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Pain afflicts more than 1.5 billion people worldwide, with hundreds of millions suffering
from unrelieved chronic pain. Despite widespread recognition of the importance of
developing better interventions for the relief of chronic pain, little is known about the
mechanisms underlying this condition. However, transient receptor potential (TRP) ion
channels in nociceptors have been shown to be essential players in the generation
and progression of pain and have attracted the attention of several pharmaceutical
companies as therapeutic targets. Unfortunately, TRP channel inhibitors have failed
in clinical trials, at least in part due to their thermoregulatory function. Botulinum
neurotoxins (BoNTs) have emerged as novel and safe pain therapeutics because of their
regulation of exocytosis and pro-nociceptive neurotransmitters. However, it is becoming
evident that BoNTs also regulate the expression and function of TRP channels, which
may explain their analgesic effects. Here, we summarize the roles of TRP channels in
pain, with a particular focus on TRPV1 and TRPA1, their regulation by BoNTs, and briefly
discuss the use of BoNTs for the treatment of chronic pain.
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INTRODUCTION

Pain is defined as an unpleasant sensory and emotional experience associated with or resembling
that associated with actual or potential tissue damage (Kuner, 2010). Acute pain is transient and
beneficial and mainly functions as a protective warning for the body. In contrast, chronic pain is a
persistent and debilitating condition for which there are few treatment options (Treede et al., 2015).
Chronic pain manifests in symptoms such as spontaneous pain, hyperalgesia (i.e., increased pain
from a stimulus that normally provokes pain), and allodynia (i.e., pain due to a stimulus that does
not normally provoke pain) (Treede et al., 1992). Chronic pain has numerous etiologies, including
arthritis-induced inflammatory pain, cancer pain, diabetic neuropathy, spinal cord injury, and
nerve injury. Although pain results from the complex processing of neural signals at different levels
of the nervous system (Costigan et al., 2009; Reichling and Levine, 2009), targeting the beginning
of the pain pathway and aim potential treatments directly at receptors and ion channels expressed
in nociceptors (i.e., peripheral sensory neurons that detect pain) seems to be a logical strategy for
developing novel analgesics.

Among all the receptors and ion channels expressed in nociceptors, transient receptor potential
(TRP) ion channels have been extensively studied for their participation in various acute and
chronic pain conditions (Lumpkin and Caterina, 2007), with TRPV1 and TRPA1 having emerged as
especially promising targets for analgesics. Both TRPV1 and TRPA1 act as polymodal detectors in
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nociceptors, and their activation by endogenous mediators and
natural products (e.g., capsaicin and mustard oil, respectively)
can elicit pain (Scholz and Woolf, 2002; Jardin et al., 2017).
Further proof of the involvement of these ion channels in pain
is provided by their well-reported transcriptional, translational,
and trafficking regulation, leading to nociceptor hyperexcitability
and pain after inflammation or nerve injury (Hucho and Levine,
2007). For these reasons, several pharmaceutical companies
have been conducting clinical trials of TRPV1 and TRPA1
antagonists. However, these antagonists, mainly those of TRPV1,
have demonstrated undesirable adverse side effects such as
hyperthermia (Gavva et al., 2008), reduced heat pain threshold,
and reduced taste perception (Patapoutian et al., 2009). These
findings suggest that additional strategies should be pursued to
target TRP channels and alleviate pain.

Botulinum neurotoxins (BoNTs) have demonstrated analgesic
effects in various animal models of acute and chronic pain, and
the use of BoNT serotype-A (BoNT/A) is currently approved
for the treatment of chronic migraines (Matak et al., 2019).
However, knowledge of the mechanisms by which BoNTs inhibit
pain is currently limited. Although it has been suggested that
such inhibition is driven by the modulation of pro-nociceptive
neuropeptides, BoNTs have been shown to interact with and
regulate TRP channels, which may underlie their analgesic effects.

In this succinct review, we focus on TRPV1 and TRPA1
as essential nociceptive mediators, present the underlying
mechanisms of their interaction and regulation by BoNTs, and
finally propose BoNTs as a novel strategy to treat various acute
and chronic pain conditions.

