBF in the surrounding parenchyma (Bhowmick et al., 2019).
Additionally, the variants of some genes are confirmed to be
related with CBF alteration in an animal TBI model. These genes
include NOS3 and Aβ (Abrahamson et al., 2013).

Water Imbalance and Brain Edema
Following the primary injury of TBI, the structural and functional
integrity of the BBB is disrupted, the alterations in blood flow
lead to the hypoxic conditions in tissue with the activation of
proteases, initiation of inflammatory pathways, generation of
toxic substance, and production of reactive oxygen species (ROS),
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FIGURE 2 | Microenvironment changes following TBI-induced blood-brain barrier (BBB) breakdown. Four aspects were shown as cerebral blood flow (CBF)
alteration, water imbalance and brain edema, cerebral metabolism imbalance, and inflammatory molecules accumulation. The text marked red in the picture indicate
the substance in brain parenchyma microenvironment.

which are described previously, leading to brain edema. This
edema is the result of BBB injury and can further cause tissue
damage, it can be mainly classified into two types: vasogenic
and cytotoxic (Unterberg et al., 2004; Lukaszewicz et al., 2011;
Jha et al., 2019).

Briefly, the definition of vasogenic edema is that the water
moves from the vasculature to the extracellular space, results in
brain water content increase, tissue swelling, and ICP increase.
Thus, the vasogenic edema from BBB opening considered to
be the main contributor of the injury (Reulen et al., 1977).
By using a two-photon microscopy and in vivo 3D deep-brain
imaging, TBI induces vasogenic brain edema that is identified
from capillaries, venules, and arterioles (Schwarzmaier et al.,
2015a). Moreover, the development of vasogenic edema showed
a biphasic pattern, peaking 4 and 48–72 h after TBI (Hu
et al., 2021). Cytotoxic edema is characterized by the sustained
intracellular water accumulation, this type of edema usually
associated with a failure of the ATP-dependent Na+/K+-pumps,
which further lead to the cellular ionic content increase and influx
of water into the neuronal and other cells (Shapira et al., 1993).
In contrast to vasogenic brain edema, cytotoxic edema with no
change in tissue water content or volume and independently of
the BBB integrity. Osmotic brain edema develops with osmotic
gradient, and the imbalances between the blood and tissue cause
cell swelling as cytotoxic edema does (Katayama and Kawamata,
2003; Unterberg et al., 2004). Additionally, numerous mediators
are identified that are involved in the process of brain edema,

for instance, aquaporins (AQPs), matrix metalloproteinases
(MMPs), and vasoactive agents following BBB breakdown (Ke
et al., 2002; Higashida et al., 2011; Blixt et al., 2015). The AQP4
is associated with the cytotoxic edema (Haj-Yasein et al., 2011),
however, the opinions are controversial: the inhibition of AQP4
expression is identified associated with the brain edema reduction
(Fazzina et al., 2010; Keisuke et al., 2010), however, conversely, in
the AQP4 knockout animals, vasogenic edema was exacerbated
after cold lesion injury, identified that AQP4 may have the
function to reduce vasogenic edema (Papadopoulos et al., 2004).
Other studies focus on target AQP4 to treat brain edema
following TBI-induced BBB breakdown, such as oloxamer-188,
edaravone, and nerve growth factor (Kikuchi et al., 2009; Bao
et al., 2012; Lv et al., 2013). The MMPs are zinc-dependent
endopeptidases involved in the formation of BBB. The MMPs,
mainly include MMP-2, MMP-3, and MMP-9, all upregulated
in the TBI animal models (Asahi et al., 2001; Falo et al., 2006;
Alluri et al., 2016). The MMPs can cause BBB breakdown and
further vasogenic edema, especially MMP-9. The result of a recent
study shows that, in MMP-9 knock-out mice, BBB disruption was
attenuated compared with the wild type mice (Asahi et al., 2001).

Cerebral Metabolism Imbalance
It is well-known that the brain undergoes a metabolic crisis
after TBI, especially after BBB breakdown. As a consequence of
extracellular and intracellular ionic imbalance following neuronal
activation, energy production has to take place (Lin et al., 2010;
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Mishra et al., 2011; Lovatt et al., 2012). Usually, BBB breakdown
causes a mismatch between energy demand and supply, and
the tissue metabolism is regionally heterogeneous following
TBI (Buxton, 2010; O’Phelan et al., 2013; Brooks and Martin,
2014). With the CBF breakdown and limited oxygen delivery,
the ionic and cellular homeostasis are destroyed, resulting in
intracellular calcium flux, further mitochondrial dysfunction
(Giza and Hovda, 2014). In the very early phases, the oxidative
metabolism may occur, it can be measured by microdialysis and
MR spectroscopy imaging (Alves et al., 2003; Belli et al., 2008).
The initial oxidative metabolism increases the glucose uptake in a
very short period of time, however, in long term, it worsens the
energy crisis of TBI. With the metabolic pathways change, the
glucose metabolic rates reduce due to the breakdown of ATP-
dependent pumps/transporters, at the same time, other metabolic
product changes as well, such as creatine, creatine phosphate, and
N-acetylaspartate (Signoretti et al., 2009). Increasingly, the lactate
pyruvate ratio, which reflects impairment of hypoxic episode
or cellular respiration is dramatically changed. As consequence
of anaerobic metabolism and glycolysis, the amounts of lactate
increased, a study by Bouzat et al. (2014) showed that exogenous
systemic lactate was utilized by the injured human brain as a
preferential energy substrate in TBI. This study suggests that
hypertonic lactate therapy has beneficial cerebral metabolic and
hemodynamic effects after TBI.

