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Alzheimer’s disease (AD), a heterogeneous neurodegenerative disorder, is the most

common cause of dementia accounting for an estimated 60–80% of cases. The

pathogenesis of AD remains unclear, and no curative treatment is available so far.

Increasing evidence has revealed a vital role of non-coding RNAs (ncRNAs), especially

long non-coding RNAs (lncRNAs), in AD. LncRNAs contribute to the pathogenesis

of AD via modulating amyloid production, Tau hyperphosphorylation, mitochondrial

dysfunction, oxidative stress, synaptic impairment and neuroinflammation. This review

describes the biological functions and mechanisms of lncRNAs in AD, indicating that

lncRNAs may provide potential therapeutic targets for the diagnosis and treatment of AD.

Keywords: long non-coding RNA, Alzheimer’s disease, amyloid beta, tau phosphorylation, mitochondrial

dysfunction, oxidative stress, synaptic dynamics, biomarker

INTRODUCTION

Alzheimer’s disease (AD), a main cause of dementia and one of the most costly and lethal
diseases (2021), is clinically characterized by progressive memory deterioration or other cognitive
dysfunction, which ultimately needs full-time medical care. A cross-sectional study has shown that
the overall prevalence of dementia achieves 6.0% in 2020 (3.9% for AD), representing 15.07 million
individuals aged over 60 years suffered dementia in China (Jia et al., 2020). Moreover, dementia has
become the second largest cause of death in individuals agedmore than 70 years after ischemic heart
disease (Collaborators, 2019). AD is generally divided into two groups, namely the late onset of AD
(LOAD) and the early onset of AD (EOAD). EOAD, also called familial AD, is closely correlated
to mutations in amyloid precursor protein (APP) and the presenilin1/2 genes. The mutations lead
to the dysfunction of APP processing and induce the excessive production of amyloid-beta (Aβ).
However, these genes account only for near 11% of EOAD and 0.6% of all cases of AD (Karch and
Goate, 2015). LOAD, also called sporadic AD, is the majority of AD cases. The most well-known
genes correlating with LOAD are apolipoprotein genotype E4 (APOE4) and triggering receptor
expressed on myeloid cells 2 gene (TREM2) (Ulland and Colonna, 2018; Zhao et al., 2018).

With the recent advancement of transcriptome-wide profiling approach, numerous of
non-coding RNAs (ncRNAs) have been identified. The long non-coding RNAs (lncRNAs), which
are long transcripts (>200 nucleotides in length) without apparent protein-coding capacity, have
received increasing attention and are expected to be novel epigenetic regulators of gene expression
at transcriptional and post-transcriptional levels (Mercer et al., 2009; Briggs et al., 2015; Zhang
et al., 2019b; Karakas and Ozpolat, 2021). LncRNAs modulate chromatin functions by interaction
with DNA, RNA and protein, and regulate the transcription of target genes in cis or in trans in
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the nucleus. In addition, lncRNAs function as miRNA sponges
to suppress the miRNA availability to mRNAs in the cytosol
(Statello et al., 2021). LncRNAs are widely expressed in brains and
affect the proliferation, survival, metabolism and differentiation
of neuronal cells, which is considered to contribute to the
pathogenesis of AD (Wu et al., 2013). Mounting evidence has
shown that lncRNAs are aberrantly expressed in AD progression,
and modulate Aβ plague formation, tau hyperphosphorylation,
neuroinflammation and neuronal apoptosis (Luo and Chen,
2016; Zhou et al., 2021). However, the underlying mechanisms
of lncRNAs in AD have not yet been elucidated. Herein, we will
summarize the well-characterized lncRNAs in AD (Figure 1),
highlighting their potential roles in the disease pathogenesis.

