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The glucagon-like peptide-1 (GLP-1) plays important roles in the regulation of food
intake and energy metabolism. Peripheral or central GLP-1 suppresses food intake and
reduces body weight. The electrophysiological properties of neurons in the mammalian
central nervous system reflect the neuronal excitability and the functional organization of
the brain. Recent studies focus on elucidating GLP-1-induced suppression of feeding
behaviors and modulation of neuronal electrophysiological properties in several brain
regions. Here, we summarize that activation of GLP-1 receptor (GLP-1R) suppresses
food intake and induces postsynaptic depolarization of membrane potential and/or
presynaptic modulation of glutamatergic or GABAergic neurotransmission in brain
nuclei located within the medulla oblongata, pons, mesencephalon, diencephalon, and
telencephalon. This review may provide a background to guide future research about
the cellular mechanisms of GLP-1-induced feeding inhibition.

Keywords: GLP-1, electrophysiological property, feeding behavior, spontaneous firing activity, synaptic
transmission

INTRODUCTION

The pre-proglucagon (Gcg) gene product peptides include glucagon-like peptide 1 (GLP-1), GLP-
2, oxyntomodulin (OXM), intervening peptide 1 (IP1), and glicentin. The GLP-1-producing
preproglucagon (PPG) neurons located in the nucleus tractus solitarius (NTS) and the intermediate
reticular nucleus of the medulla oblongata are the major source of endogenous GLP-1 in the
central nervous system, which project widely throughout the central nervous system especially the
autonomic control areas (Merchenthaler et al., 1999; Barrera et al., 2011; Llewellyn-Smith et al.,
2011; Holt et al., 2019; Muller et al., 2019). Ablation of the PPG neurons in the NTS largely reduces
the level of GLP-1 in the hypothalamus, brainstem, and spinal cord (Holt et al., 2019). In addition to
the central source, peripheral GLP-1 is released from enteroendocrine L-cells in intestinal mucosa
(Eissele et al., 1992) which plays an important role in regulating glucose homeostasis (Edwards
et al., 1999; Williams, 2009). Furthermore, a small population of PPG neurons has been identified
within the olfactory bulb with only local projection (Thiebaud et al., 2016). Central GLP-1 binds to
GLP-1 receptor (GLP-1R) to exert many important effects including modulation of energy balance,
cardiovascular system, learning and memory, rewarding effect of food, and thermogenesis (Trapp
and Cork, 2015). GLP-1R belongs to G protein-coupled receptors with predominate Gαs coupling,
leading to activation of adenylate cyclase and in turn increased levels of cAMP (Mayo et al., 2003).
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GLP-1R expressing cells are widely expressed in mouse
and non-human primate brain (Cork et al., 2015; Heppner
et al., 2015). Recent immunocytochemistry revealed the
distribution and subcellular localization of GLP-1R in rat brain
(Farkas et al., 2021).

GLP-1 is involved in the regulation of food intake and
energy metabolism. Both human clinical trials and animal
experiments demonstrated that peripheral or central GLP-1
and GLP-1 analogs suppress food intake and reduce body
weight (Turton et al., 1996; Hayes et al., 2008, 2011; Dossat
et al., 2011; Heppner and Perez-Tilve, 2015). A recent study
revealed that central and peripheral GLP-1 inhibits feeding
behaviors through independent gut-brain circuits (Brierley et al.,
2021). Activation of GLP-1R in a variety of brain regions,
including the hypothalamus (Schick et al., 2003), mesolimbic
system (Dossat et al., 2011; Alhadeff et al., 2012; Dickson
et al., 2012), and hindbrain (Hayes et al., 2011; Alhadeff et al.,
2014), reduces food intake. Drugs targeting GLP-1R have been
used as weight loss and anti-diabetic glucose-lowering therapies
(Heppner and Perez-Tilve, 2015).