The cytotoxic molecules are released, such as excitatory amino
acids which can cause damage to the brain. In general, glutamate,
which is taken up by the astrocytes, largely by excitatory amino
acid transporter 2 (EAAT2) or glutamate transporter-1 (GLT-
1), is considered to be a main contributor to cellular apoptosis
(Jansson and Akerman, 2014; Guerriero et al., 2015). In TBI,
glutamate increase is among the first events to occur post-injury,
and results in destroying the astrocyte function and increase BBB
permeability (Obrenovitch and Urenjak, 1997; Guerriero et al.,
2015). Measured by cerebral microdialysis, the glutamate levels,
not only in brain, but also in blood, are confirmed to correlated
with the mortality rate and long-term functional outcome in TBI
clinical practice (Chamoun et al., 2010; Quintard et al., 2015).
In an animal CCI model, glutamate signaling is significantly
increased in the injured cortex (Cantu et al., 2015), another study
by Goodrich demonstrated that GLT-1 expression is depressed,
which means more glutamate gathered (Goodrich et al., 2013).

By using two-photon microscopy, tissue oxygenation, the
diameters of single arterioles and capillaries at different depths
in the brain cortex are measured (Tiana et al., 2010; Devor et al.,
2011; Kasischke et al., 2011; Schwarzmaier et al., 2016). As for
calcium flux, the astrocytes play a key role, when oxygen is
limited after BBB breakdown, the astrocyte glycolysis and lactate
release are maximized. The astrocytes induce vasodilation relies
on the metabolic state (Gordon et al., 2008). The other cell type
is pericyte, by using pericyte-deficient mice, Kisler et al. (2017)
show that the pericyte degeneration diminishes capillary CBF
responses, resulting in oxygen supply reduction to the brain and
metabolic stress.

During primary injuries phase of TBI, the immediate cell
death can cause noxious substances release and BBB breakdown.
It is confirmed that ROS, mainly generated in the neurons

under the pathological conditions, are the key mediators of
BBB breakdown, and overproduced after BBB dysfunction
(Gilgun-Sherki et al., 2002; Pun et al., 2009). ROS directly
downregulate the proteins of tight junctions and indirectly
activate MMPs, which lead to leakiness of the BBB and
progression of neuroinflammation (Abdul-Muneer et al., 2015).
In addition, ROS contribute to active Src family kinases, resulting
in further dysfunction of BBB and brain edema (Liu et al., 2016).
In addition, Lutton et al. (2017) reported that following TBI,
with the BBB hyperpermeability, endothelial activation results
in an increase expression of ICAM-1, which induce more ROS
generation. Moreover, the excessive glutamate facilitates the
excessive calcium influx further results in the generation of ROS,
mitochondrial dysfunction, and cell death (Khatri et al., 2018).

Inflammatory Molecules Accumulation
The inflammatory response starts within hours after initial insult,
corresponding with BBB disruption. The animal studies showed
that the peripheral neutrophils, macrophages, T cells, and natural
killer cells present in the brain within few hours after TBI
(Holmin et al., 1998; Holmin and Mathiesen, 2000; Lin et al.,
2017). Then, the leukocytes release pro-inflammatory cytokines
and then active resident microglia (Schwarzmaier et al., 2013;
Cunningham et al., 2014; Schwarzmaier and Plesnila, 2014; Corps
et al., 2015; Salvador et al., 2015; Corrigan et al., 2016). Microglia
sense a large repertoire of exogenous and endogenous signals and
express certain surface and cytoplasmic receptors as a result of
activation (Loane and Kumar, 2016).

