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Alzheimer’s disease (AD) is a common age-related neurodegenerative disease

characterized by progressive cognitive decline and irreversible memory

impairment. Currently, several studies have failed to fully elucidate AD’s cellular

and molecular mechanisms. For this purpose, research on related cellular

models may propose potential predictive models for the drug development

of AD. Therefore, many cells characterized by neuronal properties are widely

used to mimic the pathological process of AD, such as PC12, SH-SY5Y, and

N2a, especially the PC12 pheochromocytoma cell line. Thus, this review covers

the most systematic essay that used PC12 cells to study AD. We depict

the cellular source, culture condition, di�erentiation methods, transfection

methods, drugs inducing AD, general approaches (evaluation methods and

metrics), and in vitro cellular models used in parallel with PC12 cells.
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Introduction

Alzheimer’s disease (AD) is one of the most typical forms of dementia and was

first proposed by German neuropathologist and psychiatrist Alois Alzheimer in 1906

(Berchtold and Cotman, 1998). AD is a common neurodegenerative disorder that

leads to progressive cognitive decline and irreversible memory loss (Association, 2018),

eventually causing death from brain failure. It has been reported that 6.2 million people

aged 65 years and older in the United States (US) were living with AD in 2021 (2021;

Rajan et al., 2021). The number is projected to grow to 82million in 2030 and 152million

in 2050 (Aminyavari et al., 2019). Additionally, AD deaths have risenmarkedly according

to its death rate, increasing by 145.2% (U.S. Department of Health Human Services,

2020). As a result, health care and long-term care consumption for patients with AD

is exceptionally substantial. Alzheimer’s and other dementias will cost the nation $355

billion in 2021, while the estimated cost of AD will be more than $1.1 trillion by 2050 in

Americans aged 65 and older (2021). Therefore, it has a tremendous impact on the health

care system and the quality improvement of the end stage of life.
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The main pathological feature of AD is loss of cholinergic

neurons, neurofibrillary tangles, senile plaques formed by β-

amyloid (Aβ), glial cell activation, and inflammation (Toledo

et al., 2015; Weiner et al., 2015; Ossenkoppele et al., 2016;

Hampel et al., 2018b; Fu et al., 2019). Thus, the features could be

summarized as the cells expressing related proteins expressed by

the cells (such as neurons) (Su and Shih, 2015) and pathological

properties (such as inflammation, loss of cholinergic neurons,

and senile plaques). In particular, the brain’s loss of cholinergic

neurons and nicotinic acetylcholine receptors (nAChRs) is a

significant feature of AD pathology (Yoo et al., 2007). Therefore,

the study of the characteristics of cholinergic neurons and

cell models could be used to mimic AD pathological damage

at the microscopic level. To make effective disease-modifying

treatments for AD, sufficient in vivo and in vitro studies

must be conducted to comprehend AD’s physiological and

pathological mechanisms.

PC12 cells are a rat adrenal pheochromocytoma cell

line, a monoclonal cell line transplanted from rat adrenal

medulloblastoma by Greene and Tischler in 1976 (Greene

and Tischler, 1976). As a catecholamine cells, PC12 cells

can synthesize, store and release appropriate amounts of

catecholamines (mainly dopamine and norepinephrine).

PC12 cells are commonly applied to study neuronal cell

death and neurotoxic damage (Greene and Tischler, 1976).

Thus, PC12 cells are divided into two types: undifferentiated

and differentiated. Undifferentiated PCI2 cells synthesize

catecholamines. However, PC12 cells differentiate into

sympathetic nerve-like cells under the induction of nerve

growth factor (NGF), which are close to neurons in terms of

morphology, physiological and biochemical functions, such as

growing cell protrusions, forming synapse-like structures, and

having electrical excitability properties. Furthermore, under

the action of NGF, they can synthesize acetylcholine and form

neurite structures (Schubert et al., 1977). Additionally, the PC12

cell membrane has IV-methyl-D-aspartic acid (IV-methyl-

D-panic acid, NMDA) receptors (NMDARs, as excitatory

amino acid receptors in the central nervous system) that

regulate synaptic plasticity, memory, and cognitive ability. The

weakened nerve conduction function mediated by NMDARs

can lead to brain aging, neuroplasticity damage, and cognitive

dysfunction. In addition, NMDARs can interact with amyloid

β-peptide/amyloid precursor protein and tau protein (Lin et al.,

2014). The experimental evidence of NMDA receptor subunits

in PC12 cells is shown in Table 1, and experimental evidence of

acetylcholine receptor subtypes expressed in PC12 cells is shown

in Table 2. Acetylcholine receptors are divided into cholinergic

M and N receptors. Ionotropic nicotinic acetylcholine receptors

or metabolizing muscarinic acetylcholine receptors could be

activated by acetylcholine in the nervous system. Cholinergic

M receptors, also named muscarinic receptors (mAChRs), are

called G protein-coupled receptors coupled to G proteins and

transduce signals. Furthermore, mAChRs can combine with T
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TABLE 2 Experimental evidence of acetylcholine receptor subtypes expressed in PC12 cells.

Acetylcholine receptors subtypes

nAChR subtypes mAChR subtypes

Receptor
subunit

Function Combination
form with
other
subunits

Distribution
location

Function References Receptor
subunit

Function Combination
form with
other
subunits

Function Distribution
location

Reference

α3 nAChR β4 subunits, β2
subunits

in the adrenal
medulla

α3β4 nAChR:
Promote the
release of
catecholamines
stimulated by
ACh

Boulter et al.,
1986, 1990;
Rogers et al.,
1992;
Henderson
et al., 1994;
Nery et al.,
2010; Albillos
and Mcintosh,
2018; Criado,
2018

M1 mAChR Participate in
the memory
process of the
interaction
between the
cerebral cortex
and the
hippocampus,
and
consolidate
memory

In the
Hippocampus,
cortex

Boss et al.,
1996;
Berkeley and
Levey, 2000;
Volpato and
Holzgrabe,
2018

α5 nAChR 1. not
participate in
the binding
site and is
considered an
“accessory
subunit

α3 and β4
subunits

in the adrenal
medulla

Boulter et al.,
1990; Rogers
et al., 1992;
Kuryatov et al.,
2008; Nery
et al., 2010

M2 mAChR 1. Regulates
choline energy
nerve pressure
and affects
nerve circuit
function
2. Inhibits
neuron
excitability,
and negative
feedback
regulates the
release of
neurotransmitter

In the Pontine-
medulla
oblongata

Levey et al.,
1995; Boss
et al., 1996;
Mao et al.,
2017

(Continued)
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TABLE 2 (Continued)

Acetylcholine receptors subtypes

nAChR subtypes mAChR subtypes

Receptor
subunit

Function Combination
form with
other
subunits

Distribution
location

Function References Receptor
subunit

Function Combination
form with
other
subunits

Function Distribution
location

Reference

α7 nAChR 1. contribute
to memory
function
2. contribute
to synaptic
plasticit
3. facilitate
neurotransmitter
release and
dendritic
plasticity
4. Activates
calcium
cation-
dependent
signaling
pathways in
cells
5. contributes
to the
cholinergic
anti-
inflammatory
axis

β2 and β4
subunits

In the
hippocampus of
the brain area
related to
memory and
cognition

α7β4 nAChR:
form a
functional
heteromeric
receptor
α7β2 nAChR:
causes a
significant
decrease in
agonist-
evoked
whole-cell
current
amplitudes

Henderson
et al., 1994;
Takahashi
et al., 1999;
Drisdel and
Green, 2000;
Nery et al.,
2010 Wang
et al., 2003;
Boccia et al.,
2010; Parri
et al., 2011;
Criado et al.,
2012;
Hernandez
and Dineley,
2012; Murray
et al., 2012;
King et al.,
2015, 2018

M3 mAChR Fear
conditioning
learning and
memory
deficits

In the entire
central system

Boss et al.,
1996; Poulin
et al., 2010

β2 nAChR Participate in
the survival of
neurons in the
brain and the
maintenance
of cognitive
function in
aging.

