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The nuclear bile acid (BA) receptor farnesoid X receptor (FXR) is a major regulator of
metabolic/energy homeostasis in peripheral organs. Indeed, enterohepatic-expressed
FXR controls metabolic processes (BA, glucose and lipid metabolism, fat mass, body
weight). The central nervous system (CNS) regulates energy homeostasis in close
interaction with peripheral organs. While FXR has been reported to be expressed in
the brain, its function has not been studied so far. We studied the role of FXR in
brain control of energy homeostasis by treating wild-type and FXR-deficient mice by
intracerebroventricular (ICV) injection with the reference FXR agonist GW4064. Here
we show that pharmacological activation of brain FXR modifies energy homeostasis
by affecting brown adipose tissue (BAT) function. Brain FXR activation decreases
the rate-limiting enzyme in catecholamine synthesis, tyrosine hydroxylase (TH), and
consequently the sympathetic tone. FXR activation acts by inhibiting hypothalamic PKA-
CREB induction of TH expression. These findings identify a function of brain FXR in the
control of energy homeostasis and shed new light on the complex control of energy
homeostasis by BA through FXR.

Keywords: FXR, brain, hypothalamus, energy homeostasis, brown adipose tissue

INTRODUCTION

Proper energy homeostasis is crucial to maintain health and avoid the development of metabolic
disorders such as obesity, dyslipidemia and type 2 diabetes. The essential role of the CNS in the
regulation of energy homeostasis is now well documented (Bantubungi et al., 2012; Kim et al,,
2018). The CNS closely interacts with peripheral organs to gather information on its energy
state and provides, in turn, signals to adapt biological responses. Among the different brain
regions controlling energy homeostasis, the hypothalamus is the major center of convergence
and integration of nutrient/hormonal signals and environmental cues, particularly through two
types of neurons, pro-opio-melanocortin (POMC)-producing neurons and agouti-related protein
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(AgRP)-producing neurons of the arcuate nucleus of
hypothalamus (ARH). Moreover, the CNS communicates
with peripheral organs, such as the liver, intestine and adipose
tissue through the peripheral nervous system.

The Farnesoid X Receptor (FXR) belongs to the nuclear
receptor superfamily of ligand-regulated transcription factors
(Lefebvre et al., 2009). FXR is highly expressed in the liver and
intestine, where it regulates the expression of target genes to
control BA, glucose and lipid metabolisms (Lefebvre et al., 2009;
Chavez-Talavera et al., 2017). Although expressed at much lower
levels, a role for FXR has also been suggested in peripheral
organs such as pancreas and adipose tissue (Cariou et al., 2007;
Abdelkarim et al., 2010; Popescu et al., 2010; Seyer et al., 2013).
FXR has also been involved in the control of energy homeostasis
as exemplified by the reduction of body weight and adipose
tissue mass in FXR-KO mice. In accordance, FXR deficiency was
shown to protect from excessive weight gain in genetic and diet-
induced (DIO) obesity models (Prawitt et al., 2011; Zhang et al.,
2012), while FXR activation, by peripheral administration of
GW4064, potentiated body weight gain and glucose intolerance
in DIO mice (Watanabe et al., 2011). All studies investigating the
metabolic control by FXR have so far exclusively focused on its
action in peripheral organs (Lefebvre et al., 2009; Chavez-Talavera
et al., 2017). While FXR reportedly is expressed in the brain
(Goftlot et al., 2007; Huang et al., 2016), its function remains
ill-defined. So far, studies evaluating BA-FXR signaling in the
CNS mainly focused on its potential role in neurodegenerative
conditions, such as Alzheimer’s disease (Lo et al., 2013; Bell et al.,
2018; McMillin et al., 2018), Parkinson’s disease (Castro-Caldas
et al., 2012; Abdelkader et al., 2016; Moreira et al., 2017; Rosa
et al,, 2018), Huntington’s disease (Keene et al., 2001, 2002) as
well as amyotrophic lateral sclerosis (Vaz et al., 2015; Elia et al.,
2016). In these models of neurodegeneration, BA-FXR activation
appears rather protective by acting on its pathophysiological
mechanisms. Huang et al. showed alterations in depressive-like
and anxiety-related behaviors in FXR-deficient mice, linked to
an alteration of neurotransmitter homeostasis in different brain
regions. The authors assumed that these effects are potentially
mediated by changes in plasma and brain BA pools (Huang et al,,
2015). Although the brain is well-recognized as an important
regulator of peripheral homeostasis, whether brain FXR plays
a role in the regulation of metabolism in peripheral organs
remained unexplored. Given the importance of the CNS in
the control of energy homeostasis and the role of FXR as a
metabolic/energy sensor in peripheral organs, we investigated the
role of brain FXR in the control of energy homeostasis. Here, we
identify an unexpected novel function of brain FXR in its ability
to control BAT function via a mechanism involving modification
of hypothalamic PKA-CREB signaling and, subsequently, the
sympathetic tone.

