
MINI REVIEW
published: 17 January 2022

doi: 10.3389/fnmol.2021.806376

Edited by:

Jaewon Ko,
Daegu Gyeongbuk Institute of

Science and Technology (DGIST),
South Korea

Reviewed by:
Guido Thomas Meijer,

Champalimaud Foundation, Portugal
Bartłomiej Szulczyk,

Medical University of Warsaw, Poland

*Correspondence:
José Fernando Maya-Vetencourt

maya.vetencourt@unipi.it

Specialty section:
This article was submitted to

Molecular Signalling and Pathways,
a section of the journal

Frontiers in Molecular Neuroscience

Received: 10 November 2021
Accepted: 17 December 2021
Published: 17 January 2022

Citation:
Skirzewski M, Molotchnikoff S,

Hernandez LF and
Maya-Vetencourt JF

(2022) Multisensory Integration: Is
Medial Prefrontal Cortex Signaling

Relevant for the Treatment of
Higher-Order Visual Dysfunctions?
Front. Mol. Neurosci. 14:806376.
doi: 10.3389/fnmol.2021.806376

Multisensory Integration: Is Medial
Prefrontal Cortex Signaling Relevant
for the Treatment of Higher-Order
Visual Dysfunctions?
Miguel Skirzewski1, Stéphane Molotchnikoff2,3, Luis F. Hernandez4 and
José Fernando Maya-Vetencourt5,6*

1Rodent Cognition Research and Innovation Core, University of Western Ontario, London, ON, Canada, 2Département de
Sciences Biologiques, Université de Montréal, Montreal, QC, Canada, 3Département de Génie Electrique et Génie
Informatique, Université de Sherbrooke, Sherbrooke, QC, Canada, 4Knoebel Institute for Healthy Aging, University of Denver,
Denver, CO, United States, 5Department of Biology, University of Pisa, Pisa, Italy, 6Centre for Synaptic Neuroscience, Istituto
Italiano di Tecnologia (IIT), Genova, Italy

In the mammalian brain, information processing in sensory modalities and global
mechanisms of multisensory integration facilitate perception. Emerging experimental
evidence suggests that the contribution of multisensory integration to sensory perception
is far more complex than previously expected. Here we revise how associative areas
such as the prefrontal cortex, which receive and integrate inputs from diverse sensory
modalities, can affect information processing in unisensory systems via processes
of down-stream signaling. We focus our attention on the influence of the medial
prefrontal cortex on the processing of information in the visual system and whether
this phenomenon can be clinically used to treat higher-order visual dysfunctions. We
propose that non-invasive and multisensory stimulation strategies such as environmental
enrichment and/or attention-related tasks could be of clinical relevance to fight cerebral
visual impairment.

Keywords: visual cortex, prefrontal cortex, multisensory integration, blindness, higher-order visual impairments,
CVI, rescue of vision, environmental enrichment

INTRODUCTION

The integration of sensory information underlies a coherent perception of the environment.
Initially, multisensory integration was thought to take place solely in dedicated brain regions
such as the association cortices (Ghazanfar and Schroeder, 2006; Driver and Noesselt, 2008) or
the superior colliculus (Stein and Arigbede, 1972; Wallace et al., 1996), which receive converging
inputs from multiple primary unisensory areas. There is evidence, however, that multisensory
interactions also occur in primary sensory systems. This is epitomized by the existence of
non-visual influences on visual cortical neurons (Fishman and Michael, 1973; Bulkin and Groh,
2006), non-auditory influences in the auditory cortex (Sams et al., 1991; Bourguignon et al., 2020),
and non-somatosensory influences on somatosensory cells (Jabbur et al., 1971; Zarzecki et al.,
1983). These early findings suggest that it may be possible to modulate unisensory perception
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by stimulating different sensory modalities. In light of this,
multisensory stimulation strategies that activate high-order
associative areas such as the prefrontal cortex (PFC) could be of
clinical relevance to fight different neurological disorders.