α2,α3,α4, α6 and
α7 subunits

In brain α4β2 nAChR:
involved in
memory
formation and
locomotor
activity; α7β2
nAChR:form
functional
receptor

Deneris et al.,
1989; Boulter
et al., 1990;
Rogers et al.,
1992; Levin
et al., 2002;
Nery et al.,
2010; Liu et al.,
2012; Soll
et al., 2013;
Moretti et al.,
2014

M4 mAChR Inhibits
neuron
excitability,
and negative
feedback
regulates the
release of
neurotransmitter

In the Striatum Berkeley and
Levey, 2000;
Wu and
Wong, 2006;
Mao et al.,
2017

β4 nAChR α3 subunits α3β4 nAChR:
Promote the
release of
catecholamines
stimulated by
ACh

Boulter et al.,
1990; Rogers
et al., 1992;
Henderson
et al., 1994;
Nery et al.,
2010; Albillos
and Mcintosh,
2018; Criado,
2018

M5 mAChR In the entire
central system

Berkeley and
Levey, 2000

The acetylcholine receptor subtypes could be expressed by PC12 cells. The table is divided into two parts, including nicotinic receptor and muscarinic receptor subunits. Among nicotinic receptors, the PC12 cells mainly express α3nAChR, α5nAChR,

α7nAChR, β2nAChR, β4nAChR. For muscarinic receptors, muscarinic receptor subunits are expressed in PC12 cells. These subunit receptors could be combined with other subunits.
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the endogenous neurotransmitter acetylcholine. Five mAChR

subtypes (M1-M5) have been identified, as shown in Table 1

(Nathanson, 1987; Caulfield, 1993; Wess, 1996). Nicotinic

receptors greatly impact AD pathophysiological research

(Jürgensen and Ferreira, 2010; Hernandez and Dineley, 2012).

The degeneration of cholinergic neurons and declining activity

of choline-acetyltransferase (ChAT), an enzyme that synthesizes

ACh, lead to a decrease in cognition (Davies and Maloney,

1976; Bartus et al., 1982; Ballinger et al., 2016; Shimohama and

Kawamata, 2018). Choline acetyltransferase (ChAT) is the main

enzyme involved in the biosynthesis of the key neurotransmitter

acetylcholine (ACh) from choline and acetyl-CoA (ACoA).

Acetylcholine (ACh), as a neurotransmitter, could not only be

involved in cognitive functions, such as attention (Howe et al.,

2017; Urban-Ciecko et al., 2018), but also participate in plasticity

and learning; for example, the release of intermittent choline

can adjust the plasticity of different types of synapses in the

hippocampus and coordinate pre- and post-synaptic activities

(Gu and Yakel, 2011; Gu et al., 2012). Moreover, subunits of

nicotinic receptors (as a subtype of cholinergic receptors) are

expressed on PC12 cells. These subunits are shown in Table 2,

especially α3β4 nAChRs (the salient features of α3β4 nAChRs

are the lack of sensitivity of the alkaloid nicotine) (Luetje and

Patrick, 1991; Figl et al., 1992; Papke and Heinemann, 1994).

In addition, the α3 nAChR, α5 nAChR, α7 nAChR, β2 nAChR

and β4 nAChR subunits can be expressed by PC12 cells and

combined with other subunits, as shown in Table 2. Thus, PC12

cells have the advantages of being easy to obtain and having a

high passage number. Therefore, PC12 cells are widely used to

study nerve cell function, differentiationmethods, apoptosis and

neurotransmitter secretion, and determine potential molecular

mechanisms (Spicer and Millhorn, 2003). Meanwhile, PC12

cells are generally used as an ideal cellular model to study

pathological molecular mechanisms of AD (Parri et al., 2011).

Therefore, based on the above, PC12 cells have neuronal

properties. This study aims to provide a systematic review of the

standardization of PC12 cells in AD research. We mainly offer a

brief overview of PC12 cells in AD research. The study primarily

conducted relevant analyses in the following six aspects: cell

source and culture condition, neuronal characteristics induced

by differentiation of PC12 cells, the transfection method, the

general approach to evaluating the AD cellular model, common

damaging agents, and in vitro models used in parallel with

PC12 cells.

Main text

In this review, we systemically analyzed the literature

covering the use of PC12 cells in AD research. The MeSH

Database in PubMed searched keywords, subject headings,

subheadings and free words, including “Alzheimer’s disease”,

“AD”, or “Alzheimer”, and “pheochromocytoma”, “PC12”. 1,003

of 1,717 essays from 1988 Jul 8 to 2021 Feb 10 were included,

which were original, available and AD-particular. The first

screening was performed according to the following criteria:

inclusion of articles with AD specificity and use of PC12 as a cell

model (rather than only as a tool to express proteins or genes),

and excluding articles not specific for AD, methods papers,

reviews, articles with “Alzheimer” as an author, documents

that mentioned the cell line from previous studies only in the

abstract but did not use it, publications in languages other than

English, and not accessible articles (all means are shown in

Supplementary material 1).

The source and culture condition of
PC12 cells

It is estimated that PC12 cells are mainly purchased from

the American Type Culture Collection (ATCC), institutes, cell

banks, universities and donations. Among the pieces of literature

mentioned, 50 % of cell sources were not mentioned, 21 % from

ATCC, 8 % from institutes, 6 % from cell banks, and 2 % from

universities and donations, respectively.

Due to different sources, the culture media composition

required for the growth of PC12 cells is different, according

to the ratio that appears in the survey, which is listed in

Supplementary material 2. RPMI 1640 medium supplemented

with 10 % DHS, 5 % BCS, 2mM L-glutamine, penicillin at

50 units/ml and streptomycin at 50 mg/ml was proposed

by ATCC. DMEM supplemented with 10 % FBS, and an

institute obtained 0.3% antibiotics; DMEM supplemented with

10 % FBS, 50 units/ml of penicillin and 100 mg/ml of

streptomycin was provided by a cell bank. Among systematic

studies involving PC12 cells in AD, the basal media is shown

in Supplementary material 2. The basal media is essential for

the cultivation of PC12 cells, and DMEM (455 out of 820

articles), RPMI 1,640 (267 out of 820 articles) and DMEM/F12

(19 out of 820 articles) are commonly used. In 82 % of

articles, basal media was supplemented with supplement serum

in Supplementary material 2.

Among the supplement sera, the primarily supplemented

sera were FBS, HS and FCS. The changes in FBS ranged from

0.5 to 15 %; among them, the commonly used concentrations

of FBS were (280 out of 816 articles) and 5 % (259 out of 816

articles). The content of HS ranged from 0.5 to 20 %, and the

commonly used concentrations of HS were 10 % (276 out of

816 articles) and 5 % (151 out of 816 articles). Moreover, the

content of FCS ranged from 2.5 to 20 %, and the commonly

used concentrations of FCS are 10 % (72 out of 816 articles)

and 5 % (58 out of 816 articles). Statistically, in DMEM, the

common supplement sera were 10 % FBS, 5 % FBS and 10 %HS.

In RPMI 1640 media, the common supplement sera included

10 % HS, 5 % FBS and 10 % FBS. In DMEM/F12 media, the

common supplement sera contained 10% FBS, 7% FBS and 10%
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HS. Among these, 10% FBS, 5% FBS and 10% HS are frequently

applied. In addition, the basal media is supplemented with other

types of sera. Different concentrations of serum influence the

outcome of the experiment (van der Valk et al., 2010), such

as cell differentiation (Medina Benavente et al., 2014) and cell

transfection. The supplement serumwas used either individually

or in combination.