MATERIALS AND METHODS

Animals
Animal experiments were approved by the Institutional
Committee for animal use and care. The ethical committee of

the University of Lille approved all protocols (APAFIS#11237-
20170911185145v2, APAFIS#13331-2017091915214567v17).
Male wild-type mice (C57BL/6]J), male FXR-deficient mice
[FXR-KO, provided by Sinal et al. (2000)] and their littermates
(FXR-WT), on the C57BL/6] genetic background (Charles River),
16-19 weeks old, were housed under a 12 h/12 h light/darkness
cycle in temperature (21.5°C) and humidity controlled rooms,
in a specific pathogen-free environment. Standard diet (A04,
Safe) and water were available ad libitum except during the
cold-exposure experiment. Depending on the protocols, mice
were either placed in metabolic cages (TSE systems, Hamburg,
Germany) or standard cages and scarified in the fed status. All
experiments were performed with minimum of 5 animals per
group. The precise number of animals per group is mentioned
in figure legends.

Intracerebroventricular Cannulations

Mice were randomized based on body weight, anesthetized using
a mixture of ketamine (75 mg/kg)/xylazine (10 mg/kg), and
stereotactically equipped with a cannula targeting the lateral
ventricle of the brain (AP: + 0.24 mm, ML: + 1 mm). The cannula
was secured on the skull with dental ciment.

Farnesoid X Receptor Agonist

Treatments

For intracerebroventricular (ICV) treatment, the synthetic
FXR specific agonists GW4064 (3-(2,6-Dichlorophenyl)-4-(3'-
carboxy-2-chlorostilben-4-yl)-oxymethyl-5-isopropylisoxazole,
Tocris, 2473/50, purity > 97%) and tropifexor (LJN452,
Clinisciences) were dissolved in 100% DMSO and injected in a
volume of 1 pl, 0.25 pl/min. In the chronic injection experiment,
one ICV injection was administered every day (at the end of the
day just before light turn off) for 6 days (GW4064 at the dose of
0.9 mM or tropifexor at the dose of 0.2 mM (doses selected after
dose-response experiments in metabolic cages) or vehicle (100%
DMSO) and mice were sacrificed the day after the last injection.
Peripheral blood concentration of GW4064 was determined by
high-performance liquid chromatography combined with mass
spectrometry (LC-MS/MS Acquity I-Class - Xevo TQD Waters).

Mouse Monitoring in Metabolic Cages
Wild-type mice were individually placed in metabolic cages
(TSE systems, Hamburg, Germany). Energy parameters
were recorded throughout the experiment: food intake (in
grams, by minute and cumulative over 48 h), locomotor
activity (number of cage crossings, number of straightenings),
VO, and CO; consumption (in ml/h/kg lean mass) was
measured and energy expenditure calculated (Weir formula:
EE = (3.94 x VO, + 1.106 x VCO;)/1000 in kcal/h/kg lean
mass) and the Respiratory Exchange Ratio (RER).

Sympathetic Nerve Activity Recording

Mice were anesthetized using a mixture of ketamine
(75 mg/kg)/xylazine (10 mg/kg), and the carotid artery was
exposed. The sympathetic nerve filament was dissected free
of underlying tissues on a distance of 1 cm until the superior
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cervical ganglion. The nerve was covered with paraffin oil and
placed on a pair of recording silver electrodes (0.6 mm diameter)
connected to a high-impedance probe, action potentials were
saved after initial amplification through a low-noise amplifier
(BIO amplifier, ADInstrument, Paris, France). Unipolar nerve
activity was recorded continuously for 15 min. Data were
digitized with PowerLab/4sp digitizer (ADInstrument, Paris,
France). Signals were amplified 105x, filtered using low/high-
frequency cut-offs of 100 and 1,000 Hz, and monitored using the
Chart 4 computer program (ADInstrument, Paris, France).

Cold-Exposure Experiment
C57BL/6] mice were individually housed at 4°C during 8 h
without access to food and water during the cold-exposure
period only. The rectal temperature was monitored using a rectal
thermoprobe at the end of cold-exposure.