The brain is the most intricate network structure which
facilitates a concerted communication between single neurons,
different neuronal populations, and remote brain (Gupta et al.,
2020). Neurons are the basic structural and functional units in
the central nervous system. The electrophysiological properties of
neurons such as the spontaneous firing activities and the synaptic
neurotransmission in the mammalian central nervous system
reflect the neuronal excitability and the functional organization
of the brain (Llinás, 1989, 2014). To date, measuring the
electrophysiological features of neurons remains one of the most
valuable methods to study the functional phenomena of the
nervous system. The specific deficits of the electrophysiological
properties contribute to some brain diseases (Bernard and
Shevell, 2008; Klassen et al., 2011; Tai et al., 2014). Therefore,
manipulation of the electrophysiological properties including
the spontaneous firing activity of central neurons may play
roles in the manifestation of some neurological disorders. For
example, the electrophysiological characteristics of dopaminergic
neurons in the substantia nigra pars compacta change before the
appearance of motor symptoms in parkinsonian mice (Qi et al.,
2017), while excitatory stimulation of dopaminergic neurons
may improve the survival of the neurons (Michel et al., 2013).
Many studies have demonstrated that GLP-1 suppresses feeding
behaviors and modulates the spontaneous firing activities and/or
glutamatergic or GABAergic neurotransmission in multiple
brain regions. This review highlights the activation of GLP-1R-
induced suppression of feeding as well as the modulation of
neuronal electrophysiological properties of several brain regions
in medulla oblongata, pons, mesencephalon, diencephalon,
and telencephalon.

MEDULLA OBLONGATA AND PONS

The medullar oblongata in rodents and monkeys expresses
a high level of GLP-1R (Merchenthaler et al., 1999; Cork
et al., 2015; Heppner et al., 2015; Farkas et al., 2021). In

human brain tissue of autopsies, GLP-1R is also expressed
in the medullar oblongata including the area postrema, the
dorsal motor nucleus of the vagus, and the NTS (Farr et al.,
2016). GLP-1 modulates feeding behaviors in the medullar
oblongata. Recently, Gaykema et al. (2017) reported that
selectively chemogenetic stimulation of caudal medulla pre-
proglucagon-producing neurons reduces food intake in both
fed and fasted states and suppresses glucose production.
Patch-clamp electrophysiological recordings in brain slices
further demonstrated that chemogenetic activation selectively
depolarizes neuronal membrane potential and increases the
firing frequency of labeled medulla pre-proglucagon-producing
neurons without affecting unlabeled neurons.

The NTS is the main source of endogenous GLP-1 within the
brain (Barrera et al., 2011; Holt et al., 2019). Application of the
stable GLP-1R analog exendin-4 into the medial subnucleus of
the NTS (mNTS) reduces high-fat diet intake (Alhadeff and Grill,
2014; Table 1). However, electrophysiological studies revealed
that GLP-1 or exendin-4 does not change the spontaneous
firing activity as well as the synaptic transmission suggesting
lack of functional GLP-1R in PPG neurons (Hisadome et al.,
2010). Consistent with the electrophysiological results, the
morphological study showed a weak/faint expression of GLP-
1R in the NTS. It is reported that astrocytes in NTS are
components of the GLP-1 signaling system which is involved in
food intake control (Reiner et al., 2016). Intracerebroventricular
application of GLP-1R agonist binds to GLP-1R on both neurons
and astrocytes in the NTS. Activation of GLP-1R induces
an increase in intracellular Ca2+ in 40% of NTS astrocytes,
while selective inhibition of astrocyte function in NTS abolishes
exendin-4-induced inhibition of food intake (Reiner et al.,
2016). Therefore, complex mechanisms in both neurons and
astrocytes may be involved in GLP-1-induced modulation of food
intake in the NTS.

The parabrachial nucleus (PBN) in the pons is associated
with the regulation of feeding behaviors. The PBN receives
direct GLP-1 projections from NTS neurons (Richard et al.,
2014). Stimulation of GLP-1R with exendin-4 in the PBN
reduces food intake and therefore decreases body weight in rats.
Electrophysiological evidence further revealed that application of
exendin-4 results in a remarkable increase in the spontaneous
firing rate of the PBN neurons (Richard et al., 2014; Figure 1A).
Using the methods of immuno-electron microscopy, Farkas et al.
(2021) recently revealed a very widespread distribution of GLP-
1R fibers in rat brain suggesting the possible presynaptic effects of
GLP-1R in the central nervous system. As the external part of the
lateral parabrachial nucleus (LPBN) expresses the highest density
of GLP-1R immunoreactive fibers (Farkas et al., 2021), further
electrophysiological studies are needed to study the possible
presynaptic modulation of the electrophysiological activities of
the PBN neurons.