TRANSIENT RECEPTOR POTENTIAL
CHANNELS IN CHRONIC PAIN

TRP channels are non-selective ion channels mostly located on
the plasma membrane of various cell types and are divided
into six main groups: TRPV (vanilloid), TRPA (ankyrin), TRPM
(melastatin), TRPC (canonical), TRPP (polycystin), and TRPML
(mucolipin) (Chung and Caterina, 2007). The first suggestion
that TRP channels were key receptors involved in sensory
transduction emerged from the identification of TRPV1 as
a capsaicin- and heat-activated ion channel (Rosenbaum and
Simon, 2007). Cutaneous injection of capsaicin, the active
ingredient of chili peppers, induces pain-like sensations such
as burning, itching, piercing, pricking, and stinging (O’Neill
et al., 2012). Similarly, several pungent chemicals (e.g., mustard
and cinnamon, but not capsaicin) activate TRPA1, which can
also lead to pain-like sensations (Patapoutian et al., 2009). TRP
channels can participate in acute and chronic pain through
transcriptional and translational regulation, post-translational
changes, and altered trafficking (Patapoutian et al., 2009). Among
neurons, nociceptors uniquely express TRPV1 and TRPA1, which
make them particularly interesting in the chronic pain states,
since their expression and function after inflammation and nerve
injury contribute to the pathological pain states by increasing
sensitivity to nociceptive stimuli (i.e., peripheral sensitization)
(Hucho and Levine, 2007).

During inflammation, both TRPV1 and TRPA1 transcripts
are increased through the neuronal C-C chemokine receptor
type 2 (CCR2), which is activated by the release, by macrophages,
of pro-inflammatory protein-1α (MIP-1α/CCL3) (Jung et al.,
2008). Similarly, oxidative stress products generated by tissue
damage and inflammation lead to increased expression and
function of TRP channels, resulting in neuronal hyperexcitability
and pain (Hucho and Levine, 2007). It has also been shown
that pro-inflammatory mediators such as tumor necrosis
factor (TNF)-α engage both the PKC and PKA signaling
pathways, altering the activity and function of TRPV1
(Premkumar and Ahern, 2000; Chuang et al., 2001; Vellani
et al., 2001; Bhave et al., 2002, 2003; Crandall et al., 2002;
Numazaki et al., 2002, 2003; Prescott and Julius, 2003),
whereas nerve growth factor (NGF), acting via p38 mitogen-
activated protein kinases (MAPKs), increases the translation
of TRPV1 in the cell body, and promotes its trafficking to
the peripheral terminals (Ji et al., 2002). In addition to the
complexity of TRP channels, their trafficking to the cellular
membrane is followed by further activation of second-messenger
pathways and post-translational modifications such as channel
phosphorylation and glycosylation (Morenilla-Palao et al., 2004;
Zhang et al., 2005).

Nerve injury also leads to regulation of TRP channels.
Although the expression and function of TRPV1 are
altered after spinal nerve ligation, with decreased TRPV1
expression in injured neurons likely due to trophic support
(Michael and Priestley, 1999), increases in TRPV1 and
TRPA1 expression in neighboring non-injured neurons are
accompanied by hyperalgesia and allodynia (Hudson et al.,
2001; Obata et al., 2005). It has been suggested that the
increase in TRP channel expression in non-injured neurons
is driven by the release of neuropeptides, growth factors,
and pro-inflammatory mediators from injured neurons
(Fukuoka et al., 2001; Sexton et al., 2014). Indeed, TNF-
α alone has been shown to increase the fraction of dorsal
root ganglion (DRG) neurons expressing TRPV1 (Hensellek
et al., 2007). Likewise, a study reported TRPV1 and TRPA1
trafficking in calcitonin gene-related peptide (CGRP)-releasing
vesicles, induced by TNF-α via membrane fusion mediated
by soluble N-ethylmaleimide-sensitive factor attachment
protein receptors (SNAREs) in trigeminal ganglion neurons
(Meng et al., 2016).