In the acute phase following TBI, the damaged neurons
and other cells release danger-associated molecular patterns
(DAMPs) and pathogen-associated molecular patterns (PAMPs)
into the brain (Hanisch and Kettenmann, 2007). Microglia
response to these environmental signals and change their
phenotypes into M1 or M2 (Xu et al., 2017). M1-like
phenotype causes neuroinflammation by releasing the high level
of pro-inflammatory molecules [tumor necrosis factor-alpha
(TNF-α), interleukin-6 (IL-6), IL-12, and IL-1β], chemokines
(monocyte chemoattractant protein-1 (MCP-1), CXCL10) into
the microenvironment of the brain (Semple et al., 2010; Clausen
et al., 2011; Tian et al., 2016; Sanchis et al., 2020; Sen et al., 2020;
Zhao et al., 2020). In the lipopolysaccharide-stimulated (LPS)
model, microglia are activated and release TNF-α contributed
to BBB dysfunction (Nishioku et al., 2010; Semple et al., 2010;
Willis et al., 2020). In addition, another study from Schlegel and
Waschke (2009) suggested that TNF-α can induce microvascular
endothelial barrier breakdown and reduce BBB stabilization
by inhibiting cAMP level and Rac1 signaling (Baumer et al.,
2009). For M2-like phenotype microglia, it is associated with
the memory immune responses and may have either pro-
or anti-inflammatory function. They not only produce anti-
inflammatory cytokines, such as IL-10, IL-4, and IL-13, but also
upregulate several factors, such as Arg1, YM1, FIZZ1, and MRC1
(Ansari, 2015). In chronic phase, inflammation following BBB
dysfunction in TBI can be simultaneously helpful and deleterious
(Simon et al., 2017). The experiments in the TBI animal models
have shown that the levels of IL-1β, IL-6, CXCL8, IL-10, and
TNFα are chronically increased together with chronic microglial
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activation which link to neurodegeneration and dementia,
suggesting that the inflammatory molecules accumulation in
brain microenvironment following TBI may last for a long time.
For apoptotic factors, a study indicated that, following TBI and
BBB breakdown, accumulation of caspase-3, an apoptotic factor,
and its cleaved tau may contribute to microvascular disruption
and cause further chronic BBB damage. This process may also
accompanied by the chronic inflammatory responses, such as
astrocytes and microglia activation (Glushakova et al., 2017).

MODULATION OF
MICROENVIRONMENT FOR
POST-TRAUMATIC BRAIN INJURY
RECOVERY

This section discusses the interventions that have been
recently reported to modulate the microenvironment for
post TBI recovery. In a neuropathological condition, the
microenvironment in the brain can be toxic, which may
prohibit the neural recovery. Thus, creating an optimal
microenvironment in toxic “soil,” is capable of executing neural
repair to promote the post-TBI recovery.

Eliminate the Toxic Substances and
Excessive Water in Microenvironment
The acute microenvironmental changes post-TBI present an
attractive target for modulation of the TBI symptoms and
the development of cognitive changes later in life. For toxic
substances eliminate, the methods should be use of specific
receptor inhibitors or prevent the entry of ions, such as sodium
and calcium, or reduce the content of toxic substance, e.g., ROS,
malondialdehyde (MDA), or glutamate. The water elimination,
the widely used mannitol is an osmotic agent, however, only for
symptomatic treatment but not causal treatment. More strategies
are urgently needed to point at causal treatment of edema to
enhance brain microenvironment for recovery.

The administration of many drugs targets different type
of toxic substances to enhance the microenvironment for
neurological function improvement. The accumulating
studies have shown that by inhibiting specific receptors
which abundantly expressed in CNS, e.g., arginine-vasopressin
(AVP) receptor, bradykinin 2 receptor, β2 adrenergic receptor,
endothelin receptors B (ETB), myosin light-chain kinase
(MLCK), and peroxisome proliferator-activated receptor γ

(PPARγ), brain edema can be reduced (Marmarou et al., 2005;
Zweckberger and Plesnila, 2009; Zlotnik et al., 2012; Rossi
et al., 2013; Krieg et al., 2015, 2016; Michinaga et al., 2018,
2020; Deng et al., 2020; Table 1). The studies have reported
that by using AVP V1 and V2 receptor antagonist, brain water
content, and intracranial pressure of CCI model were reduced
(Krieg et al., 2015, 2016). Additionally, the bradykinin and its
B2 receptors play key roles in TBI recovery (Marmarou et al.,
2005; Zweckberger and Plesnila, 2009; Trabold et al., 2010). The
other study demonstrated that propranolol and metoprolol, β2
adrenergic receptor inhibitors, reduce excess brain glutamate