MESENCEPHALON

The ventral tegmental area (VTA) is a possible brain region for
GLP-1-induced suppression of food intake. Functional study
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TABLE 1 | Activation of GLP-1R suppresses feeding behaviors and modulates neuronal electrophysiological properties in several brain nuclei.

Brain
regions

Neurons Associated effects in feeding behaviors Electrophysiological effects of activating
GLP-1R

GLP-1R
agonists

References

Activation of GLP-1R Ablation of GLP-1R

mNTS PPG neurons Reduction of high-fat
diet intake

N/A No change in firing activity and
synaptic transmission

Exendin-4
GLP-1

Hisadome et al., 2010;
Alhadeff and Grill, 2014

PBN Unidentified neurons Reduction of food
intake and body
weight

N/A Increase in firing rate Exendin-4 Richard et al., 2014

VTA DAergic VTA-to-NAc
projection neurons

Suppression of
high-fat food intake

N/A Increase of sEPSCs frequency
Inhibition of mEPSCs

Exendin-4 Mietlicki-Baase et al.,
2013;
Wang et al., 2015

ARC POMC neurons N/A N/A Depolarization and increase in
firing rate via TRPC5 channels

Increase of EPSCs frequency

Liraglutide Secher et al., 2014; He
et al., 2019

NPY/AgRP neurons N/A N/A Hyperpolarization via enhanced
GABAA receptor-mediated
neurotransmission

Liraglutide Secher et al., 2014; He
et al., 2019

Kisspeptin
(Kiss1)-expressing
neurons

N/A N/A Depolarization and increase in
firing rate

Liraglutide Heppner et al., 2017

PVN Unidentified neurons Reduction of food
intake

Increase of food intake
and induction of
obesity

Hyperpolarization via
enhancement of inhibitory
postsynaptic transmission

Depolarization or inward current
accompanied by an increase in
membrane conductance

Exendin-4
GLP-1

Larsen et al., 1997;
McMahon and Wellman,
1998; Acuna-Goycolea
and van den Pol, 2004;
Cork et al., 2015

CRH neurons N/A N/A Enhancement of EPSC amplitude Liu et al., 2017

LH Orexinergic neurons N/A N/A Depolarization and increase in
firing rate postsynaptically via
sodium-dependent
non-specific cationic
conductance

Enhancement of both
glutamatergic and GABAergic
neurotransmission
presynaptically

Exendin-4 Acuna-Goycolea and van
den Pol, 2004

PVT Unidentified neurons Reduction of food
intake

Decrease of
food-seeking and
food-motivated
behaviors

N/A Decrease in firing rate probably via
suppression of glutamatergic
synaptic transmission

Exendin-4 Ong et al., 2017

NAc MSNs Suppression of food
intake

N/A Reduction of evoked action
potential postsynaptically

Increase of mEPSCs frequency
presynaptically

Exendin-4 Dossat et al., 2011;
Mietlicki-Baase et al.,
2014

BNST Unidentified neurons Food suppression
during the dark
phase

N/A Inward current and depolarization
accompanied by an increase in
membrane conductance

Increase or decrease in firing rate
Hyperpolarization probably via

opening of potassium channels

GLP-1 Cork et al., 2015
Williams et al., 2018

HC CA1 neurons Reduction of food
intake and body
weight

Increase of food
motivated
behaviors

Increase and then decrease in
firing activity

Active fragment of
GLP-1, GLP-1
(7-36) amide
GLP-1

Oka et al., 1999; Hsu
et al., 2015, 2018

Depolarization in most
hippocampal
neurons, and
hyperpolarization in
a few neurons

Cork et al., 2015;
Gullo et al., 2017

OB MCs N/A N/A Increase of the excitability
probably via inhibition of
voltage-dependent potassium
channel

GLP-1
Exendin-4

Thiebaud et al., 2016;
Schwartz et al., 2021

ARC, arcuate nucleus; BNST, bed nucleus of the stria terminalis; CRH, corticotropin-releasing hormone; EPSCs, excitatory postsynaptic currents; HC, hippocampus; LH,
lateral hypothalamus; MCs, mitral cells; mEPSCs, miniature excitatory postsynaptic currents; mNTS, medial subnucleus of the nucleus tractus solitaries; MSNs, medium
spiny neurons; N/A, not applicable; NAc, nucleus accumbens; NPY/AgRP, Neuropeptide Y/Agouti gene related peptide; OB, olfactory bulb; PBN, parabrachial nucleus;
POMC, proopiomelanocortin; PVN, paraventricular nucleus; PVT, paraventricular thalamic nucleus; VTA, ventral tegmental area.