Furthermore, the culture media is also involved in

other supplements, as shown in Supplementary material 2.

According to relevant statistics, antibiotics/antimycotics and L-

glutamine are commonly added to basal media. The widely

used antibiotics/antimycotics are mixtures of penicillin and

streptomycin. The role of antibiotics in the medium is to avoid

the production of other bacteria in the culture fluid, affecting

the typical living environment of the cultured cells. L-glutamine

is a nonessential amino acid (NEAA). L-glutamine and NEAA

can participate in cell signaling, gene expression, and metabolic

regulation (Deberardinis et al., 2008). The significant difference

is that L-glutamine is relatively essential for cells proliferating at

high rates (Wu et al., 2014).

Additionally, G418, sodium pyruvate and NEAAs have a

crucial influence on cell growth. All plasmids were subcloned

into either a pcDNA3 or pcDNA3.1 vector (Invitrogen)

containing antibiotic-resistance genes for selection with G418

(Chi et al., 2010). Excess free oxygen and free radicals are

eliminated by sodium pyruvate. In addition, the supplements

include Glutamax or other components, such as Na2CO3,

NaCl, HEPES, and NaHCO3. The effects of additives on cell

culture are shown in Supplementary material 2. The types and

compositions of culture media are crucial for cell growth

and survival, especially disease research, such as on oxidative

stress, cell death (Hwang and Lee, 2008; Jäckel et al., 2011)

and the metabolic profile (Dietmair et al., 2012). Therefore, it

is necessary to systematically acknowledge various metabolic

intermediates, ions, serum components and substrates to affect

the growth and differentiation of PC12 cells in future disease-

association studies.

The characteristics of PC12 cells
after di�erentiation

PC12 cells are divided into two types: undifferentiated

and differentiated. Undifferentiated PC12 cells are small,

irregularly shaped, floating cell clusters or scattered lightly

attached cells. AD-related studies found that most experiments

used undifferentiated PC12 cells because undifferentiated

PC12 cells could express nerve growth factor (NGF) receptors

and a high transfection capacity (Westerink and Ewing,

2008). Furthermore, PC12 cells contain catecholamine

(LDCV) and acetylcholine (LDCV), both of which are

found in small transparent follicles (Greene and Tischler,

1976). Moreover, undifferentiated PC12 cells can synthesize

acetylcholine and grow neurite structures under the action

of NGF (Schubert et al., 1977). In the research using

differentiated PC12 cells, differentiated PC12 cells highly

express the characteristics of neurons, such as the growth

of cell protrusions, the formation of synapse-like structures,

and electrical excitability properties. The differentiation

condition of PC12 cells for AD research has been described

in Table 3 (details are listed in Supplementary material 3).

According to statistics, the majority of research used inducers

to mediate differentiation. The inducer of differentiation

is mainly NGF. NGF plays a vital role in basal forebrain

cholinergic neuron differentiation (Thoenen, 1995). NGF

is a polypeptide growth factor that has nutritional effects

on nerve cells and plays a vital role in nerve cells’ growth,

differentiation and axon formation (Chao et al., 2006). After

adding nerve growth factor (NGF), PC12 cells could be

differentiated into sympathetic neurons in the morphology,

accompanied by physiological and biochemical changes, and

behave like neurons.

Moreover, PC12 cells treated with or without NGF can

synthesize, store, uptake and release catecholamines like

sympathetic neurons. However, PC12 cells differentiated

by NGF will increase their electrical excitability and

neurotransmitter sensitivity (Greene and Tischler, 1976; Greene

and Rein, 1977). Moreover, an increasing level of nicotinic

cholinergic subtypes or mRNA occurs after differentiation

(Henderson et al., 1994). Meanwhile, the ACh-mediated

channel activity is also increased. The concentration of NGF is

between 50 mg/ml and 100 mg/ml. After culturing PC12 cells

in serum-free DMEM medium and adding NGF nerve growth

factor, it was found that within a certain period of time, nerve

growth factor could promote the differentiation of neurites

into neuron-like cells, thereby inhibiting the growth of PC12

cells to a certain extent. The latest research has found that

NGF can also promote the proliferation of PCI2 cells, but its

effect is quickly overshadowed by the significant differentiation

effect of the cells themselves (Mouri and Sako, 2013). When

PC12 cells were cultured in an NGF medium (Wiatrak et al.,

2020) for 3 days, the cells stopped dividing, grew protrusions

and gradually differentiated into cells with characteristics of

sympathetic neurons. After 5 days, the protrusions gradually

increased and extended to form a network structure, and

most of the cells progressively transformed into sympathetic

cells. The results showed that after 50 ng/L NGF serum-free

culture medium induced by PC12 cells to differentiate for 5

days, the cell diameter increased significantly, the protrusions

increased, and the cell differentiation rate reached 72.6%.

Furthermore, NGF is a neurotrophic factor that can induce

neurite outgrowth in neuronal cells (Alipour et al., 2014).

Highly differentiated PC12 cells are directly used in the AD

experiment. For example, differentiated rat pheochromocytoma

PC12 cells have been cultured in RPMI-1640 medium with 10

% (v/v) fetal bovine serum (FBS), 10 U/ml penicillin, and 10
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TABLE 3 The di�erentiation condition of PC12 cells for AD research.

The di�erentiation condition Number of articles

Basal media Supplements Inducer

Serum Other

Not specified ∗ ∗ NGF 92

DMEM ∗ ∗ 19

√

∗ 17

√ √
NGF 16

∗ ∗ FGF 1

∗ ∗ dibutyryl cAMP 1

RPMI1640
√

∗ NGF 13

√ √
9

∗ ∗ 4

∗
√

2

RPMI
√

∗ NGF 6

√
∗ FGF 1

√
∗ PMA 1

√
∗ RA 1

Not specified
√

∗ NGF 18

√ √
3

High glucose DMEM
√

∗ NGF 1

∗ ∗ 1

DMEM/F12, N2 ∗ ∗ NGF 1

N2/DMEM ∗ ∗ NGF 1

DMEM/F-12
√

∗ NGF 1

The main inducers included: NGF, FGF, dibutyryl Camp, PMA and RA.

“ ∗ “ represent not specified; “
√

“ represent specified additives.

NGF, nerve growth factor; RA, retinoic acid; FGF, fibroblast growth factor; PMA, phorbol 12-myristate 13-acetate.

U/ml streptomycins at 37 ◦C in 95 % humidified air with 5 %

CO2 (Ai et al., 2021). Moreover, the highly differentiated PC12

pheochromocytoma cells were cultured in Dulbecco’s modified

Eagle’s medium (DMEM) containing 10 % heat-inactivated

fetal bovine serum (FBS), 100 U/ml streptomycin and 100

U/ml penicillin in a humidified 5% CO2 and 95% air incubator

(Zhao et al., 2018). Moreover, the neurotrophic factors, NGF

and FGF, can activate the MEK-ERK and PI3K-AKT pathways,

thereby inducing PC12 cell neurite outgrowth (Lai et al.,

2011; Wang et al., 2011). In addition, it has been reported

that RA of an appropriate concentration can induce the

expression of choline acetyltransferase (ChAT) in PC12 cells,

thereby forming pseudo cholinergic neurons, which can be

used in some experimental studies of AD. Approximately

7–8 days after induction, the cells could form neurites.

Moreover, the studies have shown neuronal characteristics upon

differentiation media.