The nervous system relies on processes of sensory integration
in association cortices to generate behavioral responses to
changing environmental conditions. In primates, for instance,
physiological mechanisms that subserve decision-making
include the synchronized activity of the amygdala and
PFC. When monkeys decide whether a conspecific should
receive rewards, neuronal activity synchronization between
the basolateral amygdala (BLA) and the anterior cingulate
gyrus (ACCg) in the PFC is enhanced in the beta and gamma
frequency bands but not in cases of anti-social decisions (Dal
Monte et al., 2020). This points toward a facilitating role for
inter-regional synchrony in primate social behavior. Anatomical
projections between the ACCg and BLA have been described
(Klavir et al., 2013) and studies in primates using a reward-
allocation task demonstrated that there are neurons in the
ACCg that encode reward allocations to other conspecifics
(Chang et al., 2013).

Another example of multisensory integration that subserves
behavior is represented by the observation that amygdala
projections to the medial PFC (mPFC) seem to regulate
anxiety. Behavioral findings using the elevated plus maze and
the open field test revealed that the optogenetic activation
of BLA projections to the mPFC in freely moving mice
increases anxiety-related behavior whereas the optogenetic
inhibition of BLA inputs decreases it (Felix-Ortiz et al., 2016).
Consistently, hyperactivity of the BLA in humans (Rauch
et al., 2003) and rodents (Rosenkranz et al., 2010) has
been reported in anxiety disorders. In addition, the mPFC
shares reciprocal connections with the BLA (Hoover and
Vertes, 2007), and the enhanced neuronal activity in the

mPFC correlates with heightened anxiety-related behavior (Bi
et al., 2013). Of note, electrophysiological recordings in mice
observing a conspecific show that anterior cingulate cortex
(ACC) inputs to the BLA are necessary for observational
learning. Interestingly, optogenetically inhibiting ACC-BLA
projections prevents this behavioral phenomenon in rodents
(Allsop et al., 2018).

Multisensory Integration in the Brain
Phenomena of brain regions cross-talk have been brought to
light by different electrophysiological and imaging studies, which
have proved neuronal responses in the primary visual cortex
(V1) after single sound stimulation in mice (Iurilli et al.,
2012), cats (Morrell, 1972), primates (Rockland and Ojima,
2003; Clavagnier et al., 2004), and humans (Martuzzi et al.,
2007; Vetter et al., 2014). This notion has been confirmed by
the identification of different anatomical pathways that could
mediate auditory responses in V1 (Falchier et al., 2002; Komura
et al., 2005; Figure 1). It remains an open question whether
V1 responses, under pathological conditions, can be modified
after long-term sound stimulation. Recent experimental findings
in cats demonstrated that the prolonged presentation of an
auditory stimulus recalibrates the orientation selectivity of visual
cortical neurons. Extracellular recordings of neuronal activity
in anesthetized cats revealed that orientation tuning curves of
neurons in both supra-granular and infra-granular layers of
V1 significantly shift in response to a 12min-long presentation of
acoustic stimuli (Chanauria et al., 2019). Accordingly, pure tones
improve the representation of orientation and direction of visual
stimuli in mice (McClure and Polack, 2019). All these findings
show that V1 pyramidal neurons dynamically integrate features
of sound. Consistently, orientation selectivity in superficial layers
of V1 in mice is sharpened in the presence of a sound or
after optogenetic activation of A1 areas (Ibrahim et al., 2016).

FIGURE 1 | Multisensory integration in primary sensory areas. Representation of multisensory integration processes between PFC and diverse primary sensory
areas in the rodent brain. The PFC has been proposed as the source of top-down attention signals that modulate information processing in primary unisensory areas
in favor of the attended features (dashed arrows). Continuous arrows represent bidirectional modulation of information processing between diverse sensory
modalities. Figure created with BioRender.com.
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Layer 1 neurons in V1 are strongly activated by sounds whereas
layers 2/3 neurons activity is inhibited. Of note, suppressing
layer 1 activity reduces the cross-modal phenomenon in layers
2/3. This indicates that intracortical inhibitory/disinhibitory
processes in superficial layers of V1 modulate cross-modal
A1 signals that arrive at and modulate V1 activity. Imaging
studies in humans show that there might be salient locations
within V1 that respond to other sensory-specific cross-modal
inputs (Liang et al., 2013). Thus, it seems reasonable to
hypothesize that under appropriate conditions it might be
possible to permanently adjust the functional properties of visual
cortical neurons by long-term sound exposure. To what extent
this can be achieved in the impaired V1 and how much time this
phenomenon prevails remains to be investigated.