revealed that application of GLP-1R antagonist into the VTA
attenuates peripheral application of exendin-4-induced anorectic
effects (Mietlicki-Baase et al., 2013). Electrophysiological

recordings revealed that exendin-4 increases the frequency
of spontaneous excitatory postsynaptic currents (sEPSCs) of
VTA dopaminergic neurons suggesting the possible presynaptic
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FIGURE 1 | A schematic diagram describing the major electrophysiological effects of activating GLP-1R in brain areas involved in modulation of feeding behaviors.
(A) GLP-1 (including its agonists) binds to postsynaptic GLP-1R to depolarize membrane potential and/or increase firing rate in most brain regions, but hyperpolarize
membrane potential in a few brain areas. Several ionic mechanisms, including non-selective cation channel, K+ channel, and TRPC5 channel, may be involved in
activation of GLP-1R-induced depolarization or hyperpolarization. (B) In addition to postsynaptic receptors, GLP-1 acts on presynaptic GLP-1R to modulate both
glutamatergic and GABAergic neurotransmission. ARC, arcuate nucleus; BNST, bed nucleus of the stria terminalis; Glu, glutamate; CRH, corticotropin-releasing
hormone; HC, hippocampus; LH, lateral hypothalamus; NAc, nucleus accumbens; NPY/AgRP, Neuropeptide Y/Agouti gene-related peptide; OB, olfactory bulb;
PBN, parabrachial nucleus; POMC, proopiomelanocortin; PVN, paraventricular nucleus; PVT, paraventricular thalamic nucleus; VTA, ventral tegmental area.

modulation of GLP-1R on glutamatergic terminals. Behavioral
study also demonstrated that modulating AMPA/kainite, but
not NMDA, receptor-mediated glutamatergic neurotransmission
within VTA is involved in GLP-1-induced intake-suppressive
effects (Mietlicki-Baase et al., 2013). In addition, intra-VTA
application of exendin-4 suppresses high-fat food intake, which
is consistent with the results of chemogenetic activation of
endogenously released GLP-1 nerve terminals in the VTA (Wang
et al., 2015). In contrast to the enhancement of spontaneous
excitatory postsynaptic transmission (Mietlicki-Baase et al.,
2013), using retrograde labeling of VTA to nucleus accumbens
(NAc) medial shell projecting neurons, in vitro patch-clamp
recordings showed that exendin-4 selectively inhibits the
miniature excitatory postsynaptic currents (mEPSCs) within
the dopaminergic VTA-to-NAc projection neurons (Wang
et al., 2015; Figure 1B) suggesting the presynaptic inhibition of
glutamatergic neurotransmission. As NAc is also an important
brain region associated with GLP-1-induced feeding suppression,

further electrophysiological studies are necessary to explore
the contribution of glutamatergic neurotransmission to
endogenously released GLP-1-induced suppression of high-fat
food intake in the VTA.

DIENCEPHALON

The arcuate nucleus (ARC) of the hypothalamus plays a
particularly important role in the central regulation of food
intake (Bouret et al., 2004). Two distinct types of neurons within
the ARC, proopiomelanocortin (POMC) and Neuropeptide
Y (NPY)/Agouti gene-related peptide (AgRP) neurons, play
important roles in energy balance and glucose homeostasis
(Gautron et al., 2015; Caron et al., 2018). Activation of both the
NPY/AgRP neurons and POMC neurons coordinates the activity
of the paraventricular nucleus (PVN), promoting stimulation
or inhibition of feeding, respectively. It is well known that
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the anti-diabetic drug, long-acting GLP-1R agonist, liraglutide
reduces body weight. The highest level of GLP-1R expressing
cells, detected by transgene expression (Cork et al., 2015), in situ
hybridization (Merchenthaler et al., 1999; Heppner et al., 2015),
and immunocytochemistry (Farkas et al., 2021), is present in
the ARC. In vitro patch-clamp electrophysiological recordings
revealed that modulating the electrophysiological properties of
both POMC and cocaine- and amphetamine-regulated transcript
(CART) neurons (POMC/CART neurons) and NPY/AgRP
neurons are the possible mechanism of liraglutide-induced
weight loss (Secher et al., 2014). Peripheral application of
fluorescently labeled liraglutide binds GLP-1R within the ARC
(Secher et al., 2014). Liraglutide depolarizes membrane potential
and increases the spontaneous action potentials directly through
postsynaptic GLP-1R in the ARC neurons expressing POMC
(Secher et al., 2014; He et al., 2019). In peripheral pancreatic β