LNCRNA AND Aβ ACCUMULATION

Aβ and AD
Although the causality between Aβ and AD remains
controversial, it is generally considered that Aβ may be the
trigger of AD pathogenesis. In the amyloidogenic pathway, Aβ

is produced through sequential cleavage of APP by β-secretase
(β-site APP cleaving enzyme 1, BACE-1) and γ-secretase to
produce Aβ1−42. In non-amyloidogenic pathway, APP is cleaved
by α-secretase and γ-secretase to produce secreted amyloid
precursor protein α (sAPPα), p3 and APP intracellular domain
(AICD) (Morris et al., 2014; Soria Lopez et al., 2019). Aβ

oligomers may trigger secondary or downstream events, such
as the hyperphosphorylation of tau, synapse dysfunction and
loss, inflammation, oxidative stress, and excitotoxicity, while
Aβ plaques alone are not responsible for memory impairments
observed in AD (Thal and Fandrich, 2015; Scheltens et al.,
2016). Interestingly, recent research shows Aβ may work as
an anti-microbial peptide and therefore potentially acts to
combat infiltrating infectious agents (Moir et al., 2018). On
June 7, 2021, aducanumab, a monoclonal antibody targeting
amyloid protein, is approved to treat AD by the US Food
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FIGURE 1 | LncRNAs in the mechanisms of AD.

and Drug Administration (FDA), which has sparked global
debate, and further clinical trials are needed in the future
(Alexander et al., 2021; Kuller and Lopez, 2021; Mullard,
2021).

Beta-Site Amyloid Precursor Protein
Cleaving Enzyme 1 Antisense Transcript
Promotes Aβ Production
BACE1-AS is a conserved 2KB non-coding antisense transcript
that is transcribed from the antisense strand of the BACE1
gene locus on chromosome 11 (11q23. 3), and includes 104
nucleotides of full complementarity to human BACE1 mRNA
(Faghihi et al., 2008; Kandalepas and Vassar, 2014). BACE1-
AS promotes BACE1 expression at both mRNA and protein
levels, which enhances APP cleavage and alters the pattern of
Aβ aggregation (Li et al., 2019; Zeng et al., 2019). BACE1-
AS is upregulated in peripheral blood samples and brain
regions including cerebellum, hippocampus and entorhinal
cortex in AD patients (Faghihi et al., 2008; Fotuhi et al., 2019).
Interestingly, the accumulation of Aβ1−42 further increases
BACE1-AS expression, driving APP processing cascade in a
feed-forward manner (Faghihi et al., 2008; Li et al., 2019). The
neuronal RNA-binding protein HuD interacts with BACE1-
AS and increases its level, and subsequently promotes BACE1
expression and Aβ production (Kang et al., 2014). Cellular
stimuli, including serum starvation, Aβ42 and H2O2 treatment,
induce the upregulation of BACE1-AS under high glucose
concentration (Boland et al., 2008; Faghihi et al., 2008; Liu
et al., 2014). Knockdown of BACE1-AS by siRNA promotes
the survival of primary neurons, and improves learning and
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memory functions of AD mice through inhibiting the expression
of BACE1, APP and p-tau (Zhang et al., 2018b; Li et al.,
2019).

51A Enhances Aβ Formation
LncRNA 51A maps in antisense configuration to the sortilin-
related receptor 1 (SORL1) gene, which induces a splicing shift of
SORL1 from the synthesis of SORL1 variant A to an alternatively
spliced protein form. SORL1 participates in the trafficking of
APP through endocytic and secretory compartments (Willnow
et al., 2010; Barthelson et al., 2020), and decreased SORL1 shifts
APP from the retromer-recycling endosome pathway to the
β-secretase cleavage pathway, leading to increased production
and accumulation of Aβ (Sager et al., 2007; Verheijen et al.,
2016). Recent studies reveal that 51A is increased in the plasma
and brains of AD patients compared that in controls, and
indicate a negative correlation with the Mini-Mental State
Examination (MMSE) scores (Luo and Chen, 2016; Garofalo
et al., 2021).

17A Increases the Ratio of Aβx-42 vs. Aβx-40
LncRNA 17A is a 159 nucleotides lncRNA synthesized by RNA
polymerase III, and localizes to intron 3 of the human G-
protein-coupled receptor 51 gene (GPR51, GABA B2 receptor).
The synthesis of 17A leads to the maturation of GABAB
R2 mRNA, which induces alternative GPR51 splicing and
eventually impairs GABA B-mediated signaling. The level of
17A is increased in the cerebral tissues derived from AD
patients with an increased ratio of Aβx−42 vs. Aβx−40 (Massone
et al., 2011). Overexpression of 17A in cultured neuronal cells
amplifies the Aβ42 to Aβ40 ratio and promotes apoptosis (Wang
et al., 2019b). All these data indicate that 17A overexpression
may lead to an altered Aβ secretion and play a vital role in
AD progression.