levels in the microenvironment after TBI (Zlotnik et al., 2012).
The highly expressed endothelin-1 (ET-1) in brain after TBI
usually links with the BBB dysfunction and increases the
inflammatory cytokines and chemokines. It is demonstrated
that inhibitory of ETB receptor could reduce the brain edema
by decreasing the level of claudin-5, occludin, and zonula
occludens-1 proteins (Michinaga et al., 2018). In addition, using
a MLCK inhibitor ML-7, cerebral edema can be attenuated in a
close head injury model (Rossi et al., 2013). Several drugs which
already approved in clinical practice show curative effect in TBI
treatment, e.g., pioglitazone, bumetanide, and glibenclamide
(Deng et al., 2020; Sawant-Pokam et al., 2020; Jha et al., 2021).
However, the mechanism of these drugs for treating TBI only
explored in the animal models: Deng et al. (2020) demonstrated
that pioglitazone increased the expression of PPARγ after TBI,
thus, to alleviate TBI-caused brain edema. To block the water
or ion channels is also an option to reduce the brain edema.
Inhibition of NKCC1/KCC2 channel (Sawant-Pokam et al.,
2020), Sur1-Trpm4 channel (Jha et al., 2021), AQP4 transporter
(Farr et al., 2019; Glober et al., 2019), ASIC (Yin et al., 2013),
NHE-1 (Zhao et al., 2008).

Besides applying the specific receptor inhibitors, some agents
may have effects on regulating the essential gene expressions
to help eliminate excess water, although the particular target
of some agents remains unclear. For instance, poloxamer 188
could attenuate TBI-induced brain edema by regulating AQP
mRNA expression (Bao et al., 2012). As an agonist of G-protein
coupled receptor (GLP-1R), exendin-4 was confirmed beneficial
to both type 2 diabetes mellitus (T2DM) and TBI (Tweedie
et al., 2016). The studies report that exendin-4 is able to
regulate the gene expression which is associated with TBI-
caused dementia (Tweedie et al., 2016). Although there is no
evidence that shows the specific target of lactadherin, ghrelin,
and ethanol in treating TBI, these agents could influence the
brain edema or the expression of AQP4 post TBI (Lopez et al.,
2012; Wang et al., 2013; Zhou et al., 2018). To eliminate the
toxic substance in brain parenchyma following TBI, the main
option is to reduce the content of ROS. There are several agents
or molecules that have confirmed to decrease the level of ROS
after TBI, e.g., docosahexaenoic acid (DHA), guanosine, dual
antiplatelet therapy (DAPT), omega-3 polyunsaturated fatty acids
(ω-3 PUFAs), L-733,060, and catalase (Gerbatin et al., 2017;
Lutton et al., 2017; Ren et al., 2017; Zhang H. M. et al., 2018;
Li et al., 2019; Zhu et al., 2020). Some of these factors may
have other functions. For instance, guanosine could suppress
the glutamate uptake and decrease Na+/K+-ATPase activity. By
inhibiting tachykinin neurokinin-1 receptor (NK1R), L-733,060
could reduce the release of cytochrome c (Li et al., 2019;
Table 1).

Anti-inflammation to Enhance the
Microenvironment
As mentioned previously, inflammatory response after TBI
occurs within minutes and may last for days, weeks, months, or
years. Due to the complexity of neural inflammatory response
after TBI, certain anti-inflammatory agents are failed to improve
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TABLE 1 | The pharmacologic agents targeting toxic substances and edema in the microenvironment.

Agents Target Main function Stage References

V1880 AVP V1 Reduce edema, improve outcome Preclinical Krieg et al., 2016

SR 49059/SR-121463A Vasopressin V1a/V2 receptor Decrease brain edema Preclinical Krieg et al., 2015

Anatibant (LF16-0687) Bradykinin B2 receptor Reduce brain edema and ICP Preclinical Zweckberger and Plesnila, 2009

Anatibant (LF16-0687Ms) Bradykinin B2 receptor Reduce ICP, improve functional outcome Clinical Marmarou et al., 2005

Propranolol/Metoprolol β2 adrenergic receptors Reduce blood glutamate levels Preclinical Zlotnik et al., 2012

BQ788 ETB ETB antagonist, decreases brain edema Preclinical Michinaga et al., 2018

ML-7 MLCK Inhibit MLCK, reduce edema Preclinical Rossi et al., 2013

Pioglitazone PPARγ Reduce brain edema Clinical/Preclinical Deng et al., 2020

Bumetanide NKCC1/KCC2 Reduce brain edema Clinical/Preclinical Sawant-Pokam et al., 2020

Glibenclamide Sur1-Trpm4 Reduce edema, improve functional outcome Clinical/Preclinical Jha et al., 2021

Bicarbonate ASIC Reduced edema and functional deficits Preclinical Yin et al., 2013

KB-R7943 NHE-1 Reduce edema Preclinical Zhao et al., 2008

Acetazolamide AQP4 Reduce edema Preclinical Glober et al., 2019

Poloxamer 188 Plasmalemma Attenuate TBI-induced brain edema, regulate AQP
mRNA expression

Preclinical Bao et al., 2012

Exendin-4 Glucagon-like peptide-1
receptor

Attenuate genes expressions related with dementia Preclinical Tweedie et al., 2016