Although TRP channels convert thermal, chemical, and
noxious stimuli into electrical activity on the peripheral terminals
of sensory neurons, they are also found on the synapses in
the central terminals of nociceptors projecting into the dorsal
horn of the spinal cord (Patapoutian et al., 2009). Interestingly,
activation of synaptic TRPV1 and TRPA1 by intrathecal
injections of capsaicin and mustard oil, respectively, results in an
increase in synaptic release of both glutamate and neuropeptides
(Raisinghani et al., 2011). Increased expression of TRPV1 in
synaptic terminals after nerve injury leads to increased release
of inflammatory neuropeptides such as CGRP and substance P
(SP), which also enhance glutamatergic neurotransmission and
pain (Kanai et al., 2005; Lappin et al., 2006; Lee and Kim, 2007;
Spicarova et al., 2011).
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These results suggest a possible role of TRP channel
inhibitors, similar to that of BoNTs, as synaptic modulators,
by which they can reduce depolarization and control calcium
influx and synaptic vesicle exocytosis. Unfortunately, direct
inhibition of TRP channels, such as TRPV1, is associated with
thermoregulation and adverse side effects. However, targeting
the synaptic function of TRP channels and exocytosis may
offer a novel and safer therapeutic approach to treat acute
and chronic pain.

BOTULINUM NEUROTOXIN: INHIBITION
OF EXOCYTOSIS

BoNTs are among the most potent biological toxins produced by
neurotoxigenic strains of anaerobic and spore-forming bacteria
of the genus Clostridium (Mohanty et al., 2001). However, local
injection of a small amount of BoNTs is safe and has a wide
spectrum of applications for both therapeutic and cosmetic
indications (Truong et al., 2009; Dressler, 2012). BoNTs have
been traditionally classified into seven serotypes distinguishable
with animal antisera and designated with the letters A to
G, among which BoNT/A is a commercially available human
indication (Simpson, 1981). BoNTs are typical AB-structured
toxins, consisting of a heavy chain with membrane acceptor–
binding and translocation domains, and a smaller light chain with
a catalytic domain that mediates the cytosolic proteolytic activity
of these neurotoxins.

The basis of BoNT therapeutic indications is the neuronal
inhibition of exocytosis, as they are known for their cleavage
of synaptic components of the SNARE complex proteins, thus
blocking the release of neurotransmitters, such as CGRP, SP,
and glutamate (Nakov et al., 1989; McMahon et al., 1992;
Pirazzini et al., 2017). The inhibition of exocytosis by botulinum
toxin involves three steps: binding, internalization/translocation,
and cleavage of the target (Schiavo et al., 2000). Neuronal
tropism is due to a high-affinity interaction of the BoNT heavy
chain with double acceptors consisting of gangliosides and
synaptic vesicle 2 (SV2A-C) protein isoforms expressed on the
extracellular side of the neuronal membrane (Muraro et al.,
2009). Internalization of BoNTs occurs via endocytosis, and in
the endosome the light chain dissociates from the heavy chain
by reduction of the disulfide bridge, being then released into
the cytoplasm by an energy- and pH-dependent pore-forming
process (Pirazzini et al., 2017). In the cytoplasm, the BoNT light
chain cleaves one of the proteins that make up the SNARE
complex: synaptobrevin or vesicle-associated membrane proteins
(VAMPs), syntaxin-1, and synaptosomal-associated protein 25
(SNAP-25) (Sudhof and Rothman, 2009). This cleavage is highly
specific to each BoNT serotype and directed toward unique
peptide bonds within the sequence of their respective SNARE
protein targets (Pirazzini et al., 2017); for instance, it has been
reported that BoNT/A cleaves 9 amino acids at the C-terminus
of SNAP-25 (Lebeda et al., 2010). This cleavage results in
reduced affinity of the intracellular Ca2+ sensor synaptotagmin
to SNAP-25, thus impairing exocytosis and the synaptic release
of neurotransmitters (Tang et al., 2006; Pan et al., 2009), which,
in our context, propagate pain.