Brain Cytoplasmic 200 Promotes Aβ

Accumulation
BC200 is a polyadenylated 200 nucleotides primate neuron-
specific ncRNA that is transcribed by RNA polymerase III. BC200
acts as a local translational modulator by inhibiting translation
in postsynaptic dendritic microdomains, which eventually
maintains the plasticity of neuron. BC200 is upregulated in
specific brain areas and is increased with disease progression
in AD, while it shows a steady decline in normal aging
(Sosińska et al., 2015). Moreover, the overexpression of BC200
in AD is accompanied with distribution changes, including
dendritic mislocalization of the transcript and accumulation
of BC200 in the perikaryon (Sosińska et al., 2015; Shin
et al., 2017), which has been proposed to be a starting point
for the neurodegenerative changes, and eventually leads to
Aβ production and amyloid deposition. In addition, BC1,
a potential analog of BC200 in mice, induces APP mRNA
translation through fragile X syndrome protein (FMRP), and
the dysfunction of BC1 or BC1-FMRP association in AD mice
impedes the aggregation of Aβ in the brain and protects

against spatial learning and memory deficits (Mus et al.,
2007).

Neuroblastoma Differentiation Marker 29
Promotes Aβ Secretion
NDM29 is a lncRNA transcribed by RNA Pol III, and promotes
neuroblastoma cell differentiation to a non-malignant neuron-
like phenotype (Castelnuovo et al., 2010; Zhang et al., 2018a).
NDM29 is upregulated in postmortem cerebral cortex from AD
patients (Massone et al., 2012). NDM29 overexpression promotes
the amyloidogenic processing of APP and leads to the increase of
Aβ secretion and Aβx−42/Aβx−40 ratio (Massone et al., 2012).

LNCRNA AND TAU
HYPERPHOSPHORYLATION

Tau Hyperphosphorylation and AD
Tau protein is encoded by the microtubule-associated protein
tau (MAPT) gene that is located on chromosome 17 in human
and chromosome 11 in mice (Andreadis, 2006; Barbier et al.,
2019), and plays a pivotal role in binding and stabilizing
microtubules by promoting tubulin assembly to regulate the
function of neurons. The abnormal hyperphosphorylation of
tau alters its charge and conformation and exposes the
microtubule-binding domain, leading to self-oligomerization of
tau protein and forming the paired helical filaments (PHF). The
aggregation of tau and PHF eventually results in the formation
of neurofibrillary tangles (NFTs) (Iqbal et al., 2016; Duan et al.,
2017; Guo et al., 2017). Beyond hyperphosphorylation, tau
protein is also post-translationally modified through truncation,
glycosylation, glycation, ubiquitination, nitration, methylation,
lipoperoxidation, sumoylation, and acetylation, all of which
are involved in the etiology of AD and other tauopathies
(Iqbal et al., 2016). On the other hand, tau phosphorylation is
regulated by a balance between phosphatase activity and tau
kinase (Massone et al., 2012; Martin et al., 2013a). The number
of NFTs rather than Aβ are correlated with the severity of
cognitive impairment in AD patients (Giannakopoulos et al.,
2003). Moreover, the distribution and accumulation of tau within
synapse impairs synaptic transport and signaling pathways,
leading to dysfunction and even loss of synapses in AD patients
(Pooler et al., 2014; Dejanovic et al., 2018; John and Reddy,
2021). Similarly, tau oligomers are toxic to synapses and can
cause synaptic impairment prior to the NFTs (Dejanovic et al.,
2018). Notably, there is an intense crosstalk between Aβ and tau.
Aβ exerts its toxicity at least in part through tau and the Aβ-
dependent pathologies can be greatly amplified by tau expression
(Bloom, 2014; Nisbet et al., 2015). Removing endogenous tau
prevents Aβ-associated cognitive impairments (Guerrero-Muñoz
et al., 2015). Aβ-induced upregulation of intracellular calcium
levels is a key upstream event for the formation of tauopathy
and dislocation in the dendritic compartment (Bloom, 2014;
Zempel and Mandelkow, 2015). Furthermore, pyroglutamylated
Aβ, an important form of Aβ, induces tau-dependent toxicity
and propagates in a prion-like manner (Nussbaum et al.,
2012).
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Nuclear Paraspeckles Assembly Transcript
1 Induces Tau Dephosphorylation
NEAT1 is vital for nuclear paraspeckles, and it regulates nuclear
bodies, chromatin remodeling, microtubules (MTs) stability
and gene expression (Martin et al., 2013b). Recent studies
have demonstrated that NEAT1 is correlated to neuronal loss
and neurodegenerative disorders (Lo et al., 2016; Sunwoo
et al., 2017). Knockdown of NEAT1 increases the expression
of p-tau and dysfunction of MTs through Frizzled Class
Receptor 3 (FZD3)/CSK3β/p-tau pathway (Kickstein et al., 2010).
Interestingly, metformin increases NEAT1 expression, and leads
to decreased FZD3 expression and dephosphorylation of tau
(Zhong et al., 2017). Additionally, NEAT1 modulates Aβ via
regulating miR-124/BACE1 axis (Zhao et al., 2020b).