Lactadherin Unknown Reduce cerebral edema, promote microvesicle
clearance

Preclinical Zhou et al., 2018

Ghrelin Unknown (multiple potential) Decreases the expression of AQP4 Preclinical Lopez et al., 2012

Ethanol Unknown Reduce AQP mRNA Preclinical Wang et al., 2013

DHA Nrf2 signaling pathway Decrease ROS and NOX2 Preclinical Zhu et al., 2020

Guanosine Glutamine synthetase Suppress glutamate uptake, decrease ROS
Production and Na+/K+-ATPase activity

Preclinical Gerbatin et al., 2017

DAPT (Notch inhibitor) Notch pathway Decrease NOX2 and ROS level Preclinical Zhang H. M. et al., 2018

L-733,060 NK1R Inhibit NK1R and release of cytochrome c, reduce
ROS

Preclinical Li et al., 2019

ω-3 PUFAs Unknown (multiple potential) Inhibit ROS expression Preclinical Ren et al., 2017

Catalase ICAM-1 Reduce ROS Preclinical Lutton et al., 2017

the TBI outcomes in some clinical trials (Gaab et al., 1994;
Marshall et al., 1998; Asehnoune et al., 2014). For instance,
treatment with dexamethasone is failed to improve the Modified
Glasgow Coma Scale for the patients with TBI (Gaab et al.,
1994). A low-dose of hydrocortisone and fludrocortisone have no
effect on the outcome of patients with severe TBI (Asehnoune
et al., 2014). However, the emerging pre-clinical studies have
been focused on the agents and drugs that can directly target the
environmental inflammasome, cytokines, or chemokines, some
of them may also alternatively change the macrophage/microglia
polarization or regulate classical NF-κB pathway (Table 2 and
Figure 3).

To exert the anti-inflammatory effect, the agents or molecule
may target certain type of immune cells to enhance their function,
change the phenotypes, inhibit the secretion of pro-inflammatory
factors, or enhance the secretion of anti-inflammatory factors
(Table 2). There are several agents attenuate inflammation by
inhibiting the accumulation and activation of immune cells, such
as microglia, T cells, astrocytes, and monocytes (Prabhakara
et al., 2018; Chen Y. et al., 2020; Hummel et al., 2020;
Bennett et al., 2021). More studies have focused on the process
of shifting from M1 microglial phenotype to the M2. For
instance, scriptaid, a HDAC inhibitor has been found to play
a critical role in shifting microglia/macrophage polarization

by upregulating glycogen synthase kinase 3 beta (GSK3β)
(Wang et al., 2015). The experimental studies demonstrate
that small molecule, such as ω-3 PUFA, GP1a (cannabinoid
receptor-2 agonist), attenuate pro-inflammatory M1 macrophage
polarization, and increased anti-inflammatory M2 polarization
via virous pathways (Chen et al., 2017; Lin et al., 2017; Braun
et al., 2018; Chen X. et al., 2018).

Genes associated with chemotaxis (CCL2, CCL5, and CCL7),
cytokine signaling (IL-6, IL-1β, TNF-β1, TNF-α, and IL-10)
can be regulated or specifically inhibited by several agents or
drugs, such as 3,6′-dithioPom/Pom (Lin C. T. et al., 2020),
2ccPA (Hashimoto et al., 2018), erythropoietin (Robertson et al.,
2014), salvianolic acid B (Chen et al., 2011), taurine (Su et al.,
2014), melatonin (Dehghan et al., 2018), cenicriviroc (Morganti
et al., 2016), methylene blue (Fenn et al., 2015), HET0016
(Shu et al., 2019), dimethyl fumarate (Casili et al., 2018),
and perampanel (Chen et al., 2017). The agents exert anti-
inflammatory effect mainly by suppressing the pro-inflammatory
factors, e.g., TNF-α, IL-1β, and IL-6, while promoting anti-
inflammatory factors, e.g., IL-10 and TGF-β1. For mechanisms,
NLRP3 inflammasome attracted much attention in recent years.
For instance, oridonin suppresses the expression of NLRP3
inflammasome to decrease the secretion of IL-1β and IL-18 (Yan
et al., 2020). In addition, small-molecule NLRP3 inflammasome
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TABLE 2 | The pharmacologic agents with anti-inflammatory effect in the microenvironment.