Multisensory phenomena have also been reported in the
primary auditory cortex (A1) after V1 stimulation. Recordings
of neuronal activity in A1 of alert monkeys exposed to audio-
visual stimuli revealed that reliability of neuronal responses
increases after the presentation of bimodal stimuli, as compared
to A1 activity when the visual stimulus does not match
sounds (Kayser et al., 2010). This suggests that multisensory
influences boost information processing in primary unisensory
areas. Electrophysiological recordings of A1 multiunit activity
in awake macaques have also shown somatosensory-auditory
interactions during sensory processing. Signals in the primary
somatosensory cortex (S1) seem to modulate the phase of
neuronal oscillations in A1 to ensure the arrival of auditory
inputs in a high excitability state thus amplifying neuronal
responses (Lakatos et al., 2007). Instead, A1 inputs arriving
during a low-excitability phase are normally suppressed. This
highlights an interesting role for neuronal oscillations in
information processing of sensory areas. On the other hand,
extracellular recordings in the barrel field of rats revealed that
simultaneous light flashing and whisker deflection enhances
S1 responses and resets the phase of neuronal networks
oscillations, as compared to S1 activation alone (Sieben et al.,
2013). The pharmacological silencing of V1 decreases but
does not abolish cross-modal effects on S1 oscillatory activity.
Consistently, there is anatomical connectivity between these
two sensory areas. V1 inputs seem to impact S1 processing
by modifying neuronal networks oscillations via corticocortical
projections and subcortical feedforward interactions. There is
also evidence that the reliability of sensory signals modulates
processes of sensory integration. Auditory stimuli influence
tactile perception whereas touch biases auditory perception.
Decreasing the intensity of signals reduces the influence of
audition on touch while increasing the effects of touch in
audition (Bresciani and Ernst, 2007).

Neuromodulators and Neuronal Networks
Interactions
In addition to intracortical inhibitory and excitatory processes,
neuromodulators such as acetylcholine (ACh), serotonin (5-
HT), norepinephrine (NE), and dopamine (DA) also play
a key role in integrating multisensory information, as they
are involved in the regulation of oscillatory network activity.
Arousal systems in the brain subserve the generation of cortical

activation and sensory-motor responsiveness. They work in
parallel and are grossly redundant, although differentiated in
their specific roles and behavioral responses they orchestrate.
For instance, basal forebrain ACh neurons give rise to ascending
projections that parallel those of the reticular formation
regulating wakefulness and arousal, and they promote cortical
activation during waking (Steriade et al., 1991) and rapid
eye movements during sleep (El Mansari et al., 1989). As
to 5-HT raphe neurons, early studies demonstrated that
stimulation of midbrain raphe nuclei positively correlates
with behavioral arousal (Jacogs et al., 1973), and they are
implicated in executive functions, motivation, learning, and
memory (Meneses and Liy-Salmeron, 2012). NE neurons in
locus coeruleus also have the capacity to influence different
cortical areas in virtue of a diffused innervation of the entire
brain (Jones and Moore, 1977). Such signals support aroused
waking states by activating the neocortex and hippocampus
(Berridge and Foote, 1991), and are involved in cognitive
functions such as attention and working memory (Aston-Jones
and Cohen, 2005). Finally, mesencephalic dopaminergic neurons
from the substantia nigra pars compacta (SNc) and ventral
tegmental area (VTA) constitute, respectively, the mesostriatal
and mesocorticolimbic systems (Bjorklund and Dunnett, 2007).
DA neurons in the SNc regulate voluntary movements and
postural reflexes while VTA neurons are involved in the
regulation of goal-directed behaviors, reward, attention, and
cognitive processing.