cells, GLP-1 depolarizes membrane potential through activation
of Na+-permeable TRPM4 and TRPM5 channels (Shigeto et al.,
2015). Similarly, TRPC5 channels are involved in liraglutide-
induced postsynaptic excitation of arcuate neurons (He et al.,
2019). In addition to perikarya and dendrites expression, high
level of GLP-1R was also observed in axons of ARC neurons
(Farkas et al., 2021). Consistently, electrophysiological recordings
showed that liraglutide increases the EPSCs frequency of POMC
neurons suggesting the modulation of presynaptic excitatory
synaptic transmission (He et al., 2019).

GABA released by the NPY/AgRP neurons is very important
to the control of food intake probably via inhibiting the anorectic
effects of the POMC neurons. Further electrophysiological
study showed that, opposite to the effects on arcuate POMC
neurons, GLP-1 hyperpolarizes arcuate NPY neurons indirectly
via increased GABAA receptor-mediated neurotransmission
of local GABAergic interneurons (Secher et al., 2014; He
et al., 2019). The Kisspeptin (Kiss1)-expressing neurons
located in the ARC are responsible for gonadotropin-releasing
hormone (GnRH)/luteinizing hormone (LH) release (Li
et al., 2009; Han et al., 2015). The Kiss1 neurons may be a
key integrator of metabolic status with GnRH/LH release.
Liraglutide increases the action potential firing and causes a
direct membrane depolarization of ARC Kiss1 cells in brain
slices (Heppner et al., 2017).

Morphological studies demonstrated a particularly high
density of GLP-1R expression in the PVN of mice (Cork et al.,
2015), rats (Merchenthaler et al., 1999; Farkas et al., 2021),
and primates (Heppner et al., 2015). Early study showed that
exendin-4 induces diverse responses including depolarization,
hyperpolarization, and no response in paraventricular
hypothalamic neurons. The GLP-1-induced hyperpolarization of
PVN neurons may be induced by an enhancement of inhibitory
postsynaptic transmission (Acuna-Goycolea and van den Pol,
2004). Consistent with exendin-4-induced depolarization,
Cork et al. (2015) also revealed that bath application of GLP-
1 induces an inward current which is accompanied by an
increase in membrane conductance. Activation of GLP-1R with
exendin-4 enhances the amplitude but not the frequency of
AMPA receptor-mediated EPSCs in PVN corticotropin-releasing
hormone (CRH) neurons and thus promotes the excitability

of CRH neurons postsynaptically (Liu et al., 2017). Functional
studies revealed that activation of GLP-1R in the PVN reduces
food intake (Larsen et al., 1997; McMahon and Wellman,
1998). Consistently, postnatal depletion of GLP-1R in the PVN
increases food intake and induces obesity (Liu et al., 2017).

Different neural circuits have been proposed to maintain
energy homeostasis. Both central GLP-1 and orexin pathways
play an important role in neural integration of satiation and food
reward. GLP-1 projections from NTS to NAc and VTA promote
satiation and reduce food reward, while orexinergic projection
from lateral hypothalamus to NTS suppresses satiation and
increases food reward (Dossat et al., 2011). Early study revealed
a direct modulation of GLP-1R on the electrophysiological
activities of orexinergic neurons in the lateral hypothalamus.
Application of exendin-4 depolarizes the membrane potential
and increases the spontaneous discharge rate of orexinergic
neurons in the lateral hypothalamus (Acuna-Goycolea and van
den Pol, 2004). The GLP-1-induced excitation of orexinergic
neurons is a directly postsynaptic effect that may be mediated
by sodium-dependent non-specific cationic conductances. In
addition, activation of GLP-1R enhances both glutamatergic
and GABAergic neurotransmission presynaptically in orexinergic
neurons. However, exendin-4 does not change the membrane
potential as well as the firing rate of melanin-concentrating
hormone (MCH) neurons in the lateral hypothalamus (Acuna-
Goycolea and van den Pol, 2004). The GLP-1R activation-
induced both postsynaptic and presynaptic modulation of
orexinergic neurons may suggest some complex integration of
satiation and food reward.