Although inhibition of exocytosis and prevention of
neurotransmitter release are fundamental mechanisms
underlying the neuronal effects of BoNTs, new mechanisms
are emerging to explain the specific and potent analgesic effects
of these toxins, including their interactions with and regulation
of TRP channels.

BOTULINUM NEUROTOXIN: INHIBITION
OF TRP CHANNELS

Sensory information is not equally affected by BoNTs, and it
has been reported that BoNT/A mostly alleviates pathological
inflammatory pain and mechanical sensation (Cui et al., 2004;
Bach-Rojecky et al., 2005; Luvisetto et al., 2006, 2007; Park
et al., 2006). This suggests distinct neuronal tropisms for
specific sensory neurons. It is also possible that BoNT/A
may favor particular sensory neurons with high expression of
SV2 proteins that facilitate its entry (Yiangou et al., 2011).
Yet another interesting hypothesis stems from the observation
that BoNT/A interacts with TRPV1 both structurally and
functionally (Li and Coffield, 2016), and therefore selectively
enters TRPV1-expressing sensory neurons. Indeed, it has been
reported that SNAP-25 cleavage and the analgesic effects of
BoNT/A were prevented in animals following denervation of
TRPV1-expressing sensory neurons achieved with high doses
of capsaicin, an agonist of TRPV1 (Apostolidis et al., 2005;
Camprubi-Robles et al., 2009; Shimizu et al., 2012). In line with
this preclinical observation, neuropathic pain patients with lower
thermal deficits, and thus presumably with lower impairment
of TRPV1-expressing sensory neurons, responded better to
BoNT/A treatment (Attal et al., 2016).

BoNTs reduce the expression of TRP channels in sensory
neurons (Figure 1). It has been reported that BoNT/A treatment
decreases TRPV1 expression in sensory neurons projecting from
the dura mater (Shimizu et al., 2012) and significantly reduces
the overexpression of injury-induced TRPV1 protein, but not
mRNA, in sensory neurons of the DRG (Xiao et al., 2013). It
has been proposed that BoNT/A might block the translocation
of TRPV1 to the sensory neurons, as reduced surface expression
of the TRPV1 protein was observed in vivo and in vitro
(Gazerani et al., 2006; Tugnoli et al., 2007; Meng et al., 2009;
Wang et al., 2011). Another in vitro study using a recombinant
chimera of BoNT/A and BoNT/E also showed a decrease in
TNF-α-dependent TRPV1 and TRPA1 protein translocation to
the cellular membrane of sensory neurons (Wang et al., 2017;
Nugent et al., 2018).

BoNTs may interfere with TRP channel protein translocation
by cleavage of SNAP-25, impairing both synaptic Ca2+

concentration and exocytosis (Meng et al., 2009; Meng et al.,
2014). Cleavage of SNARE proteins by BoNTs has been
demonstrated in sensory neurons. In particular, BoNT/A has
been reported to impair exocytosis and recruitment of the
TRPV1 receptor to the plasma membrane of nociceptors after
stimulation with capsaicin (Gazerani et al., 2006; Gazerani et al.,
2009) or mustard oil (Paterson et al., 2014). TRPA1 contributes
to mechanical currents in the plasma membrane, and it has
been proposed that BoNT/A may also decrease the activity
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FIGURE 1 | Mechanism of BoNT/A action on the exocytosis of neuropeptide CGRP that forms the SNARE complex along with trafficking of TRPV1 and TRPA1 on
the same synaptic vesicle. (A) Release of CGRP due to nerve injury and inflammation. The CGRP-containing vesicle, packaged with co-expressed TRPV1 and
TRPA1 along with the VAMP protein, moves toward the plasma membrane for the synaptic fusion with SNAP-25 and syntaxin anchored in the plasma membrane.
Overexpression of such channels evokes the hyperexcitability of the sensory neurons, ultimately contributing to hyperalgesia and allodynia. (B) Blockage of CGRP
release by BoNT/A through the prevention of the complete assembly of the synaptic fusion SNARE complex. BoNT/A binds to the cell membrane and enters the
sensory neuron by endocytosis; the light chain is translocated to the cytoplasm and claves specific SNAP-25 sites, resulting in inhibition of both the exocytosis of
neuropeptides and the surface delivery of TRPV1 and TRPA1. BoNT/A, botulinum neurotoxin serotypes A; CGRP, calcitonin gene-related peptide; DRG, dorsal root
ganglion; SANP-25, synaptosomal-associated protein of Mr = 25k; TRP, transient receptor potential; VAMP, vesicle-associated membrane protein or synaptobrevin.