Previous reports have suggested that network circuitry
mechanismsmediated by the actions of diverse neuromodulatory
systems across mPFC and subcortical structures, can collectively
trigger further functional modifications of neuronal circuitries
in primary sensory areas. For instance, stimulation of basal
forebrain cholinergic neurons during spatial learning and
working memory tasks robustly increase neuronal responses,
cue detection ability, and long-term facilitation in A1, with a
clear expansion of the cortical area that represents the paired
frequency (Bentley et al., 2004; Keuroghlian and Knudsen,
2007; Bauer et al., 2012). There is also evidence that 5-HT
in the visual system may serve in mechanisms of attention,
arousal, and motivation. It has been reported that 5-HT
exerts a strong modulation of gamma oscillations in the
PFC of rats via 5-HT1A and 5-HT2A receptors (Puig et al.,
2010), suggesting a potential role in the control of neuronal
network activity in V1 depending on the animal’s behavioral
and/or motivational context (Seillier et al., 2017; Garner and
Keller, 2021). A recent study in humans highlighted that NE
modulates the activity and sensory perception in V1 (Gelbard-
Sagiv et al., 2018). In addition, NE seems to be an important
modulator of synchronic oscillatory activity in PFC that underlies
cognitive function (Dalley et al., 2004). It is still an open
question whether NE-evoked oscillatory activity in PFC can
directly or indirectly influence network activity in V1. Lastly,
studies in rodents and monkeys have also identified DA
neurons in SNc/VTA that make key contributions to associative
learning and decision-making, at least in part, by encoding
reward prediction errors (Schultz, 2016). Reports in rodents
(Shuler and Bear, 2006), monkeys (Arsenault et al., 2013;
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Stanisor et al., 2013), and humans (Serences and Saproo,
2010; Vickery et al., 2011) suggest that DA reward modulates
features representation in V1 while encoding reward uncertainty
in the mPFC (Starkweather et al., 2018). This suggests
that the interaction of network circuitry mechanisms across
cortical structures (including the mPFC and V1) is influenced
by a complex and heterogeneous neuromodulatory signaling
regulating neuronal excitability.

Top-Down Effects of PFC Signals on the
Visual Pathway
The generation of oneiric images during sleep illustrates the
influence of PFC signals on visual cortical areas. While imaging
experiments in humans have shown that the interaction between
the PFC and temporal-parietal association regions play a key
role in dream experience (Muzur et al., 2002; Eichenlaub et al.,
2014; Baird et al., 2018), different studies have demonstrated that
focal lesions in the mPFC, unilateral or bilateral, are consistently
associated with a marked decrease or total cessation of dreaming
during sleep, respectively (Solms, 2000). Likewise, it has been
reported that sleep promotes V1 plasticity in cats during early
development (Frank et al., 2001), such phenomenon being
dependent on endogenous cortical excitability in the sleeping
brain (Jha et al., 2005). This suggests that PFC activity, in
concert with other brain areas, modifies synaptic circuitries in
V1. Consistently, sleep facilitates synaptic plasticity-dependent
processes of visual discrimination learning (Stickgold et al.,
2000). It is no wonder, then, that rapid eye movement (REM)
phases of sleep in which dreaming largely occurs promote
experience-dependent dendritic spine remodeling in V1 (Zhou
et al., 2020).

Experimental evidence on how the PFC modulates sensory
responses in visual cortical areas also arises from studies of
attentional mechanisms (Chelazzi, 1995). Extensive research
performed in primates revealed that sub-threshold stimulation
of the frontal eye field (FEF) in the PFC modulates spatial visual
attention (Moore and Armstrong, 2003; Schafer and Moore,
2007; Gregoriou et al., 2009). Experiments in macaque monkeys
demonstrated that when two different stimuli are simultaneously
presented inside the receptive field of a single neuron, the cell
response is modulated by which of the two stimuli is attended
(Luck et al., 1997). This is possible because the receptive field
of the visual system neuron overlaps with projections of the
stimulated FEF area in the PFC (Gilbert and Li, 2013), the
FEF being normally subject to attentional mechanisms (Clark
and Noudoost, 2014). Accordingly, studies of selective attention
have reported increases in local gamma-band and beta-band
coherence between PFC and V1 areas (Buschman and Miller,
2007; Gregoriou et al., 2009).

In primates, the oscillatory coupling between the FEF and the
visual area V4 seems to be mediated, at least in part, by DA. The
antagonism of D1 receptors in the FEF enhances not only the
amplitude but also orientation selectivity and reliability of visual
responses in V4 (Noudoost and Moore, 2011). Other brain areas
also modulate visual cortical regions. Stimulation of the superior
colliculus, for instance, contributes to the control of spatial visual
attention (Muller et al., 2005). Accordingly, functional magnetic

resonance imaging (fMRI) studies of the FEF influence on the
visual pathway have shown that sub-threshold FEF stimulation
increases the activation of retinotopically corresponding
regions in visual areas (Ekstrom et al., 2008). Interestingly,
FEF sub-threshold stimuli modulate contrast sensitivity in
multiple visual regions in primates (Ekstrom et al., 2009).
Experimental observations in rodents similarly indicate a role
for the mPFC in attentional processes (Birrell and Brown,
2000). Altogether, these findings raise the possibility that mPFC
top-down signals modulate properties of neural circuitries in V1.
This is particularly important when planning therapeutic
strategies for abnormal physiological conditions of the
visual system.