The transfection methods

Differentiation and transfection are two different biological

processes of cells. Cell differentiation is a fundamental biological

process, and the inducers are essential in addition to the

common culture condition. However, distinguished from

differentiation, transfection is the transfer of the transfected

substance into the cell. Thus, choosing an appropriate cell

transfection method is critical to improving the cell transfection

rate. The different cell transfection methods used for the

AD research are shown in Table 4. According to article

statistics, common transfection methods include DNA, RNA,

APP and PS. Protein expression was induced by transfection

with plasmid DNA as the transfection reagent (Del Toro

et al., 2020). Thus, human APP mutation gene-constructed

DNA is also applied to transfect PC12 cells. Its main

transfection is siRNA transfection in RNA transfection. For
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cell siRNA transfection, PC12 cells were inoculation in a

6-well plate, and the transfection was performed when the

culture was 75–80% confluent. Before transfection, siRNA was

incubated with RNAiMAX for 30min at room temperature.

According to the manufacturer’s instructions, lipofectamine

and reagents (Invitrogen) can transiently transfect PC12 cells

containing siRNA (Chen et al., 2019). Furthermore, studies

have demonstrated that lipofectamine may be applied as an

effective gene carrier for PC12 cells (Lee et al., 2008). Moreover,

gene mutations encoded by three essential proteins related to

AD may cause familial AD, such as amyloid precursor protein

(APP), presenilin 1 (PS1), and presenilin 2 (PS2) (Masters et al.,

2015). The APP and PS1 methods are commonly documented

by gene transfection. Amyloid (APP) is the amyloid β (Aβ)

precursor, a complete membrane protein with a receptor-like

structure. In addition, an increase in responsiveness to bFGF

stimulation and diminished responsiveness to NGF stimulation

could be observed in the transfection of PC12 cells with APPC100
gene construct (Sandhu et al., 1996). Studies have shown

that antisense PS2 transfection can prevent neuronal growth

factor-induced differentiation or apoptosis of amyloid precursor

protein expression in PC12 cells during nutritional deficiency

(Wolozin et al., 1996). In addition, some studies have shown that

transfection with Bcl-2 gene rescued PC12 cells from apoptotic

death and oxidative death caused by H2O2 (Jang and Surh,

2004).

The common damaging agents to
mimic AD

To study the process of disease occurrence, the study of

pathological processes is an essential part. The mechanisms

of AD are described in the text in Figure 1. In the relevant

statistical literature, the “cholinergic hypothesis”, “amyloid

hypothesis”, “oxidative stress and free radical damage

hypothesis”, “inflammation hypothesis”, and “Tau protein

phosphorylation hypothesis” are commonly applied in the

pathogenesis of AD. The characteristics of the common

hypothesis are shown in Figure 1. The “cholinergic hypothesis”

is currently widely accepted (Francis et al., 1999; Hampel et al.,

2018a). The loss of cholinergic neuron function is directly

related to AD cognitive dysfunction. The amyloid hypothesis

was proposed by Hardy and Higgins (1992) and is a widely

defined hypothesis in the pathogenesis of AD. According to

the amyloid cascade hypothesis, the accumulation of amyloid-β

initiates a series of downstream molecular events, driving the

pathogenesis of AD (Hardy and Selkoe, 2002). Furthermore,

Aβ comprises three forms: a monomer, oligomer and fiber.

Abundant evidence has revealed (Bjorklund et al., 2012) that

oligomers are the factors that cause cognitive dysfunction in AD.

The Aβ oligomer combined with an integrator simultaneously

induces the excitement of tyrosine kinase dependence on the

TABLE 4 Di�erent cell transfection methods used for the AD research.

Transfection methods Number of articles

DNA 48

RNA 33

APP 21

PS 13

Virus vectors 10

Tau 8

MiR-mimic 8

Lipofectamine 5

GFP 4

Bcl-2 3

PCER 2

Other 37

The table specifies the number of articles that commonly use any transfection method.

“Others” refers to articles mentioning other uneasily classified transfection methods.

GFP, Green Fluorescent protein; PCER, phytoceramide.

N-methyl-D-aspartate (NMDA) receptor. The NMDA receptor

is expressed by PC12 cells (shown in Table 1).

Understanding the pathological mechanism is essential

for AD research, and studies often use drugs to establish

PC12 cell injury models. PC12 are considered as sympathetic

neuron-like cells, and they are sensitive to apoptosis inducers.

Statistics on AD injury cellular models show that the main

models are oxidative damage and apoptosis, while inflammation

models are relatively rare. The occurrence and development of

neurodegenerative diseases are closely related to oxidative stress

(Thanan et al., 2014). PC12 rat adrenal pheochromocytoma

was used as a cell model, and H2O2 (free radical trigger) (Li

et al., 2018), Aβ and glutamate could be frequently taken as

damage agents in AD research. The evaluation indicators and

the use of drugs are shown in Figure 2 (The detailed evaluations

are shown in Supplementary material 4). Furthermore, the main

damaging agents in AD research are shown in Table 5 (The

detailed concentration and relevant time of drugs are shown in

Supplementary material 5).

Aβ induced injury in PC12 cells is shown in Figure 2. The

types of Aβ used mainly include Aβ25−35, Aβ1−42 and Aβ1−40.

According to relevant statistics, the most used time of Aβ

is 24 h and 48h. The concentrations of Aβ25−35 is typically

20µM, 10µM, 50µM and 25µM. Aβ25−35 induce oxidative

damage in PC12 cells, increase intracellular ROS production and

reduce mitochondrial membrane potential (Huang et al., 2019).

Cell death was classified as apoptosis and necrosis (Núñez,

2011). Apoptosis, the prevalent form of programmed cell

death, is essential for maintaining normal cellular homeostasis

(Hengartner, 2000), and could be initiated by an extrinsic

death receptor pathway or an intrinsic intracellular pathway,
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FIGURE 1

The characteristics of common hypothesis in AD study. Colored text on left side of figure represents cholinergic hypothesis, Aβ hypothesis, Tau

protein phosphorylation hypothesis, oxidative stress hypothesis, neuroinflammatory hypothesis, respectively; black text on right side of figure

represents relevant pathologic characteristics.

each of which is associated with different molecular pathways

(Cazanave and Gores, 2009; Ambjørn et al., 2013). Necrosis

is regarded as a degenerative phenomenon that lose their

membrane integrity after irreversible injury (Weerasekera et al.,

2019). Aβ oligomers exert neurotoxicity via induing caspase-

3 mediated apoptosis (Kreutzer et al., 2017). Furthermore, the

neurotoxicity of Aβ aggregation involves diverse cellular and

molecular mechanisms, such as ROS generation, the increase

of intracellular Ca2+ concentrations, and the induction of

apoptosis (Arispe et al., 1993; Behl et al., 1994). The inhibition

of neuronal apoptosis might be regarded as one of the

effective approaches to preventing Aβ-induced neurotoxicity.

The finding demonstrated an increase in apoptosis and necrosis

of human umbilical vein endothelial cells with 5µM Aβ25−35

treatment for 24 h (Durán-Prado et al., 2014). Additionally,

Aβ25−35 stimulation caused cell apoptosis, and the apoptotic

feature is marked by chromatin condensation (Lee et al.,

2017). Statistical results show that the common concentrations

of Aβ1−42 are 10, 25, and 20µM and 50µM, while the

concentrations of Aβ1−40 are 10, 20, 50, and 25µM. The studies

document that Aβ1−42 bind with selectivity to nAChR (Li and

Buccafusco, 2003). The monomeric and low oligomeric forms

of Aβ1−42 increase the expression of acetylcholinesterase as a

consequence of the agonist effect of Aβ1−42 on the α7 nAChR

(Fodero et al., 2004). Meanwhile, human aortic endothelial cells

(HAECs) cause toxicity by inducing apoptosis and necrosis

after exposure to 10µM Aβ1-42 for 24 h (Suo et al., 1997).