The paraventricular thalamic nucleus (PVT) neurons receive
GLP-1 innervation from NTS and express GLP-1R (Cork et al.,
2015; Farkas et al., 2021). PVT is involved in energy balance
and reward control. Behavioral tests showed that intra-PVT
application of exendin-4 reduces food intake and decreases
food-seeking and food-motivated behaviors (Ong et al., 2017).
Further electrophysiological recordings revealed that exendin-4
inhibits the spontaneous action potential firing in PVN neurons
projecting to NAc core. Suppression of glutamatergic synaptic
transmission may be associated with the reduced excitability of
GLP-1R activation (Ong et al., 2017).

TELENCEPHALON

Moderate density of GLP-1R is expressed in both the cell
bodies and fibers of the NAc shell and core (Cork et al.,
2015; Heppner et al., 2015; Farkas et al., 2021). Activation
of GLP-1R in NAc core induces suppression of food intake
(Dossat et al., 2011; Mietlicki-Baase et al., 2014). Current-
clamp recordings illustrated that exendin-4 induces a small
reduction in evoked action potential from medium spiny
neurons (MSNs) suggesting slightly postsynaptic effects. In
addition to perikarya expression, GLP-1R is also expressed
on the processes of NAc (Farkas et al., 2021) suggesting
some possibly presynaptic modulation of the NAc activity.
Indeed, further electrophysiological studies demonstrated that
exendin-4 predominantly activates presynaptic GLP-1R in
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NAc to increase the frequency of AMPA/kainate receptor-
mediated mEPSCs. Therefore, the enhancement of glutamatergic
AMPA/Kainate signaling is probably involved in GLP-1-induced
inhibition of food intake (Mietlicki-Baase et al., 2014). In
addition to modulating food intake, recent publication revealed
that NAc is also a possible molecular target for GLP-1-
induced addiction behaviors (Hernandez and Schmidt, 2019;
Hernandez et al., 2019). Intra-NAc application of exendin-
4 increases the spontaneous firing rate of MSNs in cocaine-
experienced rats and reduces cocaine-seeking behavior in rats
(Hernandez et al., 2019).

Morphological studies revealed that the neurons in the bed
nucleus of the stria terminalis (BNST) express a high level
of GLP-1R (Cork et al., 2015; Heppner et al., 2015; Farkas
et al., 2021). Application of GLP-1 elicits an inward current
and depolarization accompanied by an increase in membrane
conductance (Cork et al., 2015). Recently, under the model
of cell-attached patch-clamp recordings, Williams et al. (2018)
reported that GLP-1 induces either an increase or a decrease of
spontaneous firing rate in GLP-1R expressing BNST neurons.
Further whole-cell patch-clamp recordings revealed that GLP-1
induces either a depolarizing or hyperpolarizing response, while
dopamine evokes response in a reciprocal fashion to that of
GLP-1. The GLP-1-induced hyperpolarization is accompanied by
an increase in membrane conductance suggesting the opening
of potassium channels (Williams et al., 2018). In addition,
functional study demonstrated that local injection of GLP-1
into the BNST induces food suppression during the dark phase
(Williams et al., 2018).

Inconsistent distribution patterns of GLP-1R in the
hippocampus have been reported by different morphological
studies (Cork et al., 2015; Jensen et al., 2018; Farkas et al.,
2021). For example, a relatively high level of GLP-1R-
immunoreactivity was observed in mouse hippocampus (Jensen
et al., 2018) while a low level of GLP-1R-immunoreactivity
was revealed in rat hippocampus (Farkas et al., 2021), which
may suggest some species difference of the GLP-1R expression
in the hippocampus. However, functional studies did detect
the effects of GLP-1R in the hippocampus. Early in vivo
electrophysiological recordings showed that juxtacellular
application of the active fragment of GLP-1, GLP-1 (7–36) amide
induces an increase and then a decrease of firing activity in
the hippocampal CA1 neurons. Modulation of non-NMDA
glutamate receptor-mediated synaptic transmission is involved
in GLP-1-induced effects (Oka et al., 1999). Bath application of
GLP-1 induces a depolarization in most hippocampal neurons
and a hyperpolarization in a few neurons (Cork et al., 2015).
In addition, in vitro electrophysiological recordings further
demonstrated that exendin-4 elicits an early fast excitatory
response dose-dependently (Gullo et al., 2017). Consistent
with the electrophysiological recordings, behavioral studies
showed that activation of GLP-1R in the ventral hippocampal
CA1 regions reduces food intake and body weight, while
targeted ventral CA1 GLP-1R knockdown increases food-
motivated behaviors (Hsu et al., 2015, 2018). In addition to
modulating feeding behaviors, GLP-1 promotes the proliferation
of progenitor cells and increases immature neurons in the