RNA Extraction, cDNA Synthesis and

Quantitative Real-Time PCR

PVH, ARH, liver, BAT and eWAT were dissected and frozen
in liquid N,. Total RNA was isolated using the RNeasy Lipid
Tissue Mini Kit (Qiagen). Retrotranscription reactions were
performed using the cDNA Reverse Transcription High Capacity
Kit (Applied Biosystem). QPCR reactions were performed using
Brilliant Sybr Green IT QPCR Master Mix kit on the Stratagene
MX3000P device (Agilent Technologies) or TagMan Multiplex
Master Mix (Applied Biosystem) on the Applied Biosystems
7500 Real Time PCR device. mRNA levels were normalized to a
control gene (cyclophillin for Sybr green, 18S for Tagman) whose
expressions are not influenced by the experimental conditions.
Supplementary Table 1 details the primer sequences used
for real-time PCR.

Western Blot Analysis

Hypothalamus, BAT and liver were dissected and frozen
in liquid N,. Tissues were homogenized in 1 ml buffer
(Trizmabase/sucrose) and sonicated. 20 g of protein in LDS
sample buffer were loaded per lane, separated with NuPage
4-12% Bis-Tris Protein Gels (Thermofischer, NP0335BOX) and
transferred to nitrocellulose membrane iBlot 2 transfert stacks
(Thermofischer, IB23001). Membranes were immunoblotted at
4°C overnight with antibodies against UCP1 (Abcam, AB10983,
rabbit polyclonal, IgG; 1/500), Tyrosine Hydroxylase (Merck,
MAB5280, mouse monoclonal, IgG; 1/500), FXR (Abcam
Perseus, PP-A9033A-00, mouse monoclonal, IgG; 1/500),
PKARII (BD Biosciences, 610626, mouse monoclonal, IgG;
1/250), PPKARII (BD Biosciences, 612550, mouse monoclonal,
IgG; 1/250), HSP 90a/p (H-114) (Santa cruz biotechnology,
sc-7947, rabbit polyclonal, IgG; 1/1000) and BActine (Sigma,
A5441, mouse monoclonal, IgG; 1/1000). All antibodies were
diluted in Tris buffer saline (TBS) supplemented with Tween
0.01% and milk powder 5%. The secondary antibodies used
are goat anti mouse (Sigma A4416, IgG) or anti-rabbit (Sigma
A0545, IgG), diluted in TBS supplemented with Tween 0.01%
and milk powder 5%. The incubations are performed at room
temperature 2 h. Results are represented in the form of boxes

for illustration purposes. All samples of an experiment were
processed on the same western blot. When different gels were
necessary, one or more common samples were run on each gel to
allow subsequent normalization of the results.

Immunohistochemistry Analysis
Mice were anesthetized using a mixture of ketamine
(75 mg/kg)/xylazine (10 mg/kg), followed by intracardiac
perfusion using a solution of saline (NaCl 0.9%, 20 ml) and
subsequently a solution of 4% PFA. BAT was fixed by immersion
at 4°C in 4% PFA, dehydrated, cleared and embedded in paraffin.
Paraffin sections (5 pm thick) were stained with hematoxylin
and eosin. Brains were post-fixed for 16 h at 4°C in 4% PFA.
Cryoprotection of brains was performed by successive 24 h
baths of PBS-sucrose buffer (10, 20, 30%) at 4°C. Brains were
included in Tissue Freezing Medium (Jung) before being frozen
in isopentane cooled to —55°C with liquid nitrogen. Blocks were
stored at —80°C. Brains were cut at 18 um using a Leica cryostat
(CM3050) and placed on Superfrost Plus slides (Thermofischer)
for FXR (Abcam, AB28676, rabbit polyclonal, IgG; 1/100), aMSH
(Millipore AB5087, sheep polyclonal, IgG; 1/10000), HuD/C
(Thermofischer, A-21271, mouse monoclonal, IgG; 1/500)
staining. Free-floating slices of 40pum were prepared for p-CREB
immunohistochemistry. FXR-NPY co-staining was performed
on mouse brain sections whose expression of the fluorescent
GFP protein is under the control of the NPY promoter, not
requiring double labeling. For FXR/aMSH and FXR/HuD/C
co-staining, slides were incubated for 16 h at 4°C with FXR
antibody diluted at 1/100 (PBS 0.01M + 1% blocking reagent),
followed by an incubation for 2 h at room temperature with the
secondary anti-rabbit antibody coupled to HRP (Thermofischer,
B40922, goat polyclonal, IgG) diluted at 1/100 (PBS 0.01M + 1%
blocking reagent). Next, the slides were incubated in biotinylated
tyramide diluted at 1/100 (amplification buffer, Thermofischer,
B40922 + H202 0.0015%) for 5 min at room temperature. The
second step was an incubation for 16 h at 4°C in the presence of
aMSH antibody diluted at 1/10000 (PBS 0.01M + 0.1% X-100
newt + 1% donkey serum) or HuD/C antibody diluted at 1/500
(PBS 0.01M + 0.1% X-100 newt + 1% goat serum). Then, slides
were incubated for 2 h at room temperature with the secondary
antibody coupled to a fluorochrome emitting at 555 nm (for
MSH) (Molecular probe, A-21432, donkey polyclonal, IgG) or
568 nm (for HuD/C) (Invitrogen, A-31570, donkey polyclonal,
IgG) diluted at 1/200 (PBS 0.01M + 0.1% newt X-100). Lastly,
labeling was performed using a 1/1000 diluted Hoechst solution
in 0.0IM PBS (Invitrogen®, Hoechst33258) and slides were
mounted with lamellae (Dako® Fluorescent Mounting Medium).
For Free-floating immunohistochemistry, brain sections were
placed in 12-wells culture plates and incubated for 16 h at
4°C with PCREB (Ser133) (87G3) (Cell Signaling, 9198S, rabbit
polyclonal, IgG, goat polyclonal, IgG) antibody diluted at 1/1000
(PBS 0.0IM + 0.2% triton X-100 + 1% goat serum). Then,
sections were incubated for 2 h at room temperature with
the secondary antibody coupled to a fluorochrome emitting
at 488 nm (Molecular probe, A11008) diluted at 1/1000 (PBS
0.01M). Finally, labeling was performed using a 1/5000 diluted
Hoechst solution and slides mounted on Superfrost Plus slides.
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The image acquisition was performed using a confocal
microscope (LSM710, Zeiss). Quantification and analysis of
signals were done using Imaris software. For quantitative analysis
of p-CREB in ARH neurons, a total of 16951 neurons of control
mice and 12704 neurons of treated mice were counted in ARH
slices of independent control mice (n = 8) and GW4064-treated
mice (n = 7), and the amount of pCREB was classified as either
low, moderate or high based on the level of fluorescence intensity
given by Imaris software.