Agents Target Main function Stage References

Teriflunomide DHODH Inhibit microglia accumulation Preclinical Prabhakara et al., 2018

ATRA Unknown Protect against astrogliosis and axonal injury Preclinical Hummel et al., 2020

D-Sino Microglia/macrophages Shift macrophage/microglia polarization toward M2 Preclinical Sharma et al., 2020

Proteoglycan 4 TLR2/4 and CD44 Curtail the post-traumatic influx of monocytes Preclinical Bennett et al., 2021

Scriptaid HDAC Shift microglia/macrophage polarization to M2 Preclinical Wang et al., 2015

3,6′-dithioPom TNF-α Lower TNF-α levels, ameliorate astrogliosis Preclinical Lin C. T. et al., 2020

ω-3 PUFA SIRT1 Shift from the M1 microglial phenotype to the M2 Preclinical Chen X. et al., 2018

2ccPA Autotaxin Reduce Iba1 level, suppress IL-1β, IL-6, TNF-α and
TNF-β1, increase M2 phenotype

Preclinical Hashimoto et al., 2018

Cyclosporin A mPTP Reduces T-cell counts and activation Clinical Chen L. et al., 2020

GP1a (CB2R agonist) CB2R Attenuate pro-inflammatory M1 macrophage polarization,
increase anti-inflammatory M2 polarization

Preclinical Braun et al., 2018

Erythropoietin IL-1 and TNF block
erythropoietin production

Increase favorable outcomes without increasing
complications

Clinical Robertson et al., 2014

Phillyrin PPARγ Inhibit the proinflammatory response, suppress NF-κB in
microglia

Preclinical Jiang et al., 2020

Bisperoxovanadium PTEN Inhibit MCP-1 and AKT/NF-κB p65 pathway Preclinical Liu et al., 2019

Salvianolic acid B Unknown (multiple potential) Suppress TNF-α and IL-1β, enhance IL-10 and TGF-β1 Preclinical Chen et al., 2011

Taurine Unknown (multiple potential) Decrease 17 cytokines Preclinical Su et al., 2014

Melatonin Unknown Decrease levels of IL-6 and TNF-α, Increase IL-10 Preclinical Dehghan et al., 2018

Cenicriviroc CCR2/5 Decrease gene expression of CCL5, CCL2, CCL7 Preclinical Morganti et al., 2016

Methylene blue Unknown Attenuate microglial activation, reduce IL-1β, increase IL-10 Preclinical Fenn et al., 2015

HET0016 20-HETE Decrease the expression of TNF-α, IL-1β, increase the
expression of IL-4, IL-10

Preclinical Shu et al., 2019

Dimethyl fumarate NF-κB/Nrf-2 pathway Reduce IL-1β and TNF-α levels Preclinical Casili et al., 2018

Perampanel AMPAR Suppresses the level of TNF-α and IL-1β, increase IL-10
and TGF-β1

Preclinical Chen et al., 2017

Oridonin NLRP3 Reduce secretion of IL-1β and IL-18 Preclinical Yan et al., 2020

NS309 Potassium SK Channel Inhibit NF-κB, decreased pro-inflammatory cytokines Preclinical Chen et al., 2019

inhibitor, MCC950, reduces neuroinflammation, preserves BBB
integrity, alleviates TBI-induced loss of tight junction proteins,
and attenuate cell death in a CCI mice model (Xu et al., 2018).
Potassium SK Channel Activator NS309 inhibit NF-κB activation
and further decreased the levels of pro-inflammatory cytokines
and chemokines (Chen et al., 2019).

Agents in Microenvironment Targeting
Blood-Brain Barrier
As we have discussed, BBB breakdown and the associated
microvascular hyperpermeability are hallmark features of
TBI pathological change. Thus, the agents contributing
to the maintenance of BBB integrity may enhance the
microenvironment and further exert brain protective
function in TBI.

The efforts aimed at modification of molecular components of
the BBB, e.g., TJ, AJ, and BM have shown promising therapeutic
effect in treating TBI (Table 3). In recent years, various mediators
targeting TJ, AJ, and BM proteins has been confirmed to play
important roles in BBB repairment following TBI. Cyclosporin
A antagonist CsA has been found to attenuate MMP-9 responses
and enhances BBB repair in TBI animal model (Main et al., 2018).
Other compounds or molecules, such as microRNA-9-5p agomir

(Wu et al., 2020), FABP7 (Rui et al., 2019), mdivi-1 (Wu
et al., 2018), bosentan (Michinaga et al., 2020), SB-3CT (Jia
et al., 2014), also have effect on expression of the BM proteins
(mainly MMP-2 and MMP-9) (Table 3). These agents could
inhibit the expression of BM proteins to protect against BBB
disruption through different signaling pathways. For instance, by
targeting Ptch-1, microRNA-9-5p could alleviate BBB disruption
though activating the Hedgehog pathway and inhibiting NF-
kB/MMP-9 pathway, and further promote the recovery of
neurological dysfunction in TBI (Wu et al., 2020). Wang et al.
(2016) demonstrated that rhubarb, a traditional Chinese herbal
medicine, prevented activation of gp91phox subunit and protect
the BBB via modulating NADPH oxidase/ROS/ERK/MMP-9
signaling pathway.