hippocampus and in turn reverses memory impairment (Lennox
et al., 2014). Activation of GLP-1R with liraglutide improves
cognition decline of db/db mice via increasing neuronal
survival in the CA1, CA3, and DG regions of hippocampus
(Zhang et al., 2021).

The olfactory bulb is the basic brain region responsible for
olfactory information. The deep short axon cells (dSACs) in
the granule cell layer (GCL) of olfactory bulb, named PPG
neurons, could synthesize and release GLP-1 and in turn
modulate the activity of the first-order neurons, mitral cells
(MCs) which are the primary projection neurons of the olfactory
bulb (Thiebaud et al., 2016). Positive expression of GLP-1R
is detected in the GCL of olfactory bulb (Cork et al., 2015).
Patch-clamp recordings revealed that bath application of GLP-
1 or exendin-4 increases the spontaneous firing frequency and
decreases the excitation threshold for MC firing in olfactory bulb.
Decreasing the conductance of voltage-dependent potassium
channels, Kv1.3, is the possible ionic mechanism of GLP-1-
induced enhancement of MC excitability (Thiebaud et al., 2016).
Recently, further studies revealed that optogenetic activation of
PPG neurons in the GCL generates biphasic inhibition-excitation
response in MCs. However, a single pulse light stimulation
of PPG neurons produces only glutamatergic EPSCs, but not
IPSCs, in granule cells. The stimulation of PPG neurons-
induced glutamatergic EPSCs is much faster than that of
GABAergic IPSCs in MCs. Under the condition of blocking
GABAergic neurotransmission, light stimulation of PPG neurons
results in an increase in the excitation of MCs suggesting
the involvement of PPG neurons in shaping the MC firing
patterns (Thiebaud et al., 2019). It is known that, in addition
to olfactory physiology, MC activity is also associated with
feeding and nutritional status (Fadool et al., 2011; Aimé et al.,
2014; Thiebaud et al., 2014; Riera et al., 2017). The olfactory
acuity is regulated by the metabolic state and therefore the
olfactory system is a driver of feeding behavior. Enhancement
of neuronal excitability of the major output neurons of the
olfactory bulb via blocking voltage-dependent potassium channel
reduces body weight in obese mice (Schwartz et al., 2021).
Previous study suggested that chronic administration of fat in the
diet impairs the spontaneous firing rate of MCs (Fadool et al.,
2011), and reduces the amplitude of electro-olfactogram (EOG).
Furthermore, the volume of olfactory bulb is significantly smaller
in individuals with obesity and negatively correlated with body
mass index (BMI) (Poessel et al., 2020). Therefore, the GLP-1-
induced excitation of MCs, probably via inhibition of voltage-
dependent potassium channel conductance and enhancement
of glutamatergic neurotransmission, could lead to changed
excitability of higher olfactory cortical as well as hypothalamic
regions to change metabolic states.

CONCLUSION

Being a peptide involved in the regulation of food intake
and energy metabolism, GLP-1 has been demonstrated to
suppress food intake and reduce body weight. In this review,
we provide a description of recent advances of GLP-1-induced
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inhibition of feeding behaviors and modulation of neuronal
electrophysiological activities in multiple brain nuclei
located within the medulla oblongata, pons, mesencephalon,
diencephalon, and telencephalon (Table 1). Activation of GLP-1R
suppresses food intake and induces postsynaptic depolarization
of membrane potential (Figure 1A) and/or presynaptic
modulation of glutamatergic or GABAergic neurotransmission
(Figure 1B). Several ionic mechanisms such as non-selective
cation channel, voltage-dependent potassium channel, and
TRPC5 channel may be associated with activation of GLP-1R-
induced electrophysiological effects (Figure 1A). This review
may provide a rationale about the cellular mechanisms of
GLP-1-induced suppression of feeding behaviors.
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