Hybridation in situ

Fluorescent in situ hybridization was performed using
RNAscope®  Multiplex  Fluorescent Reagent Kit 2.0
according to the manufacturer’s instructions (Advanced Cell
Diagnostics). Briefly, brain sections (20 wm) were fixed in 4%
paraformaldehyde for 1 h at 4°C and dehydrated through graded
ethanol solutions (50, 70, and 100%) for 5 min each. Sections
were treated by hydrogen peroxyde reagent at room temperature
for 10 min and then hybridized with probes at 40°C for 2 h in a
humidified oven. The NR1H4 probe (FXR; Cat# 484491), POMC
probe (Cat# 314081-C3) and the NPY probe (Cat# 313321-C2)
were used. After hybridization, brain sections were sequentially
applied with a series of probe signal amplification steps (Opal
520, 570 and 690), rinsed with ACD wash buffer twice for 2 min
between each step. Lastly, nuclear labeling was performed using
a 1/1000 diluted Hoechst solution in 0.01M PBS (Invitrogen®,
Hoechst33258) and slides were mounted with lamellae (Dako®
Fluorescent Mounting Medium).

Statistical Analyses

All values are reported as means = SEM. Data were analyzed
using the unpaired Student’s ¢, two-way ANOVA or X; tests, using
the Prism software (GraphPad, United States). Significance was
set at P < 0.05 for all experiments.

Data Statement

The data sets generated during and/or analyzed during the
current study are available from the corresponding author upon
reasonable request.

RESULTS

Intracerebral Treatment With GW4064
Activates Brain Farnesoid X Receptor

and Modifies Energy Homeostasis,

Brown Adipose Tissue Function and the
Sympathetic Tone

To assess if brain FXR contributes to the regulation of energy
homeostasis, we first fine-mapped the exact localization of
FXR expression in the hypothalamus at mRNA and protein
levels (Gofflot et al., 2007; Huang et al.,, 2016; Figures 1, 2).
FXR expression was observed in neurons of the arcuate
nucleus (ARH) (Figures 1B, 2B), expressed by both alpha-
Melanocyte-Stimulating Hormone and Neuropeptide Y (aMSH
and NPY) neurons of the ARH (Figures 1B, 2C,D), which