Linc00507 Induces Tau
Hyperphosphorylation
Linc00507, first described in the Mammalian Gene Collection
Program, is expressed in a cortex-specific manner in non-
human primates and humans (Strausberg et al., 2002; Ransohoff
et al., 2018). Linc00507 is upregulated in the hippocampus and
cerebral cortex of APP/PS1 mice, which subsequently triggers
the p25/p35/GSK3β activation and leads to tau-pathology. In
addition, linc00507 functions as an endogenously competing
RNA (ceRNA) that directly binds to miR-181c-5p, inducing
the upregulation of MAPT and tau tubulin kinase 1 (TTBK1)
(Strausberg et al., 2002; Mills et al., 2016).

LNCRNA AND LOSS OF SYNAPTIC
HOMEOSTASIS

Loss of Synaptic Homeostasis and AD
An analysis of post-mortem brain tissues from AD patients has
revealed significant synapse loss (Henstridge et al., 2015; de
Wilde et al., 2016). Restoring excitatory synaptic transmission
in the hippocampus can effectively ameliorate the cognitive
deficits in animal models with AD (Nisticò et al., 2012). The
synaptic pathology correlates with clinical manifestations of
AD and parallels the cognitive decline (Selkoe, 2002; Kashyap
et al., 2019). In addition, dramatic synaptic loss is the first
indicator of AD progression even in the earliest stages of
AD. Increasing evidence reveals that synaptic dysfunction may
be due to soluble Aβ, phosphorylated tau accumulation and
mitochondrial free radicals at synapses (John and Reddy,
2021; Pereira et al., 2021). The physiological levels of Aβ

may enhance neuronal activity by presynaptic potentiation and
further facilitate Aβ production, and ultimately induces negative
postsynaptic regulation of excitatory synaptic transmission
(Palop and Mucke, 2010). However, excessive Aβ may lead to
the dysfunction of pre-synapses consisting of axonal transport,
synaptic vesicle cycling and neurotransmitter release. The
interaction of Aβ oligomers and postsynaptic compartment of
excitatory synapses with high affinity leads to synaptic plasticity
impairment (Selkoe, 2002; Palop and Mucke, 2010; Chen
et al., 2019). The abnormal accumulation and mislocalization
of tau disrupts the microtubule-based cellular transport and

impedes the trafficking of essential cargo, leading to decreased
mitochondrion-dependent ATP production, calcium buffering
and synapse loss (Forner et al., 2017; John and Reddy, 2021).
In addition, ApoE and its receptor regulate synaptic functions at
both pre- and postsynaptic sites, amongst which ApoE4 induces
neuronal dysfunction at the earliest stages of AD (Lane-Donovan
andHerz, 2017; Zhao et al., 2020a). Furthermore, the dysfunction
of AMPA receptors (AMPAR) trafficking impairs neuronal circuit
formation and causes long-term depression, which contributes to
the symptoms of AD (Jurado, 2017; Ma et al., 2020).