Studies have shown that activating α7 and α4β2 nAChRs

reverses the Aβ42-induced hyperexcitability of neurons (Sun

et al., 2019). The significant difference is that neurons from

Aβ1−40 toxicity are protected by M1-acetylcholine-muscarinic-

receptor (mAChR) activation (Farías et al., 2004). In addition

to the common types of Aβ, Aβ42 are commonly used. The

relevant statistics indicated that Aβ42 at 10µM concentrations

commonly are used in experiments. The appropriate time for

Aβ42 treatment is typically 24 h. Studies confirmed that Aβ42 is

the main component of senile plaques in AD (Iwatsubo et al.,

1994). Moreover, the Aβ42 oligomer mediates cell oxidative

damage (Zheng et al., 2011; Cecarini et al., 2012) and cell

apoptosis (Meng et al., 2016). Studies show that the pathological
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FIGURE 2

The methods to construct cell models on pathophysiologic processes of AD studies. The figure shows how to cause di�erentiation, the

characteristics of PC12 cells after di�erentiation, the expression of receptors on PC12 cells, and common damaging agents to mimic AD cell

models in AD research.

TABLE 5 The main damaging agents in AD research.

Main damaging agents Number of articles

Aβ peptide Aβ25−35 224

Aβ1−42 175

Aβ1−40 56

Aβ42 46

Aβ40 20

Peroxide H2O2 92

Amino acid Glutamate 13

Neurotoxin 6-OHDA 6

Marine toxin OKA 4

Other 31

The table specifies the number of articles that commonly use any main damaging agents.

“Others” refers to articles mentioning other uneasy classified transfection methods. The

types of Aβ are frequently Aβ25−35 , Aβ1−42 , Aβ1−40, Aβ42, and Aβ40; the peroxide

is commonly H2O2 ; the amino acid is commonly Glutamate; the neurotoxin includes

6-OHDA; the marine toxin includes OKA.

6-OHDA, 6-hydroxydopamine; OKA, okadaic acid; HNE, 4-hydroxynonenal.

conformation of the tau protein is changed by the Aβ42

monomer (Manassero et al., 2016).

The peroxide is mainly hydrogen peroxide (H2O2). The

use of H2O2 is at a higher concentration. The commonly used

concentrations of H2O2 are 150 and 100µM. The appropriate

time for H2O2 is 24 h or 2 h. H2O2 is frequently used as an

inducer to induce cell oxidative stress. Thus, ROS oxidative

stress induced by H2O2 is regarded as an essential factor

for causing oxidative cell damage (Gal et al., 2005). It has a

wide range of applications in the establishment of apoptosis

models. Studies have shown that H2O2 can induce apoptosis

of rat adrenal pheochromocytoma PC12 cells (Lin et al., 2016).

Therefore, this study also used H2O2 as an inducer of PC12 cell

apoptosis, which is the general approach used in the PC12 cell

model of AD. The mainly-used amino acid is mainly glutamate.

The common concentration of glutamate is 100µM and 10mM.

The relevant time for glutamate is 24 and 10 h. The key to

glutamate-induced neurotoxicity is to activate NMDAR and

increase Ca2+ influx. Furthermore, glutamate could induce the

apoptosis model of differentiated PC12 cells (Hu et al., 2016). As

a consequence, earlier studies provided evidence that glutamate-

induced neurotoxicity is one of the most critical factors leading

to the loss of neurons in AD (Bliss and Collingridge, 1993).

Some types are not commonly used. Recently, more evidence

showed that a large number of bio-metallics presented in the

brains of AD patients (Bush, 2008; Sang et al., 2019; Zhu

et al., 2019), such as Cu2+, Zn2+, Al3+ and Fe3+. These metal

ions can promote the formation of Aβ plaques and NFTs,

catalyse the generation of ROS, and cause oxidative damage.

Furthermore, these metal ions are present in senile plaques

and aggravate the progression of dementia (Ayton et al., 2013;

Li et al., 2017). Among these metal ions, zinc and iron can
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cause tau hyperphosphorylation, and copper ions may be one

of the main cationic elements to form senile plaques (Robert

et al., 2015). Copper dysregulation is also associated with

tau hyperphosphorylation (the main component of NFT) and

aggregation. In addition, ferrous and copper ions participate in

the Fenton reaction to generate ROS, which aggravates oxidative

stress (Barnham and Bush, 2008). One complimentary strategy

to study AD in cells is to interfere directly with one of these

processes by administering specific compounds with agonistic

or antagonistic activity, such as tert-butyl hydroperoxide

(oxidative stress), MGO (a potent inducer of AGEs), bafilomycin

(inhibitor of vacuolar H+ATPase, leading to autophagy

dysfunction), thapsigargin (inhibitor of the sarco/endoplasmic

reticulum Ca2+ATPase, resulting in ER stress and autophagy

inhibition), peroxynitrite (a mediator of protein oxidation and

nitration, lipid peroxidation, mitochondrial dysfunction, and

cell death), and amylin (increased or decreased ERK and Akt

phosphorylation in dispersed islets). By simulating the cell

model of the disease, the pathological process of the disease can

be better understood.

The general approach to evaluating
the AD cell model

In addition to studying the pathogenesis of the disease, it

also involves various methods in the pathological process of

AD. The common mechanism evaluation indexes of PC12 cells

are mainly based on hypotheses in AD research, including the

cholinergic hypothesis, oxidative stress hypothesis (including

secondary apoptosis), inflammation hypothesis, and Tau protein

hyperphosphorylation. A series of different approaches could be

widely used to analyse cell apoptosis. Flow cytometry (Dimov

et al., 2014) and fluorescence microscopy techniques (Jaber et al.,

2020) are broadly applied tools for studying biological processes

in cell apoptosis. The fluorescein isothiocyanate (FITC) and

propidium iodide (PI) coupled with Annexin V (Annexin

V-FITC) could be taken as an approach for detecting the

process of apoptosis. Additionally, the Hoechst staining analysis

showed that the drug’s toxicity to PC12 cells was caused by

apoptosis. Among the Hoechst, Hoechst 33,342 has been used

to distinguish apoptotic cells from healthy or necrotic cells

(Zhivotosky and Orrenius, 2001). Hoechst 33258 has been used

to quantitatively determine DNA in biological materials (Saleh

et al., 2000). It is essential to determine the corresponding

proteins, such as caspase and Bcl-2 proteins (fundamental

regulators of apoptosis) (Hayakawa et al., 2016). In particular,

caspase activation has been recognized as a critical regulator

of the apoptotic pathway (Taylor et al., 2008), which could

be associated with the maturation of the pro-inflammatory

cytokines IL-1β (Creagh et al., 2003). Therefore, western blotting

is usually used to measure protein expression levels (Duan et al.,

2019). As a kind of oxygen-containing active substance with

high reactivity (Steinbrenner and Sies, 2009), reactive oxygen

species (ROS) could induce oxidative stress and cause oxidative

damage at excessive levels. Moreover, the generation of ROS can

be regarded as the result of the neuroinflammatory cycle, and

Aβ peptide is taken as a neuroinflammatory factor to promote

ROS generation (Holmes et al., 2011). Therefore, ROS could be

considered as one of the indicators of oxidative damage (Mittler,

2017), which affects the generation and accumulation of Aβ

(Bonda et al., 2010; Jo et al., 2010; Gwon et al., 2012; He et al.,

2017). Moreover, measuring the activity of specific antioxidant

enzymes could be applied as a means of assessing oxidative

stress, such as superoxide dismutase (SOD), glutathione (GSH)

and catalase (CAT). Quantitative real-time PCR (qPCR),

immunohistochemistry (ICH) and immunofluorescence (IF)

could also be used to measure and evaluate indicators of

cellular models. Studies have shown that the miRNA signal in

AD can be measured by RT-qPCR (Leidinger et al., 2013). In

addition, small non-coding RNA profiles are also analyzed by

the RT-qPCR method (Leidinger et al., 2013). However, the

physiological and pathological changes in the tissue are often

described by immunohistochemistry and immunofluorescence.