regulate energy homeostasis (Sanchez-Lasheras et al., 2010). To
determine whether FXR plays a role in the brain control of
energy homeostasis, we treated mice by ICV injection with the
reference FXR agonist GW4064 (Maloney et al., 2000). Given
the absence of precise data in the literature concerning the
bioavailability and pharmacokinetics of GW4064 in the brain,
we empirically determined the active dose by performing an
effect/dose experiment in metabolic cages. Chow fed lean mice
in metabolic cages received increasing doses of GW4064 by
ICV administration and modification of metabolic parameters
as well as FXR target genes expression were monitored. A dose
of 0.9 mM; 522 ng/pl; 1 pl injected, of GW4064, was found
to modify metabolic parameters and to increase the expression
of established FXR target genes in the hypothalamus, indicative
of a pharmacological activity and a cerebral activation of FXR.
Indeed, mRNA levels of the FXR target genes Small Heterodimer
Partner and Bile Salt Export Pump (Shp and Bsep) were induced
in the ARH upon GW4064 treatment (Figures 3A,B), but
not in the paraventricular nucleus of the hypothalamus (PVH)
(Figures 4A,B), indicating specific activation of FXR in the ARH.
No differences in respiratory exchange rate (RER), ambulatory
activity, Z rearing (Figures 4E-G) nor food intake (Figure 3C)
were observed between GW4064 versus vehicle treated mice.
However, GW4064 treatment slightly affected VO,, VCO,
(Figures 4C,D) and weakly but significantly decreased energy
expenditure (EE) in the first part of the dark phase (Figure 3D).
Moreover, after 6 days of GW4064 treatment, food efficiency was
significantly enhanced along with an increased body weight gain,
suggesting a positive energy balance (Figures 3E,F).

Because energy homeostasis is a dynamic balance between
food intake and energy expenditure (Hall et al., 2012) (including
physical activity, basal metabolism and thermogenesis), we
next assessed whether brain FXR activation modified basal
metabolism or thermogenesis. mRNA levels of genes involved in
several pathways related to basal metabolism and thermogenesis
were then measured in peripheral organs: liver, epididymal
adipose tissue (eWAT) and BAT (Cannon, 2004). ICV treatment
with GW4064 did not modify the expression of glucose nor lipid
metabolism genes in liver nor in eWAT. Surprisingly, a decrease
of Uncoupling Protein 1 (Ucpl) gene and protein expression
(Figures 3G-I), a marker of BAT activity (Zhang and Bi, 2015),
was found, suggesting that BAT function may be impaired upon
CNS FXR activation. Moreover, a decrease of Vascular endothelial
growth factor (Vegf) gene expression (Supplementary Figure 1),
a marker of vascularization and an enlargement of brown
adipocytes (Figures 3J-L) were found upon GW4064 treatment,
suggesting a remodeling of BAT (Shimizu et al., 2014). These
effects of CNS FXR activation on BAT functions were not due to
systemic leakage of the compound or the activation of peripheral
FXR, since GW4064 could not be detected in plasma after ICV
GW4064 injection using a highly sensitive analytical system
[C <10 nM(LOQ)] nor were any of the classical FXR target genes
induced in livers of these mice.

To understand the action mechanism of CNS FXR on energy
expenditure and BAT function, the brain-BAT axis was next
investigated by assessing the impact of FXR on the adrenergic
tone exercised by the peripheral nervous system. Indeed,
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FIGURE 1 | FXR mRNA is expressed in hypothalamus. (A) Fxr mRNA expression in liver and hypothalamus by gPCR. The values are normalized to cyclophilin.
Results are expressed by comparing the expression of FXR in the liver, whose expression level has been arbitrarily set at 100%. (B) Representative images of
RNAscope staining of FXR with NPY and POMC in ARH. The nuclear staining (blue) was performed with Hoechst solution. 3V, third ventricle; ARH, arcuate nucleus

BAT contains peripheral sympathetic fibers expressing Tyrosine
Hydroxylase (TH) (Razzoli et al., 2016), the rate-limiting enzyme
in catecholamine synthesis. These TH-positive fibers release
noradrenaline which through B-3 adrenergic receptors induces
intracellular signaling increasing UCP1 expression in BAT
(Harms and Seale, 2013). Interestingly, in mice ICV treated for
6 days with GW4064, TH expression in afferent BAT adrenergic
neurons significantly decreased (Figures 3M,N). Moreover, the
activity of the sympathetic nervous system was significantly
decreased in mice treated ICV with GW4064 as compared to
vehicle controls (Figure 30). Thus, CNS FXR activation by
GW4064 impairs the sympathetic tone in BAT.

To ascertain the engagement of brain FXR on energy
homeostasis and BAT, additional experiments were performed

using a different synthetic FXR agonist, tropifexor, which is
currently undergoing phase 2 human clinical trials in NASH
and PBC (Tully et al., 2017). Noteworthy, ICV treatment with
tropifexor also resulted in a decrease of EE without impacting
food intake (Figures 5A,B). Moreover, icv treatment with
tropifexor also increased BAT lipid droplet size (Figures 5C-E),
indicating that CNS FXR activation affects the BAT remodeling.