BC200 Impairs Synaptic Functions
BC200 is selectively expressed in neurons and delivered to
the dendrites to regulate the synthesis of local proteins (Yan
et al., 2020), and maintains the long-term plasticity (Muslimov
et al., 1997). The mislocalization and overexpression of BC200
contributes to dendrites impairment in AD. The level of
BC200 in affected brain areas closely correlates with the
synaptic impairment and the severity of AD (Muddashetty
et al., 2002; Bassell and Twiss, 2006). In addition, the
somatodendritic distribution of BC200 is altered in severe
AD (Muddashetty et al., 2002; Bassell and Twiss, 2006).
Furthermore, BC200 binds to eukaryotic initiation factor 4A
(eIF4A) and other RNA-binding proteins to regulate the levels
of post-synaptic dendritic microdomains, including FMRP,
synaptotagmin binding cytoplasmic RNA interacting protein
(SYNCRIP) and poly (A)-binding protein (PABP) (Zalfa et al.,
2005; Mus et al., 2007; Duning et al., 2008).

BDNF-AS Damages Synaptic Plasticity
Brain-derived neurotrophic factor (BDNF) plays a crucial role
in neuronal survival and synaptic plasticity and promotes the
synapse growth, which consequently regulates learning and
memory function (Lu et al., 2014; Petukhova et al., 2019). BDNF-
AS is a conserved non-coding antisense RNA transcript, and
modulates synaptic structure and functions via interacting with
BDNF mRNA (Alsina et al., 2001). BDNF is decreased in most
neurodegenerative disorders (Ji et al., 2010), however, some
studies show increased BDNF in the post-mortem brain tissue
with AD (Ventriglia et al., 2013). BDNF-AS forms an in vivo

RNA-RNA duplex with BDNF mRNA and decreases the protein
level of BDNF, while BDNF-AS inhibition upregulates the level of
BDNF (Alsina et al., 2001). Moreover, BDNF-AS downregulates
the level of BDNF mRNA through interfering chromatin at its
locus (Alsina et al., 2001).

LNCRNA AND MITOCHONDRIAL
DYSFUNCTION

Mitochondrial Dysfunction and AD
Mitochondrial dysfunction is revealed as one of the earliest
features of AD (Serý et al., 2013). The brain consumes nearly
20% of the total basal oxygen budget to support ATP demands,
and it is susceptible to oxidative stress and energy shortage due to
mitochondrial dysfunction (Galluzzi et al., 2012; Perez Ortiz and
Swerdlow, 2019). Several studies suggest that bioenergetic deficits
precede the accumulation of Aβ and tau, and are exacerbated
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with these aggregated proteins (Galluzzi et al., 2012; Tyumentsev
et al., 2018). Moreover, it is found that restoration of the activity
of phosphatase and tensin homolog (PTEN) induced putative
kinase 1 (PINK1) improves the cognitive functions and lowers
Aβ production in AD mice (Tyumentsev et al., 2018; Lim et al.,
2020).

Nuclear Enriched Abundant Transcript 1
Induces Mitochondrial Impairment
NEAT1 is a lncRNA transcribed from the multiple endocrine
neoplasia type 1 (MEN1) gene, known as a scaffold for
paraspeckles. NEAT1 plays a vital role in the formation and
maintenance of paraspeckles (Cadonic et al., 2016). NEAT1 is
upregulated during aging in the APP/PS1 transgenic mouse
model and in the temporal cortex and hippocampus of AD mice
(Liu et al., 2014; Huang et al., 2020). Knockdown of NEAT1
ameliorates cognitive impairments and improves hippocampal
memory formation, and its overexpression exacerbates the
progression of AD pathology and cognitive impairment in AD
mice (Zhou et al., 2018b; Cao et al., 2019). The underlying
mechanisms of NEAT1 in AD remain undefined. Recent studies
show that NEAT1 interferes with mitochondria through PINK1
in AD models (Zhou et al., 2018b). NEAT1 promotes the
degradation of PINK1 and impairs PINK1-dependent autophagy,
leading to the dysfunction of autophagy signaling and inducing
the amyloid accumulation and mitochondrial impairment (Zhou
et al., 2018b; Lim et al., 2020). In addition, NEAT1 regulates
Aβ accumulation in AD mice through interacting with miR-124
and miR-107, and knockdown of NEAT1 attenuates Aβ-induced
neuronal damage (Zhou et al., 2018b; Butler et al., 2019; Ke et al.,
2019).