Immunohistochemistry (ICH) is essential for predicting and

detecting minimal residual disease (Loghavi et al., 2015; Kurt

et al., 2018). However, immunofluorescence (IF) is a technology

for visualizing cell types (Im et al., 2019). Consequently, we

could judge if a cellular model establishes successfully through

the measurement and analysis of the indicator.

In vitro cellular models used in
parallel with PC12 cells

The main characteristic of AD is the loss of neurons

(Wang and Zhang, 2020). Therefore, primary cultures of

neurons may be considered as reliable models to reveal

the underlying molecular mechanisms. However, due to

the difficulty of maintaining and introducing experimental

variability (Al-Ali et al., 2004) (depending on the age of the

source animals or the dissection accuracy), the application

of primary cultures of neurons is limited. Although PC12

cells are readily available and simple to culture, there might

be some limitations. Undifferentiated PC12 cells were poorly

adherent and clustered into a mass (Wiatrak et al., 2020).

Importantly, undifferentiated PC12 cells have no neurites and

are less responsive to the neurotransmitter of the sympathetic

nerve compared with cortical neurons (Wang et al., 2015).

Furthermore, undifferentiated PC12 cells with a high passage

number are insensitive to damage induced by the cytotoxic

agent (Kinarivala et al., 2017). Particularly, PC12 cells above the

16th passage, stimulated by NGF, could exhibit morphological

alterations correlated with fibroblast-like phenotype, increase

resistance to toxics, accelerate cell division, and lose the

differentiation capability (Bothwell et al., 1980; Green et al.,
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1986; Eveleth and Bradshaw, 1992; Mejía et al., 2013).

Meanwhile, undifferentiated PC12 cells are unsuitable for

research in neural cells due to low dopamine levels (Wang

et al., 2015). However, PC12 cells have the potential of gene

mutation, thereby contributing to cause the change of phenotype

(Chen et al., 2014). Additionally, PC12 cells originated from

pheochromocytoma tumors, so there is no guarantee that the

same results will be obtained when studying with in vivo

models (Grau and Greene, 2012). Owing to the limitations

of PC12 cells, so other cell types are also used in many

AD studies. In all cited articles, the PC12 cell line was

mainly applied in 77% of studies, and 23% of experiments

adopted other parallel cell types and PC12 cells. The main

alternative cellular models in parallel to PC12 cells in AD

research are shown in Table 6 (details are shown in Additional

file 6). The parallel cells are primarily sourced from Homo

sapiens, Mus musculus, Cricetulus griseus and Cercopithecus

aethiops. The Homo sapiens cells mainly comprise SH-SY5Y,

HEK293, SK-N-SH and HeLa. The SH-SY5Y (ATCC R© CRL-

2266TM) cells are a subline of the parental line SK-N-SH

(ATCC R© HTB-11TM) (Kovalevich and Langford, 2013). SK-

N-SH was subcloned three times: first to SH-SY, then to SH-

SY5, and finally to SH-SY5Y. The continuous proliferation, low

abundance neuronal markers (Biedler et al., 1978; Påhlman et al.,

1984) and the expression of immature neuronal protein are

observable characteristics of SH-SY5Y cells. Abundant evidence

indicates that SH-SY5Y cells could be differentiated to the

cholinergic neuronal phenotype (Kovalevich and Langford,

2013; deMedeiros et al., 2019;Wiedmer et al., 2019). Cholinergic

loss is one of the main neuropathological representations of

AD (Hampel et al., 2018a). Therefore, the degeneration of

cholinergic neurons leads to impaired cognition ability in AD.

After differentiation, SH-SY5Y cells could exhibit a phenotype

with dopaminergic neurons (Kovalevich and Langford, 2013;

Wiedmer et al., 2019) and adrenergic neurons (Kovalevich and

Langford, 2013). The loss of dopamine-producing neurons in

the substantia nigra pars compacta (Lotharius and Brundin,

2002; Xicoy et al., 2017) is associated with the pathogenesis

of PD. During the differentiation process, the increased

immunocontent of DJ-1 protein can be found in SH-SY5Y cells.

As a neuroprotective protein, DJ-1 could protect dopaminergic

neurons from oxidative damage (Björkblom et al., 2013; Choi

M. S., et al., 2014; Tanti and Goswami, 2014). Furthermore, the

reduction of DJ-1 protein could be extensively related to an

early onset of PD (Lopes et al., 2010). Meanwhile, acetylcholine

receptors (AChRs) and adrenergic beta2 receptors (B2-ARs) are

critical proteins in the neuromuscular junction (NMJ), which

is associated with the autophagy and ubiquitin-proteasome

system (UPS) in Amyotrophic Lateral Sclerosis (ALS). Thus,

SH-SY5Y cells are also broadly applicable to PD and ALS

studies (Kovalevich and Langford, 2013; Krishna et al., 2014).

Moreover, differentiated SH-SY5Y cells present many neuronal

markers at both mRNA and protein levels (Påhlman et al., 1984;

Constantinescu et al., 2007). The human embryonic kidney-

293(HEK-293) (ATCC R© CRL-1573.3) stably expresses rat α3

nAChR and β4 nAChR subunits (Xiao et al., 1998). As a

representative cervical carcinoma cell line (Jiang et al., 2010),

HeLa cells can express α5 nAChR and β1 nAChR (Calleja-

Macias et al., 2009). Furthermore, subcloned M1 mAChR and

M2 mAChR genes are permanently expressed in transfected

HeLa cells (Pepitoni et al., 1991).

The Neuro-2a cell line (ATCC R© CCL-131TM) is derived

from mouse brain neuroblastoma. Neuro-2a cells are utilized in

neuronal differentiation, axonal growth and signaling pathways

studies (Klebe Rj, 1969; Gómez-Villafuertes et al., 2009; Suzuki

et al., 2014). Neuro-2a cells could be differentiated into

the cholinergic neuronal phenotype (Gomez et al., 1998)

and the dopaminergic neuronal phenotype (Tremblay et al.,

2010). Generally, to understand the molecular mechanism of

muscarinic function, the CHO cells used to be transfected with

the human M1, M2, M3, or M4 mAChR genes (Peralta et al.,

1987). Glial cells can be primarily divided into three major

classes: microglia, astrocytes, and oligodendrocytes (Moalem

and Tracey, 2006). Microglial cells are thought to be the

resident macrophages of the central nervous system (CNS)

(Dexter and Jenner, 2013). Microgliosis (accumulation of

activated microglial) is a characterization of PD (Dexter and

Jenner, 2013). The α7 nAChR is ubiquitously expressed in

microglial cells (Gotti and Clementi, 2004; Shytle et al., 2004)

and astrocytes (Sharma and Vijayaraghavan, 2001; Gotti and

Clementi, 2004). Additionally, the expressions of α3, α5 and

β4 nAChR have been documented in microglia (Rock et al.,

2008). BV-2 is a type of microglial cell derived from C57/BL6

murine. α7 nAChR have been suggested to be the predominant

component of immune regulation of the cholinergic anti-

inflammatory pathway (Wang et al., 2003, 2004). BV-2 can be

activated to release pro-inflammatory cytokines by oxidative

stress or inflammatory factors. Such stimulus possibly triggers

neurodegenerative disorders such as AD; thus, BV-2 is widely

used as an alternative model system for neurodegenerative

disease models in vitro. In terms of volume and number of cells,

astrocytes are the most abundant cells in the CNS (Aldskogius

and Kozlova, 1998). C6 cells (ATCC R© CCL-10), derived from a

rat brain glioma, belong to an astrocyte-like cell line (Shao et al.,

2019). At the same time, C6 cells could stimulate acetylcholine

synthesis when added to Leibovitz’s L-15-CO2 neuronal cultures

(Patterson and Chun, 1974). These studies showed that α7

nAChRs could be expressed in C6 cells (Wang and Tang, 2007;

Niranjan et al., 2012). COS-7 cells (ATCC R© CRL-1651TM) are

transformed with an origin-defective mutant of Simian Virus 40

(SV40) [As a polyomavirus, SV40 has an intricate structure. The

capsid is comprised of the major capsid protein VP1 and the

minor capsid proteins VP2 and VP3 (Watanabe et al., 2013)].