PFC Signaling, Environmental Enrichment,
and Visual Impairments
The etiology of eye conditions that lead to visual impairments
are multifactorial and include aging, genetics, infections,
and lifestyle1. Common disorders that affect visual functions
include macular degeneration, retinitis pigmentosa, diabetic
retinopathy, glaucoma, retinopathy of prematurity, cataracts,
refractive errors, infections, and others (GBD 2019 Blindness
and Vision Impairment Collaborators; Vision Loss Expert Group
of the Global Burden of Disease Study, 2021). Therapeutic
interventions for refractive errors, cataracts, and infections
are widely available. As to the rest of the pathologies,
although current therapeutic strategies still need significant
improvements, ongoing efforts in the biomedical community
are likely to develop therapeutic strategies for these conditions.
Higher-order visual dysfunctions such as cerebral visual
impairment (CVI) in children, instead, represent a serious
clinical challenge that is difficult to diagnose and manage, as
they are cases of ‘‘blindness’’ due to connectivity damage of
central visual pathways with no alterations of the eye (Merabet
et al., 2017).While neuroimaging studiesmay assist in identifying
afflicted brain areas in this pathology, developing non-invasive
multisensory therapeutic strategies to treat CVI in children is in
high demand.

A multisensory stimulation approach that activates higher-
order association areas such as the mPFC (Watanasriyakul
et al., 2019) and influences V1 functions (Sale et al.,
2014), is environmental enrichment (EE). This non-invasive
environmental strategy has been actually used to treat deficits
of vision (Sale et al., 2007). The capability of EE to promote
plasticity in the adult brain (Sale et al., 2009) outlines the
therapeutic potential of this strategy in pathological conditions
where plasticity is compromised. Amblyopia, for instance, is a
condition in which vision in one eye is markedly impaired due
to an abnormal visual experience during early life (Holmes and
Clarke, 2006). Although this pathology can be easily treated
by occlusion or penalization therapy during the early stages of
development (Li et al., 2019), it is harder to treat it in adulthood,
due to a decrease in brain plasticity that occurs with age

1WHO. World-report-on-vision. Geneva: World Health Organization, 2021.
https://www.iapb.org/learn/resources/the-world-report-on-vision/. Accessed
September 15, 2021.
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(Hensch, 2005; Maya-Vetencourt and Origlia, 2012; Maya-
Vetencourt and Pizzorusso, 2013). Interestingly, EE induces full
recovery of vision in adult amblyopic animals (Sale et al., 2007).
Other experimental strategies (He et al., 2007; Maya-Vetencourt
et al., 2008; Morishita et al., 2010; Spolidoro et al., 2011; Spatazza
et al., 2013) have also been reported. The phenomenon induced
by EE is due to a reduction of intracortical inhibition that
seems to parallel an increased expression of the neurotrophic
factor BDNF (Baroncelli et al., 2010), all this being surprisingly
similar to the plasticizing effects induced by both fluoxetine
treatment (Maya-Vetencourt et al., 2008) and food restriction
(Spolidoro et al., 2011) in the adult brain. Interestingly, these two
last strategies trigger epigenetic mechanisms whereby chromatin
remodeling up-regulates the expression of plasticity genes
(Spolidoro et al., 2011; Maya-Vetencourt et al., 2011, 2012).

Remarkably, imaging studies by fMRI in humans revealed
that watching a video while intermittently cycling on a stationary
bike for 4 weeks, in parallel to monocular occlusion, restores
some degree of spatial acuity and stereopsis in adult amblyopic
patients, this effect being preserved after 1 year of training
(Lunghi et al., 2018). This is interesting because physical
activity and perceptual learning are major components of
an enriched environment and each of them independently
promotes amblyopia recovery in adult animals (Baroncelli
et al., 2012). In light of this, experimental research using
EE in animal models of blindness may provide precious
insights into the treatment of higher-order visual dysfunctions
such as CVI in children. Other attention-related tasks are
likely to be important for the clinical treatment of this
pathology.