LNCRNA AND NEURONAL APOPTOSIS

Neuronal Apoptosis and AD
Neuronal apoptosis plays an important role in central nervous
system, and the perturbation of apoptosis is involved in the
neurodegenerative diseases including AD (Gu et al., 2018).
Caspases act as both initiator and executor of apoptosis, and at
least 7 caspases have been involved in AD including caspase-1,
2, 3, 6, 8, 9, and 12. For instance, the level of caspase-1 mRNA
is upregulated in AD brain extracts (Qian et al., 2015). The
deficiency of caspase-2 protects several neuronal subtypes from
Aβ-induced apoptotic death in vitro (Desjardins and Ledoux,
1998), and caspase-3 is increased in AD brain and is activated
in Aβ-treated neuronal cultures (Gervais et al., 1999). Previous
reports have shown that many DNA fragmentation in post-
mortem brains of AD patients, which indicates the activity of
apoptosis in AD (Lassmann et al., 1995). All these data suggest
that neuronal apoptosis dysregulation mediates the pathogenesis
of AD.

Early B Cell Factor 3 Antisense RNA
Induces Neuronal Apoptosis
EBF3-AS, a 2-exon RNA transcribed from the opposite strand
of the protein-coding gene Early B cell factor 3 (EBF3), is
abundantly expressed in brain (Zhao et al., 2019). EBF3 is

thought to be a target gene of EBF3-AS and is potentially
associated with age in LOAD (Magistri et al., 2015). Previous
studies have revealed that EBF3 homologs are essential for
survival and dysfunction of EBF3 correlates to a range of nervous
system developmental defects including perturbation of neuronal
development and migration (Belbin et al., 2011). EBF3-AS and
EBF3 are upregulated in the hippocampus of AD mice, and
knockdown of EBF3-AS and EBF3 inhibits the apoptosis induced
by Aβ (Chao et al., 2017). These results suggest that EBF3-AS
induces neuronal apoptosis in AD, supporting EBF3-AS as a new
target for AD treatment.

Natural Antisense Transcript Against
Rad18 Promotes Neuronal Apoptosis
NAT-Rad18, with a length of 509 nucleotides, plays a crucial
role in DNA repair, and is directly responsible for the
specific mono-ubiquitylation of the polymerase adapter PCNA
(Lloyd et al., 2006; Parenti et al., 2007). NAT-Rad18 is
universally expressed in the brain, especially in the cerebellum,
brainstem, spinal cord, olfactory bulb, cortex, hippocampus
and striatum (Flores et al., 2018). The upregulation of NAT-
Rad18 renders cells more sensitive to a wide spectrum of DNA-
damaging agents (Harvey et al., 2004), which may be part
of a complex transcriptional and post-transcriptional genomic
program underlying Aβ-neurotoxicity.

Metastasis-Associated Lung
Adenocarcinoma Transcript 1 Reduces
Neuronal Apoptosis
MALAT1 is a long intergenic non-coding RNA that is located on
chromosome 11q13 and consists of 8,828 nucleotides (Tateishi
et al., 2000). Emerging evidence suggests a neuroprotective
function of MALAT1 via inhibiting neuroinflammation.
MALAT1 is decreased in Aβ1−42 treated neurons, and
induces the neurite outgrowth (Ji et al., 2003; Ma et al., 2019).
Overexpression of MALAT1 reduces neuronal apoptosis and
alleviates neuronal injury (Zhuang et al., 2020), and knockdown
of MALAT1 promotes neuronal apoptosis and represses neurite
growth (Ji et al., 2003). Additionally, MALAT1 modulates
miR-125b expression and consequently suppresses neuronal
apoptosis and inflammation (Ji et al., 2003; Ma et al., 2019).

Taurine Upregulated Gene 1 Facilitates
Neuronal Apoptosis
TUG1 is a novel lncRNA with 6.7-kb nucleotides located on
the chromosome 22q12, and is involved in neuronal apoptosis,
proliferation, cell cycle and metastasis (Li et al., 2020a). Recent
studies have revealed the important role of TUG1 in AD through
controlling the neuronal apoptosis. TUG1 silencing decreases
cellular apoptosis in Aβ25−35-treated hippocampal neurons, and
consequently improves spatial learning and memory of AD mice
(Guo et al., 2020). In addition, TUG1 acts as miR-15a sponge
and regulates neuronal apoptosis via the proteolytic cleavage of
crucial proteins (Guo et al., 2020; Li et al., 2020b).
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TABLE 1 | Potential lncRNA biomarkers in AD patients.