The α3 nAChRs, α4 nAChRs and β2 nAChRs have been shown

to be expressed on the surface of COS-7 cells (Neff et al., 1995).

In addition to these common cells, other cells are also adopted
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TABLE 6 Use of main alternative cellular models in parallel to PC12 cells in AD research.

Organism Cell
line

Tissue Disease Cell
type

The expression of receptors Number of articles Reference

nAChRs mAChRs Single
number

Total
number

α
3
n
A
C
h
R

α
4
n
A
C
h
R

α
5
n
A
C
h
R

α
6
n
A
C
h
R

α
7
n
A
C
h
R

β
1
n
A
C
h
R

β
2
n
A
C
h
R

β
4
n
A
C
h
R

M
1
m
A
C
h
R

M
2
m
A
C
h
R

M
3
m
A
C
h
R

M
4
m
A
C
h
R

M
5
m
A
C
h
R

Homo
sapiens

SH-SY5Y bone
marrow

neuroblastoma
√

71 136 Lukas et al., 1993; Peng
et al., 1994

HEK293 embryonic
kidney

√ √ √
35 Kobayashi et al., 2013;

Gong et al., 2016

SK-N-SH neuroblastoma
√ √

16 Baumgold and White,
1989 Ashkenazi et al.,
1989

HeLa cervix adenocarcinoma epithelial
√ √ √ √

14 Pepitoni et al., 1991;
Calleja-Macias et al.,
2009

Cricetulus
griseus

CHO ovary
√

14 14 Mullaney et al., 1993

Mus
Musculus

Neuro-2a brain neuroblastoma neuroblast
√ √ √

11 11 Xiao et al., 2011;
Srinivasan et al., 2012

Rattus
norvegicus

C6 brain glioma glial cell
√ √ √ √

11 11 Wang and Tang, 2007;
Niranjan et al., 2012;
Terpinskaya et al.,
2021

Cercopithecus
aethiops

COS7 kidney SV40
transformed

√ √ √ √
6 8 Neff et al., 1995;

Kobayashi et al., 2013

COS kidney SV40
transformed

√
2 Pals-Rylaarsdam et al.,

1997; Vögler et al.,
1998

In accordance with organism classification, the table characterizes the use of main alternative cellular models in parallel to PC12 cells. It is divided into five parts. These parts mainly include species, cell line, cell type, and number.

CHO, Naive Chinese hamster ovary; SV40, Simian Virus 40.
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in AD research, such as NT2-N, which is derived from the

human teratocarcinoma cell line NT2 (ATCC R© CRL-1973TM).

NT2 cells can be irreversibly differentiated to NT2-N cells by

retinoic acid (RA) treatment (Pleasure et al., 1992; Neelands

et al., 1999). NT2-N cells are characterized by a single axon

and multiple dendrites (Novak et al., 1999). Meanwhile, the

cholinergic properties may be manifested in the NT2-N cells

(Zeller and Strauss, 1995; González-Burguera et al., 2016).

In addition to cellular models, molecular genetic studies

have proved that the familial form of AD is closely connected

with mutations in the amyloid-β precursor protein (APP),

presenilin PSEN1 and PSEN2 (Bilkei-Gorzo, 2014). Moreover,

mutations in these three genes are correlated with early-onset

AD (Stepanichev, 2020). Thus, the pathophysiological or

behavioral characterization of AD could be mimicked by

the genetic modification of animals. Genetic modification

is usually considered as an ideal approach to mimic AD’s

pathophysiological or behavioral characterization. The

transgenic animal models include single transgenic, such as

Tg2576 mice, in which the transgene is the human 695 splice-

variant of APP, which contains the double mutation K670M,

N671 L driven by a hamster prion protein gene promoter;

double transgenic, such as APPswe/PS1dE9 mice, which carries

two transgenes, human APP with the Swedish mutation and

human PSEN1 lacking exon 9; and triple-transgenic, such

as 3xTg-AD mice, which expresses APPSWE, PS1M146V, and

tauP301L and demonstrates a clear age-dependent onset of AD

neuropathology. Undoubtedly, transgenic animal models could

play a pivotal role in insights into the pathophysiological basis

of AD.

Discussion

In the past four decades, AD has been the subject of intensive

research efforts. In particular, insights into the pathogenesis

of AD have been considerably advanced. Patients aged 65 and

older waiting for AD-modifying therapy are projected to rose

by 34% from 2021 to 2050 (He et al., 2016). One in three seniors

dies from Alzheimer’s or another dementia (2021). Despite these

efforts, no curable or eradicable therapy for AD remains. As of

2020, the drugs for mild to moderate AD or moderate to severe

AD treatment that are approved by the FDA mainly include

acetylcholinesterase inhibitors, NMDA receptor antagonists,

and a fixed-dose combination of an NMDA receptor antagonist

and acetylcholinesterase inhibitor, which provide modest and

transient cognitive benefits but fail to alter disease process or

underlying neurodegeneration (Qaseem et al., 2008; Tan et al.,

2014). In the phase I/II/III trial, the continued use of drugs has

drawn more attention to passive and active immunotherapy.

Compared with the phase II clinical trial (Panza et al., 2019), the

drugs numbers in the phase III trial for passive immunotherapy

rose by 150%, mainly including aducanumab, solanezumab,

gantenerumab and crenezumab. Conversely, the drug numbers

in the phase III trial for active immunotherapy fell by 67%.

However, aducanumab was the first FDA-approved new drug

for the treatment of AD by the “Accelerated Approval pathway”

on July 6, 2021. Aducanumab is taken as an anti-amyloid-β

antibody, providing potential relief for patients with early AD.

As a result, passive immunotherapy offers new insights into

future research of new drugs for AD treatment. Therefore,

cellular models have served as workhorses in enriching

our understanding of the numerous pathophysiological

mechanisms associated with disease progression and provide

better approaches for mimicking AD in the pre-clinical trial

phase of drug development.

The cell culture was markedly affected by the option of

media (Weller and Wheeldon, 1982). The cell culture medium

plays an essential regulatory role in cell growth and proliferation

by providing nutrients and basic materials (Polanco et al., 2020).

Meanwhile, the differences in growth indicated that specific

cell types require specific media (Bonk et al., 2007). According

to the ratio in the survey, DMEM and RPMI 1640 media

are frequently used as basal media without the supplemented

nutrient (Yuan et al., 2019). The increase in the flattening of

the cell and cell-matrix adhesion could be represented after

using DMEM culture instead of RPMI 1640 due to the relatively

higher concentration of Ca2+ in DMEM (Habauzit et al., 2014).

When culturing in RPMI 1640, PC12 cells could retain the

sensitivity to NGF protein (Greene and Tischler, 1976) and

exert minimal neurite extensions (Chua and Lim, 2021). Several

supplements involving serum are added to the basal media

to obtain the essential growth nutrients (Brown et al., 2019).

The serum contains numerous growth factors, lipoproteins and

other crucial nutrients for cell growth (Iscove and Melchers,

1978; Hong et al., 2006). The FBS and HS are common serums

in the included pieces of literature, and the commonly used

concentrations are 10 and 5%.