Besides to suppress the BM proteins, TJ and AJ proteins are
also considered as main targets for BBB protection following
TBI. A study has demonstrated that P7C3-A20, a compound that
stabilizes the cellular energy levels, could increase the expression
of TJ proteins in different region of the brain, e.g., claudin-5
in the cortex and hippocampus, and zona occludens-1 in the
cortex (Vázquez-Rosa et al., 2020). Other agents or drugs, such as
proteoglycan 4, rhFGF21 (Bennett et al., 2021), sesamin (Liu et al.,
2017), capsazepine (TRPV1 inhibitor) (Yang D. X. et al., 2019),
glibenclamide (Xu et al., 2017), TIMP1 (Tang et al., 2020), and
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FIGURE 3 | Anti-inflammation strategies in microenvironment. Short- and long-term inflammation response and pharmacologic agents in TBI. The agents in the red
boxes showed anti-inflammatory effect in the different stages of inflammatory response.

TIMP3 (Menge et al., 2012) also have the effect on the expression
of TJ and AJ proteins, such as claudin 5, occludens-1, and ZO-1.

Molecules and Factors in
Microenvironment for Neurogenesis
In a neuropathological condition, the damaged brain can activate
a system of self-repair by promoting neurogenesis. Although
brain tissue is poor at self-regeneration, in some cases, the
quiescent cells can be mitotically activated by the vinous factors
in the microenvironment. Recently, the emerging pre-clinical
studies have investigated that stem cell transplantation is a
novel method for treatment of TBI (Richardson et al., 2010;
Koliatsos et al., 2015). However, this therapy has very low rates
of cell survival due to the unbefitting microenvironment (Riess
et al., 2002). Thus, targeting the specific molecules and factors
to enhance the neuro-microenvironment considered to be the
strategy. Recent studies show that numerous secrete factors can
promote the endogenous repair response, i.e., chemokine stromal
cell-derived factor 1α (SDF-1α) (Addington et al., 2015), cytokine
signaling-2 (SOCS2) (Basrai et al., 2016), carbon monoxide
(Choi et al., 2016), brain-derived neurotrophic factor (BDNF)
(Failla et al., 2015; Shi et al., 2016), fibroblast growth factor
(FGF2) (Nichols et al., 2013), and Wnt3a (Zhao Y. et al., 2016;

Table 4). A new study reported that repopulating microglia
can promote brain repair after TBI by regulating IL-6 and
IL-6 receptor to support neurogenesis (Willis et al., 2020).
In addition, mild hypothermia (MHT) therapy mitigates the
degree of microenvironment and benefit for neurogenesis
(Chen et al., 2016).

Other pathways to enhance the microenvironment for
neurogenesis is exosomes delivery (Lai et al., 2013; Zhang
et al., 2016). The exosomes are kind of vesicles that carry
proteins and RNAs for intercellular communication, and
usually have ability to cross the BBB and reach the brain
parenchyma. Among them, MSCs-derived exosomes might
play an essential role in neurogenesis following TBI and
promise to be a novel and valuable therapeutic strategy (Xiong
et al., 2017; Yang et al., 2017; Chen Y. et al., 2020). The
injection of exosomes derived from the MSCs effectively improve
functional recovery after TBI (Zhang Y. et al., 2015). However,
the cellular and molecular mechanism of this neurogenic process
remains unclear. The majority of the studies are inclined to
believe that the MSCs participate in neurogenesis after TBI
is not their cell replacement effects but their secretion-based
paracrine effect (Zhang et al., 2016). The exosomes-induced
microenvironment acts as a crucial role in the regulation of
plasticity and homeostasis in the neurogenesis process. The
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TABLE 3 | The agents in microenvironment targeting BBB components.

Agents Target Main function Stage References

Bryostatin-1 Protein kinase C Increase in the tight junction proteins Preclinical Lucke-Wold et al., 2015

Cyclosporin A MMP-9 Decrease the level of MMP-9, enhances BBB repair Preclinical Main et al., 2018

P7C3-A20 Endothelial cells Increased TJ proteins Preclinical Vázquez-Rosa et al., 2020

MicroRNA-9-5p agomir Ptch-1 Inhibit NF-κB/MMP-9 pathway Preclinical Wu et al., 2020

FABP7 Caveolin-1 Protect against BBB disruption, inhibit MMP-2/9 Preclinical Rui et al., 2019

Mdivi-1 Drp1 Inhibit the expression of MMP-9 Preclinical Wu et al., 2018

Bosentan ET-1 ET antagonists, reduces BBB alter the expression of MMP-9 Preclinical Michinaga et al., 2020