FIGURE 2 | Role of the PFC-V1 interaction in the treatment of visual dysfunctions. Higher-order associative brain areas such as the PFC, which receive inputs from
different sensory modalities, seem to modulate information processing at the level of primary sensory systems via down-stream signaling (dashed line). We propose
that non-invasive multisensory activities and/or attention-related tasks that presumably activate association cortices in the human brain might be beneficial in the
treatment of higher-order visual dysfunctions such as CVI in children. These activities include: playing with different inanimate objects, numbers, toy train sets,
drawing, and/or other creative activities. Figure created with BioRender.com.
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DISCUSSION

Understanding how the functional interaction between different
brain regions occurs through multisensory integration is a
leading edge and clinically relevant area in the neuroscience
field, which can be translated into novel and original therapeutic
approaches to treat a wide variety of neurological disorders. CVI,
for instance, is a rising public health issue with an enormous
social and economic impact. Unfortunately, it is one of the most
common causes of visual impairment in children, is difficult to
diagnose, and has no effective clinical treatment (Afshari et al.,
2001; Good et al., 2001).

In line with experimental findings in animal models, diverse
studies in humans have shown that practicing perceptual
learning promotes amblyopia recovery in adulthood (Levi and
Li, 2009; Li et al., 2011). Although more accurate analysis on
PFC function and how it may impact sensory functions and
cognitive processes are still needed, these findings suggest that
DA-driven PFC signaling might underlie, at least in part, some
of the effects induced by perceptual learning on V1 areas.
Interestingly, the antagonism of D1 receptors in areas of the PFC
that regulate attention enhances visual perception (Noudoost
andMoore, 2011) whereas EE non-invasively reduces the density
of D1 receptors in the PFC of adult animals (Del Arco et al.,
2007).

May long-term mPFC stimulation be relevant
to the clinical treatment of higher-order visual
dysfunctions? Electrophysiological (Golmayo et al., 2003),
immunohistochemical (Nguyen et al., 2015), and anatomical
(Balog et al., 2019) evidence support this notion. Neuroimaging
approaches revealed that abnormalities of synaptic connectivity
at central level are a hallmark of these visual pathologies (Merabet
et al., 2017). Interestingly, imaging studies in humans have
shown that attention-induced mechanisms influence neuronal
networks connectivity in diverse visual areas (Silver et al.,
2007; Lauritzen et al., 2009). Hence, experimental approaches
using non-invasive long-term strategies that promote mPFC
signaling and synaptic connectivity, such as perceptual learning

and/or attention-related tasks, might be valuable for designing
an effective treatment for such disorders (Figure 2). The
recent observation that the interaction between auditory and
visual stimuli in a behaviorally relevant context modifies visual
perception in mice (Garner and Keller, 2021) supports our
hypothesis. It is well established that plastic phenomena in the
cortex are actively constrained by the gradual appearance of
cellular and molecular factors that occur over development
(Hensch et al., 1998; Huang et al., 1999; Pizzorusso et al., 2002;
McGee et al., 2005; Syken et al., 2006; Putignano et al., 2007;
Harauzov et al., 2010; Morishita et al., 2010; Beurdeley et al.,
2012; Miyata et al., 2012; Spatazza et al., 2013; Tiraboschi et al.,
2013; Apulei et al., 2019; Napoli et al., 2020). It will be interesting
to evaluate whether the impact of long-term mPFC signaling on
the rescue of visual functions in CVI correlates with variations
of the above-mentioned factors. The use of optogenetics may
shed light on this issue (Eleftheriou et al., 2017) contributing to
the future development of original therapeutic strategies to fight
blindness. Transcranial magnetic stimulation (Lefaucheur, 2019)
could also be a procedure that may accompany future treatments
of higher-order visual impairments. The multisensory and
non-invasive nature of EE as a stimulation approach opens new
potentialities in the field of higher-order visual dysfunctions
where the application of this paradigm, alone or in combination
with attentional tasks, might arise as a therapeutic strategy
for CVI.
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