Related lncRNA Regions of AD patients Biological function References

BACE1-AS↑/↓ Brain, plasma Upregulating BACE1 mRNA stability; Altering Aβ aggregation pattern

increasing Aβ expression.

Faghihi et al., 2008; Fotuhi et al.,

2019

NDM29↑ Cerebral cortex Promoting the cleavage activity of BACE andγ-secretase; Increasing

Aβ secretion and Aβx−42/Aβx−40 ratio.

Massone et al., 2012

51A↑ Cerebral cortex and plasma Downregulating SORL1; Increasing production and accumulation of Aβ. Massone et al., 2011; Ciarlo et al.,

2013

17A↑ Cerebral cortex Impairing the GABAB signaling pathway Massone et al., 2011

BC200↑ Cerebral cortex Inducing Aβ production and amyloid deposition; Maintaining the

long-term synapse plasticity

Mus et al., 2007

The arrows next to lncRNA indicates up/down-regulation in AD patients.

Wilms Tumor 1 Homolog Antisense RNA
Inhibits Neuronal Apoptosis
WT1-AS, a lncRNA located on chromosome 11p13, is important
in regulating transcription, apoptosis and RNA metabolism
(Zhang et al., 2019a; Wu et al., 2021). WT1-AS is downregulated
in Aβ25−35 treated SH-SY5Y cells, and overexpression of WT1-
AS inhibits WT1 expression and reverses the deleterious effects
of Aβ25−35 (Toska and Roberts, 2014). In addition, WT1-AS
inhibits apoptosis via reducing WT1 expression or suppressing
miR-375 expression (Toska and Roberts, 2014).

LNCRNA AND NEUROINFLAMMATION

Neuroinflammation and AD
Neuroinflammation is a response to various stimuli and consists
of glia cells, lymphocytes, monocytes and macrophages, which
directly contributes to the pathogenesis and progression of AD
(Maccioni et al., 2020). Neuroinflammation acts as a “double-
edged sword” in the central nerve system (Cortés et al., 2018;
Maccioni et al., 2020). The balance between neuronal damage
and inflammation is mainly regulated by glia cells (Maccioni
et al., 2020). Microglia functions as resident phagocytes to
dynamically monitor the environment, and contributes to the
brain development and synaptic pruning (Frost and Schafer,
2016; Colonna and Butovsky, 2017). Astrocytes are shown
to maintain brain homeostasis, protect neural circuits and
repair injuries (Sofroniew and Vinters, 2010; Cai et al., 2017b).
Dysfunction of astrocytes induces tau hyperphosphorylation and
NFT formation and failure of Aβ clearance (Yan et al., 2013;
Leyns and Holtzman, 2017). Moreover, astrocytes are the most
important energy regulators in CSF, and astrocyte metabolic
dysfunction is considered as an initiating factor in AD (Yan et al.,
2013).

Maternally Expressed Gene 3 Reduces
Neuroinflammatory Injury
MEG3 locates on chromosome 14 in humans and acts as
a mediator in inflammation. MEG3 plays a key role in
various biological processes including microglia activation and
inflammatory response (Kobayashi et al., 2000;Meng et al., 2021).
Upregulation of MEG3 inactivates astrocyte through inhibiting
the PI3/Akt pathway, and improves the spatial memory in AD

rats (Yi et al., 2019). MEG3 is also a direct target of miR-7a-5p,
and overexpression of MEG3 reduces miR-7a-5p and promotes
microglia activation (Meng et al., 2021).

MALAT1 Attenuates Neuroinflammation
Accumulating evidence indicates the neuroprotective and anti-
inflammatory role of MALAT1 in neurodegenerative diseases
(Zhou et al., 2018a; Masoumi et al., 2019). MALAT1 inhibits
the inflammation-associated miRNAs levels, and attenuates
neuroinflammation in AD (Ma et al., 2019). MALAT1 is also
decreased in Aβ1−42 treated cells and inhibits neuronal apoptosis
(Ma et al., 2019).