Intracerebral GW4064 Treatment Lowers
Brown Adipose Tissue Activity and

Rectal Temperature
To determine whether central FXR activation functionally
impacts on BAT function, the effect of ICV GW4064
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co-immunostaining of FXR with HuD/C (B) or NPY or «MSH (C) in ARH. (D) Higher magnification of panel (D). The nuclear staining (blue) was performed with
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ME
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pretreatment on adaptive thermogenesis was studied by
subjecting mice to 8 h cold exposure. As expected, cold exposure
induced Ucpl and Th mRNA and protein levels in vehicle-treated
mice (Figures 6A-E). Surprisingly, ICV GW4064 pretreatment
severely blunted this induction (Figures 6A-E). Moreover, rectal
temperature was significantly lower in mice pretreated ICV with
GW4064 as compared to vehicle when placed at 4°C (Figure 6F).
Cold exposure is a major stimulus leading to increased metabolic

functions in BAT (Harms and Seale, 2013). As expected, mRNA
levels of the a 1-, a2- and P3-adrenergic receptors in BAT
as well as Peroxisome Proliferator-Activated Receptor Gamma
Coactivator 1-alpha and Iodothyronine Deiodinase 2 (Pgcla
and Dio2) were increased in response to 8 h cold exposure in
BAT (Supplementary Figures 2A-E). However, ICV treatment
with GW4064 did not modulate the 8 h cold exposure-induced
expression of these genes, suggesting a mechanism upstream
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of adrenergic receptor signaling and excluding a mechanism
dependent on thyroid signaling.

Intracerebral GW4064 Treatment Alters
Protein Kinase-c-AMP Response
Element-Binding Protein Signaling and
Tyrosine Hydroxylase Expression in the
Hypothalamus

To determine how cerebral FXR activation regulates the
sympathetic tone in BAT, TH expression was measured in
the hypothalamus. TH neurons are located in the PVH of
the hypothalamus and project to the brainstem and spinal

cord autonomic regulatory centers to integrate sympathetic
outflow, for example to BAT (Swanson and Sawchenko, 1983).
Interestingly, ICV GW4064 treatment decreased Th mRNA
and TH protein expression in the hypothalamus (Figures 7A-
C). TH expression in the hypothalamus is under control
of the transcription factor c-AMP Response Element-Binding
protein (CREB) upon its phosphorylation by c-AMP-dependent
Protein Kinase (PKA) (Piech-Dumas and Tank, 1999), through
interaction with PKARII in the hypothalamus (Yang and
McKnight, 2015). Interestingly, PKARII protein phosphorylation
was lower in the hypothalamus upon ICV GW4064 treatment
(Figures 7D,E), which was associated with a decrease in pCREB
immunostaining in the ARH (Figures 7F-H). Moreover, ICV
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FIGURE 6 | Intracerebral treatment with GW4064 functionally impacts the BAT and rectal temperature. (A) Ucp? mRNA expression in BAT of mice placed at room
temperature (23°C) or 4°C. (B) Th mRNA expression in BAT of mice placed at room temperature (23°C) or 4°C. The values are normalized to cyclophilin or 18S.

(C) UCP1 and TH protein expression in BAT of mice placed at room temperature (23°C) or 4°C. Results are represented in the form of boxes for illustration purposes.
For an experiment, all samples are processed in the same western blot. If different gels were used if the number of wells was insufficient, we took the precaution of
introducing one or more common samples within each gel to standardize the results. (D) The bar graphs are the quantification of UCP1 western blots in panel (C).
(E) The bar graph is the quantification of TH western blots in panel (C). (F) Rectal temperature was measured at the end of 23°C- or 4 h-cold exposure. Data are
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FIGURE 8 | FXR mediates the effects of intracerebral treatment with GW4064 on BAT. (A) Besp, (B) Shp and (I) Th mRNA expression in hypothalamus of FXR-WT
and FXR-KO mice receiving vehicle solution or GW4064 by ICV injection. The values are normalized to cyclophillin or 18 s. (C) Ucp7 mRNA expression in BAT of
FXR-WT and FXR-KO mice receiving vehicle solution or GW4064 by ICV injection. The values are normalized to cyclophilin. (D) UCP1 protein expression in BAT.
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the activity of PKA-CREB in the hypothalamus, leading to a decrease of hypothalamic TH expression, which disrupts brain-BAT axis.
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GW4064 treatment decreased mRNA levels of the well-known
CREB target genes Npy and Pgcla (Herzig et al., 2001; Pandey,
2003) in the ARH (Figures 7LJ). These data demonstrate
that pharmacological activation of hypothalamic FXR alters
hypothalamic PKA-CREB signaling, hence modulating TH
expression in the hypothalamus, and ultimately reducing the
sympathetic tone on BAT, thus affecting energy homeostasis.