of mechanosensitive receptors and TRPA1 in dural afferents
(Burstein et al., 2014; Paterson et al., 2014).

Altogether, these studies demonstrated that BoNTs have
distinct tropism toward TRPV1-expressing sensory neurons
and can lead to decreased expression and translocation of
TRP channels, resulting in a reduction in synaptic Ca2+

concentration, release of neurotransmitters, and alleviation of
pain. Table 1 shows a list of published studies in which the
analgesic effect of BoNT is achieved via modulation of TRP
channels in various types of pain.

BOTULINUM NEUROTOXIN: PAIN
TREATMENT

Botulinum toxin treatments have been demonstrated to
be effective and are currently used for the treatment of
chronic migraine, while clinical trials are ongoing for their

use in other pain conditions (Burstein et al., 2014). The
efficiency and potency of these treatments can be due
to BoNT multiple actions in nociceptors, modulation of
TRP channels, and synaptic transmission. BoNT/A has
shown analgesic effects in both acute and chronic animal
models of pain. However, such analgesic effects are still
debatable, and this toxin cannot attenuate the spinal release
of neuropeptides and the pain induced by injection of
a high dose of capsaicin. This is probably due to the
limited cleavage of SNAP-25 by BoNT/A, which fails to
prevent the formation of a functional SNARE complex
(Meng et al., 2009, 2014).

To improve the functional and analgesic effects of BoNTs,
researchers have started to study additional BoNT serotypes
and transgenic chimeras. In particular, BoNT/E cleaves 26
residues from SNAP-25 (compared with nine cleaved by
BoNT/A) and may better prevent the formation of the SNARE
complex (Meng et al., 2009; Wang et al., 2011). However,
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TABLE 1 | Analgesic effects of BoNTs through TRP channels in various types of pain.

References BoNT
serotype

Administration
site/Doses

Pain type TRP
channel

Action
duration

Results

Shimizu et al.
(2012)

BoNT/A Subcutaneous (0.25–5
ng/kg) in rat TGN

Nociceptive
pain

TRPV1 2–14 days - SNAP-25 cleavage
- ↓ TRPV1 protein expression
- ↓ Nociceptive behaviors
- Blockage of TRPV1 trafficking

Xiao et al.
(2013)

BoNT/A Intraplantar (10 or 20 U/kg)
in rat

Neuropathic
pain (L5 VRT)

TRPV1 3–21 days - Reversed hyperalgesia
- ↓ TRPV1 overexpression

Luvisetto et al.
(2015)

BoNT/A Subcutaneous in the inner
side of the medial part of
hindlimb thigh (15 pg) of
mice ** pre-treated

Nociceptive
pain

TRPV1
TRPA1

21 days - ↓ Nociceptive behaviors

Fan et al.
(2017)

BoNT/A Percutaneous in tibial-tarsal
hind joint (2.5–25 U/kg) of
rats

Adjuvant-
arthritis
pain

TRPV1
TRPA1

3–14 days - ↓ mechanical allodynia and thermal
hyperalgesia
- ↓ Protein levels of TRPV1 in DRG
- ↓ TRPV1 expression in DRG
- ↓ Percentage of TRPV1-positive neurons with
CGRP

Wang et al.
(2017) and
Nugent et al.
(2018)

LC/E-BoNT/A Intraplantar (25–75 U/Kg) in
rat

Neuropathic
pain (SNI)

14 days - Blockage of CAP-evoked CGRP release
- Greater analgesic effect than BoNT/A or
pregabalin (short-acting pain modulator)
- Sustained and prolonged effect by a second
injection