Other LncRNA With AD
Glial cell line-derived neurotrophic factor (GDNF) is a
neurotrophic peptide, and is known as a neurotropin to promote
the survival and differentiation of midbrain dopaminergic
neurons (Ledda et al., 2007; Airavaara et al., 2011). Glial cell
line-derived neurotrophic factor opposite strand (GDNFOS) is
a cis-natural antisense transcribed from the opposite strand of
GDNF gene (Cortini et al., 2019). In patients with AD, the
level of mature GDNF is increased in CSF and decreased in
serum, while GDNFOS1 is upregulated in cerebellum (Straten
et al., 2009; Airavaara et al., 2011). MAGI2-AS3 is significantly
increased in Aβ25−35 induced neuronal cells and in AD patients,
and knockdown of MAGI2-AS3 attenuates neurotoxicity and
neuroinflammation (Wang et al., 2020). LncRNA X-inactive
specific transcript (XIST) is a functional lncRNA which plays
an important role in the development and progression of
many malignant tumors (Yi et al., 2019). The expression of
XIST is significantly increased in AD models and silencing
XIST negatively regulates the expression of miR-124 and
promotes BACE1 expression (Du et al., 2017). Ribonuclease
P RNA component H1 (RPPH1) is an RNA component of
the RNase P ribonucleoprotein, which cleaves tRNA precursor
molecules to generate the mature tRNA (Yue et al., 2020).
Overexpression of RPPH1 increases the density of dendritic
spine in hippocampal neuron (Cai et al., 2017a), which suggests
a protective role of RPPH1 in the early stage of AD. Small
nucleolar RNA host gene 1 (SNHG1) is upregulated in Aβ25−35

treated cells and knockdown of SNHG1 attenuates Aβ25−35

induced mitochondrial dysfunction and cell apoptosis (Cai
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et al., 2017a; Wang et al., 2019a). Recent studies have shown
that knockdown of the lncRNA antisense non-coding RNA in
the INK4 locus (lnc-ANRIL) inhibits apoptosis and promotes
neurite outgrowth in a cellular model of AD (Zhou et al.,
2020).

LncRNA in Clinical AD Management and
Perspective
LncRNAs are relatively stable, which indicates that the serum or
CSF lncRNAs might be promising biomarkers and therapeutic
targets for AD diagnosis and treatment (Table 1). The
concentration of BACE1 in CSF and plasma shows a good
diagnostic value in AD patients (Shen et al., 2018; Lopez-Font
et al., 2019). Therapeutic strategies targeting BACE1 have
been extensively developed but discontinued due to futility or
safety reasons (Ghosh and Osswald, 2014; Hampel et al., 2021).
BACE1-AS becomes an attractive biomarker for AD, and the
level of BACE1-AS is upregulated in the brain and plasma of AD
patients (Faghihi et al., 2008; Feng et al., 2018) but significantly
decreased in pre-AD cases (Fotuhi et al., 2019). Overexpression
of NDM29 is observed in AD postmortem cerebral cortex
samples (Massone et al., 2012). 51A is overexpressed in AD
post-mortem samples and shows an active role in altering
SORL1 expression in AD patients and a positive correlation
with Aβ production compared with that in healthy controls
(Ciarlo et al., 2013). 17A is upregulated in cerebral cortices in
AD patients and is specifically overexpressed in AD patients
rather than other neurodegenerative diseases (Massone et al.,
2011). The level of BC200 in cortical areas is increased in brains
from AD patients, and is reduced in normal aging individuals
(Mus et al., 2007). However, it is also shown that the plasma
levels of 17A, 51A and, BC200 are not significantly affected
in AD patients compared with those in age-matched controls
(Feng et al., 2018). These inconsistent results may be attributed
to relative smaller sample size and different disease stages.

Larger-scale trials are needed to elucidate the lncRNA profile
in AD.

CONCLUSION

Up to now, numerous lncRNAs have been identified to be
associated with AD, but it is only a tip of the iceberg.
LncRNAs play a critical role in the AD pathogenesis including
amyloid production, Tau hyperphosphorylation, mitochondrial
dysfunction, synaptic impairment and neuroinflammation.
However, how lncRNAs function at molecular and cellular levels
remains a huge challenge, and the biological characteristics and
underlying mechanisms of lncRNAs in AD still need to be
elucidated. Undoubtedly, further investigation of lncRNAs lights
a new beacon for clinical diagnosis and treatment of AD.
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