Farnesoid X Receptor Mediates the
Effects of Intracerebral GW4064

Administration on Brown Adipose Tissue
To ensure the FXR dependence of the response to ICV GW4064,
we next investigated the impact of ICV GW4064 in FXR-
deficient mice and their littermate controls. The induction
of FXR target genes (Bsep and Shp) in the ARH upon ICV
GW4064 treatment in wild-type (FXR-WT) mice was not
observed in FXR-deficient (FXR-KO) mice (Figures 8A,B).
Moreover, the effect of ICV GW4064 treatment on Ucpl
(Figures 8C-E) and TH (Figures 8F-H) protein expression in
BAT observed in FXR-WT mice was not observed in FXR-KO
mice. Furthermore, the reduction of hypothalamic Th, Npy and
Pgcla mRNA gene expression observed in FXR-WT mice upon
ICV GW4064 treatment was also not observed in FXR-KO mice
(Figures 8I-K). These data collectively identify a role of FXR in
brain control of energy homeostasis through a brain-BAT axis
involving hypothalamic FXR whose activation decreases energy
expenditure (Figure 8L).

DISCUSSION

FXR is a key regulator of entero-hepatic metabolism. Besides
its action on BA, lipid and glucose metabolism, FXR regulates
insulin sensitivity and GLP1 secretion (Trabelsi et al., 2015;
Chavez-Talavera et al., 2017). Moreover, whole body FXR
deficiency induces a resistance to diet or genetic induced obesity
(Prawitt et al., 2011; Zhang et al., 2012). Interestingly, we found
that FXR is expressed in the hypothalamus, a brain area playing a
crucial role in the regulation of energy homeostasis (Waterson
and Horvath, 2015; Kim et al.,, 2018). To investigate whether
brain FXR activation controls energy homeostasis, brain FXR
was pharmacologically activated using the selective FXR agonist
GW4064. Our results demonstrate that activation of brain FXR
by ICV GW4064 administration leads to histological remodeling
of BAT (i.e., increase of lipid droplet size) through hypothalamic
regulation of the sympathetic tone. Importantly, these changes
promoted by ICV FXR agonist treatment were absent in FXR-
KO mice indicating target-selectivity of the compound. In line
with previous findings that GW4064 activates the expression of
Shp, a known FXR target gene, in primary neuronal cultures
(Huang et al., 2016), we found that ICV administrated GW4064
also induces its target genes in vivo (Figures 3A,B), in a FXR-
dependent manner (Figures 8A,B).

Our results showed altered BAT adrenergic activity (decreased
TH protein expression), associated with a decrease of sympathetic
tone activity, upon ICV GW4064 administration (Figure 30).
The metabolic cage analysis did not allow assessment of possible

consequences of the altered autonomic nervous system activity
on major cardiovascular functions (heart rate, contractility,
arterial pressure). Nevertheless, after 6 days of ICV GW4064
treatment, we observed slight decreases in O, and increases
in CO, consumption at night. These observations are in line
with a modified sympathetic tone, since disorders of sympathetic
control or modulation of adrenergic receptors are known to
impact O, and CO; consumption (Narkiewicz et al., 2006;
Houssiere et al., 2007; Witte et al., 2008)(Ek and Ablad, 1971;
Lang et al., 1989; Billinger et al., 2001; Witte, 2003).

The limited treatment duration (6 days) may explain the
relatively mild, albeit significant metabolic changes observed in
the metabolic cages. However, the effects on BAT are substantial
as demonstrated by the pronounced changes in UCP1 protein
expression, BAT histology and response upon cold exposure
(Figures 3G-L, 6). Further studies are required to assess the
impact of CNS FXR activation on energy metabolism in models
of chronically altered energy homeostasis, such as in diet-induced
obesity. Such studies are, however, difficult to perform given the
invasive nature of the ICV delivery of GW4064.

Even though the ICV administered amounts of GW4064
are many-fold lower than the amounts typically given per os or
ip, to exclude possible effects of peripheral leakage of GW4064
following ICV injection, plasma GW4064 concentrations
were measured using a highly sensitive analytical system
(high performance liquid chromatography coupled with mass
spectrometry). This assay revealed undetectable GW4064
amounts in the plasma of mice treated 6d with ICV GW4064.
Moreover, none of the classical FXR target genes were found
to be induced in the liver arguing against a systemic leakage
of the compound and/or a peripheral activation of FXR
(Supplementary Figures 3A,B). Finally, whereas BAT has been
shown to express the G-protein coupled membrane BA receptor
TGRS5, expression of FXR was not detectable by western blot
analysis, confirming previous reports (Watanabe et al., 2006).
Moreover, GW4064 has no activity on TGR5, ruling out such
off-target effects (Maloney et al., 2000). All these data exclude the
possibility that the observed alteration of BAT function is due to
a peripheral activation of FXR induced by a leakage of GW4064
(from the brain to the periphery).