Proteoglycan 4 TLR2/4 and CD44 Prevent the post-traumatic loss of tight junction protein claudin 5 Preclinical Bennett et al., 2021

rhFGF21 FGFR1/β-klotho complex Upregulate TJ and AJ proteins Preclinical Chen J. et al., 2018

Sesamin Unk (multiple potential) Alleviate loss of the TJ proteins Preclinical Liu et al., 2017

Capsazepine TRPV1 Decreases loss of TJ proteins Preclinical Yang D. X. et al., 2019

Glibenclamide JNK/c-jun signaling pathway Elevate TJ protein expression Preclinical Xu et al., 2017

SB-3CT MMP-9 Inhibit MMP-9 Preclinical Jia et al., 2014

TIMP1 CD63/integrin β1 complex Enhance endothelial structure stability Preclinical Tang et al., 2020

TIMP3 Endothelial cells Promotes AJ stability Preclinical Menge et al., 2012

Rhubarb gp91phox subunit Protect BBB by inhibiting NADPH oxidase/ROS/ERK/MMP-9
pathway

Preclinical Wang et al., 2016

TABLE 4 | The molecules and factors in the microenvironment for neurogenesis.

Molecules/Factor Target Main function Stage References

Diazepam GABAA receptors Block aberrant post-traumatic neurogenesis Preclinical Villasana et al., 2019

Thyroid hormone (T3) Multiple cells Promoted adult neurogenesis via neuron–NSC crosstalk Preclinical Lin C. et al., 2020

Thioperamide Histamine H3 receptor Promote neurogenesis Preclinical Liao et al., 2019

7,8-dihydroxyflavone
(BDNF mimic)

Multiple cells Increase the number of adult-born immature neurons Preclinical Zhao S. et al., 2016

Cerebrolysin GABAB receptors Reduce astrogliosis and axonal injury and promote
neurogenesis

Preclinical Zhang et al., 2019

Wnt3a Wnt/β-catenin pathway Increase neurotrophins and regenerative activities Preclinical Zhang J. Y. et al., 2018

Neurotrophin-3 Multiple cells Pro-neurogenesis Preclinical Hao et al., 2017

IL-6 IL-6 trans-signaling Repopulate microglia, modulate the microenvironment Preclinical Willis et al., 2020

MSC-FGF21 Multiple cells Improve impaired hippocampal neurogenesis Preclinical Shahror et al., 2020

MSC-generated exosomes Unknown Increase the number of newly generated endothelial cells Preclinical Zhang Y. et al., 2015

Exo-miR-124 TLR4 Promote the M2 polarization, enhance neurogenesis in
hippocampus

Preclinical Yang Y. et al., 2019

miR-216-5p HMGB1 Inhibit cell apoptosis and promote neuron regeneration Preclinical Xu et al., 2020

injection of exosomes derived from the MSCs effectively improve
functional recovery after TBI. In the recent years, exosomes
related studies of TBI focused on miRNAs in exosomes,
such as miR-124 and miR-216a-5p (Zhang L. et al., 2015;
Yang Y. et al., 2019; Long et al., 2020; Table 4). Moreover,
in clinical study, the exosomes can be used as the injury-
specific biomarkers for TBI diagnose and considered to be
potential therapeutic target (Moyron et al., 2017). Additional
emphasis may be placed on promoting endogenous neurogenesis
to limit cognitive impairment and to promote repair of
the injured brain.

CONCLUSION

Traumatic brain injury is a complex, heterogeneous, and
mechanobiology problem with the dynamic changes

of the microenvironment following BBB disruption
(Logsdon et al., 2015; Cash and Theus, 2020). Not only cells
and vascular conditions are dramatically changed (Logsdon
et al., 2017; Johnson et al., 2018), but also the microenvironment
around neurons and other cells. Thus, understanding the
underlying mechanisms of these variations after TBI are
necessary in appropriate patient management (Lucke-Wold
et al., 2015). Abundant studies of brain microenvironment have
emerged in the areas of brain tumors and cancers (Subramani
et al., 2013; Batista et al., 2015; Placone et al., 2016). However,
the evidence of microenvironmental changes following TBI
is inadequate. In this review, we briefly overviewed the
structure and function of BBB, the pathophysiologic process
of microenvironmental changes following TBI-induced BBB
breakdown, such as CBF alteration, water imbalance, cerebral
metabolism imbalance, and the accumulation of inflammatory
molecules. By summarizing the current literature, we also listed
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the potential intervention to target BBB-disruption-related
microenvironment for post TBI recovery. The key aspects
included are reducing toxic substances and in the intercellular
matrix, eliminating excessive water, inhibiting inflammation,
protecting BBB components, and promoting neurogenesis.
Over the up-coming years, more emerging information on
the mechanism of microenvironmental changes following TBI-
induced BBB disruption may help in formulating the novel
strategies for post-TBI treatment.
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