TRPV1
TRPA1

- ↓ Functional activities in TRPV1/A1 with no
basal surface contents of rat DRG
- ↓ TNF-α-dependent surface trafficking of
TRPV1/A1 and calcium influx in rat DRG

CAP, capsaicin; CGRP, calcitonin gene-related peptide; DRG, dorsal root ganglion; SANP-25, synaptosomal-associated protein of Mr = 25k; SNI, spared nerve injury;
TGN, trigeminal neuron; TNF-α, tumor necrosis factor-α; TRP, transient receptor potential; VRT, ventral root transection. ** indicates supplementary information.

BoNT/E has a shorter half-life than BoNT/A (Wang et al.,
2017). Therefore, researchers have generated a recombinant
chimera of BoNT/A and BoNT/E which has shown analgesic
effects for both mechanical and cold hypersensitivity in a
spared nerve injury animal model of neuropathic pain, which
is particularly refractory to current pain drugs. Indeed, a
single injection of this chimera demonstrated long-lasting
analgesic effects (up to 2 weeks) that were far superior
to those of multiple injections of BoNT/A or pregabalin
(Wang et al., 2017).

Despite these promising data, there are still challenges to
be considered for the use of BoNTs in chronic pain. Some
reports indicated the potential generation of antigens against
BoNTs, which may explain the non-responsiveness to BoNTs
in a handful of patients (Zuber et al., 1993; Stephan et al.,
2014). Antigen generation may be reduced by developing novel
BoNT formulations using alternative serotypes or different
formulations (i.e., reducing protein load including adjuvants), or
by minimizing exposure (i.e., increasing injection intervals and
decreasing doses) (Bellows and Jankovic, 2019).

Several alternative serotypes are currently being explored, with
BoNT/C appearing to be a promising substitute for BoNT/A, with
similar efficacy and duration of action and, most importantly,
demonstrated analgesic efficiency in BoNT/A-resistant patients
(Eleopra et al., 1997, 2006). Similarly, BoNT/F showed positive
results, although with shorter duration, in BoNT/A-resistant
patients (Greene and Fahn, 1993). Different formulations are
being tested, and Allergan Inc. developed a new BoNT/A

formulation (Botox) containing less neurotoxin complex protein
per unit, which was reported to generate fewer antigens in
patients injected with the new formulation when compared with
those injected with older ones (Jankovic et al., 2003).

BoNT treatment requires multiple cutaneous injections
producing discomfort in patients that may require anesthesia
(Kranz et al., 2006; Weiss and Lavin, 2009), as well as
potential extravasation in blood vessels (Naumann and Jankovic,
2004; Roche et al., 2008) and undesired adverse effects such
as hematoma, bruising, or muscular weakness, highlighting
the importance of developing alternative delivery methods
(Wyndaele and Van Dromme, 2002; Wollina and Konrad,
2005). Novel and diverse delivery methods are under robust
investigation, including physical approaches such as transdermal
and transepithelial delivery, chemical approaches for recruiting
enhancers to increase permeability, or the use of liposomes,
together with the previously mentioned method of creating
recombinant forms for more precise delivery to target organs
(Fonfria et al., 2018).

CONCLUSION

Chronic pain is a debilitating condition with few treatment
options. Since their identification in nociceptors, interest in the
role of TRP channels in pain and as therapeutic targets has
steadily increased. Small-molecule inhibitors directly targeting
TRPV1 and TRPA1 have been tested in various clinical trials
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without success, due to adverse side effects. Here, we summarized
how TRP channel expression and function can be indirectly
modulated by BoNTs, which are regarded as effective and
safe analgesics. In particular, BoNT/A has been demonstrated
to change the expression and translocation of TRP channels
in nociceptors, and its analgesic effects have been proven
experimentally in different acute and chronic pain conditions,
as well as in the clinical treatment of chronic migraine. We
believe that the continuous improvement of BoNTs and a better
understanding of their mechanisms of action, including those
involving the regulation of TRP channels, will lead to the clinical
treatment of additional chronic pain conditions.
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