Peripheral administration of GW4064 has been shown to
alter hepatic expression of genes involved in autophagy through
mechanisms implicating a cross-talk with CREB (Seok et al,,
2014). Our data indicate that activation of FXR in the brain
acts through a similar mechanism: inhibition of the PKA-
CREB pathway in the ARH leading to a decrease of CREB
target gene expression. Although we have shown that central
pharmacological activation of FXR alters PKA-CREB signaling,
the direct mechanism is unknown and remains to be elucidated.
FXR thus appears to control the CREB signaling pathway in
different tissues.

While the studies evaluating BA signaling or BA-FXR
signaling in the CNS mainly focused on its potential role in
neurodegenerative conditions (Keene et al., 2001, 2002; Castro-
Caldas et al,, 2012; Lo et al., 2013; Vaz et al., 2015; Abdelkader
et al.,, 2016; Elia et al.,, 2016; Moreira et al., 2017; Bell et al,,
2018; McMillin et al.,, 2018; Rosa et al., 2018), very few papers
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investigated so far the role of FXR in brain control of energy
homeostasis. A recent study reported that brain administration
of the BA tauro-lithocholic acid (LCA) promotes fat oxidation
and decreases fat mass associated with enhanced fatty acid uptake
by BAT and browning of subcutaneous white adipose tissue
(Eggink et al.,, 2018). Since LCA 1is a specific TGR5 agonist,
without activity on FXR, these observations suggest opposite
functions of the membrane BA receptor TGR5 and the nuclear
receptor FXR. Similar contrasting roles of TGR5 and FXR have
been observed previously with respect to the regulation of GLP1
secretion by L cells (Seyer et al., 2013; Trabelsi et al., 2015).
In the same line, Castellanos-Jankiewicz’s paper (Castellanos-
Jankiewicz et al, 2021) show that the hypothalamic TGR5
activation by this BA mix induces an increased activity of the
sympathetic nervous system (SNS) impacting energy expenditure
without food intake or body weight changes, while our results
demonstrate that hypothalamic activation of FXR induces a
decreased activity of the SNS leading to a decreased energy
expenditure. These results actually mirror those obtained in our
study i.e., hypothalamic activation of FXR decreases activity of
the SNS leading to a decreased energy expenditure. Data obtained
in other organs, such as the intestine, have already revealed that
FXR and TGRS often exert antagonistic functions (Seyer et al.,
2013; Trabelsi et al., 2015). It is likely that temporal differences in
response to activators occur for TGR5 and FXR, the former upon
activation transmitting its signal rapidly, whereas the former,
acting as a transcription factor, allows a slower, more chronic
response since this requires modulation of gene expression.

Thus, TGR5 and FXR likely also exert opposite actions on
brain control of energy homeostasis to finely control, through
the SNS, energy homeostasis and particularly energy expenditure.
Overall, this implies that prevention of energy disorders would be
achieved by stimulating TGR5 and/or inactivating hypothalamic
FXR. Accordingly, Castellanos-Jankiewicz et al. show that the
levels of TbOMCA, one of the most abundant BA in plasma and
in the hypothalamus and a known antagonist of FXR, strongly
drop in DIO conditions.

Eggink et al. (2018) reported that ICV GW4064 (10 pM
in final concentration in cerebrospinal fluid) did not modulate
energy metabolism. The disparity of their results and ours may
relate to the used dose, which in the present study was 3x
greater than the one used by Eggink et al. Given the absence
of precise data in the literature concerning the bioavailability
and pharmacokinetics of GW4064 in the brain, it was crucial
to perform preceding dose-response experiments in vivo to
determine the efficient dose. Therefore, we first performed a dose-
response experiment with increasing doses of GW4064 by ICV.
Similar as Eggink et al., at the dose of 10 pM GW4064, we
observed very limited effects of GW4064 on energy metabolism,
which became pronounced when the GW4064 dose was increased
to 30 wM, both with respect to significant changes of energy
parameters as well as increased hypothalamic expression of FXR
target genes and importantly, we could observe that our dose
was selective to FXR activation since FXR deficiency completely
abolished the effect of ICV GW4064 on UCP1 and TH protein
expression in BAT as well as the induction of FXR and CREB
target genes in the ARH.

Our study provides the first demonstration that brain
FXR is an important central regulator of energy homeostasis.
Our findings pave the way for further investigations on the
regulatory role of FXR in the communication between the brain
and peripheral organs and the control of energy metabolism.
Moreover, studies on the role of tonic activation of hypothalamic
FXR by its endogenous BA ligands under physiological or
pathological (e.g., cholestatitc) conditions are warranted. Finally,
determination of the contribution of brain FXR activation
to the clinical actions of synthetic FXR ligands, several of
which being currently in development for the treatment of
metabolic diseases, such as non-alcoholic fatty liver disease,
will be of interest.
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