FBS, as a medium supplement, provides numerous growth

factors and nutrients for cells in culture (Schallmoser et al.,

2020). When SH-SY5Y cells were cultured in DMEM containing

0, 1 %, 2.5 %, 5 %, and 10 % (v/v) FBS, the result indicated that

the number of viable SH-SY5Y cells was notably enhanced with

increasing FBS concentration (Ahmadi, 2020). Furthermore, the

study has demonstrated that chick cell proliferation rates and

cell density increased as serum concentration raised in the range

of 5 and 30 % FBS (Ryan, 1979). When human pterygium

fibroblasts (as tumor-like transformed cells) were cultured in

a medium supplemented with different FBS concentrations (0,

5, 10, and 15 %), the cell confluence reached higher with

the increased concentration of FBS (Lopez-Martinez et al.,

2019). Thus, we speculated that the serum might provide more

essential nutrients and growth factors that facilitate cell survival

with increased FBS concentrations. Yet the less proliferation

of human pterygium fibroblasts could be found in 15% FBS

cultures on day 2 compared to 5 and 10 % FBS cultures, while
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optimal cell proliferation can be achieved after using 5% FBS on

day 3 compared to 10 and 15 % FBS cultures (Lopez-Martinez

et al., 2019). Meanwhile, neuronal cells were maintained in the

medium containing 1 % FBS, while the proportion of neurons

was reduced in the medium containing 10 % FBS (Hashimoto

et al., 2000). Additionally, the high concentrations of FBS (20

and 30 %) increased the cellular reprogramming efficacy (RE)

of human adipose-derived stem cells (hADSCs) [hADSCs are

differentiated into neuron/motoneuron-like cells (Gao et al.,

2019)] to generate iPSCs by approximately twice, while the low

concentrations of FBS (5%) reduced the RE of hADSCs (Kwon

et al., 2016).

HS, containing more immunoglobulins than FBS, has

been regarded as a cost-effective alternative to FBS. When

equine bronchial fibroblasts cultured in the medium containing

FBS, the alpha-smooth muscle actin expression decreased

compared with the medium containing FBS (Franke et al.,

2014). Although 10% HS was taken as the most common

serum, levels between as low as 5 % (Martin and Grishanin,

2003) and as high as 15% (Iuvone et al., 2004) have been

applied. Concentrations up to 20 % or even higher were

beneficial for cell attachment but suppressed cell proliferation

and differentiation, yet concentrations ranging between 5 and

10 % were beneficial for cell proliferation and differentiation

(Fedoroff and Hall, 1979). Therefore, speculation could be

proposed that the concentrations ranging between 5 and 10%

might be appropriate serum concentrations for cell proliferation

and differentiation. Selecting a suitable serum concentration

and type might be a crucial determinant of the experiments’

success. However, antisera production might occur when cells

are cultured in the serum-containing medium (Kerbel and

Blakeslee, 1976). Additionally, using serum-free culture medium

was more beneficial than using serum-containing culture

medium for industrial cell culture (Korke et al., 2002). The cell

culture medium and the serum are selected according to the

characteristics and types of cells.

As immortalized cell lines, PC12 cells derived from a

pheochromocytoma of the rat adrenal medulla have been

suggested to be an ideal cell for constructing cell models on

pathophysiologic processes of AD in in vitro studies. The

methods to build cell models on pathophysiologic processes

of AD studies are shown in Figure 2. PC12 cells could

synthesize, store, and release norepinephrine and dopamine

(Greene and Tischler, 1976). Statistically, PC12 cells could

be divided into undifferentiation and differentiation types.

Before differentiation, PC12 cells were poorly adherent and

clustered into a mass. Furthermore, the morphological changes

of the cell were appreciably altered. Under normal culture

conditions, PC12 cells possess morphological, biochemical

and physiological characterization of adrenal cells (Wiatrak

et al., 2020). After differentiation, PC12 cells are completely

adherent and include neuronal phenotypes morphologically and

biochemically (Greene and Tischler, 1982). The inductive agent

has proven to induce the differentiation of cells. Meanwhile,

the NGF receptors could be expressed in PC12 cells. The most

frequent and commonly used neurotrophic factor is NGF in a

statistical representation of the literature. NGF could present the

dual biological role of promoting axon growth and nourishing

neurons (Xi et al., 2020). After exposure to NGF, PC12 cells halt

proliferation, extend neurites and become electrically excitable

(Greene and Tischler, 1976). Furthermore, NGF-induced axon

growth in PC12 cells could be mediated by activating PI3K and

inactivating GSK-3β (Zhou et al., 2004). Between 4 and 14 days,

a noticeable increase in the length of neurites was observed

(Wiatrak et al., 2020). After 21 days, the length of neurites

reached 500–1,000µm, and PC12 cells eventually reinitiated

proliferation within 3 days after the elimination of NGF (Greene

and Tischler, 1976). After differentiation, the activity of the

NMDAR1 promoter in PC12 cells could be upregulated by

NGF (Bai and Kusiak, 1997). Also, PC12 cells could respond

to acetylcholine via neuronal-type nicotinic receptors (Casado

et al., 1996).

Cell transfection and differentiation are processes that are

crucial in developmental biology. Cellular differentiation mainly

involves the coordinated regulation of genes by a multitude of

cellular pathways, and transfection is the process of artificially

introducing nucleic acids (DNA or RNA) into cells. In addition,

the main purpose of transfection is to directly investigate

the function and products of a gene (Kim and Eberwine,

2010). The general methods are primarily involved in plasmid

transfection and gene transfection. Plasmid transfection is

frequently accomplished by transfecting DNA or delivering

RNA through silencing and overexpressing a wild or mutant

gene. DNA transfection provides several advantages compared

to RNA transfection, such as targeting specific genomic sites and

maintaining transgenes as small episomal plasmids or artificial

chromosomes without deleterious consequences (Glover et al.,

2005). Plasmid RNA could also be utilized for PC12 cell

transfection, in particular for siRNAs, as primers for RNA-

dependent RNA polymerase (RdRp), which could synthesize

other double-stranded RNA (dsRNA) (Miyagishi and Taira,

2002). The gene transfections in PC12 cells generally include

APP and PS. Mutations of PS and APP would result in

the autosomal-dominant form in early-onset AD (Lanoiselée

et al., 2017; Barthet et al., 2018). In transfected cell lines,

mutations in the APP and PS gene could cause extracellular and

intracellular Aβ accumulation (Cai et al., 1993; Citron et al.,

1997). In particular, the APPsw mutant in PC12 cells could

induce oxidative stress and eventually lead to apoptotic cells by

activating c-Jun N-terminal kinase and caspase 3 and reducing

caspase 9 activity (Marques et al., 2003). In addition, the gene

Presenilin mutations in PC12 cells could increase apoptotic cells

induced by Aβ or trophic factor withdrawal, especially PS1 (Guo

et al., 1997) and PS2 (Wolozin et al., 1996).

Cell differentiation or transfection is also recognized as

a fundamental means of establishing a successful cell model.
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The establishment of cellular models is also critically needed

to mimic the pathophysiological hallmark of AD. Among the

popularly accepted pathology of AD, the cholinergic system

plays an essential role in neuronal function, such as memory,

learning, and plasticity. In particular, the loss of acetylcholine in

the hippocampus and neocortex is closely associated with AD

(Bartus et al., 1982; Babic, 1999). Moreover, cholinergic lesions

manifest complex interactions with pathological hallmarks of

AD, such as amyloid-β plaques, neurofibrillary tangles and

neuroinflammation (Hampel et al., 2018a). Thus, Aβ is regarded

as a common damaging agent because it can cause oxidative

stress, mitochondrial dysfunction, and apoptosis (Leuner et al.,

2012). The Aβ oligomers that precede plaque formation have

drawn more attention beyond Aβ fibrils of the insoluble plaques

in the research of Aβ toxicity (Bjorklund et al., 2012). Increasing

evidence has implicated that Aβ oligomers are viewed as the

primary agents for tau hyperphosphorylation (De Felice et al.,

2008; Jin et al., 2011), synaptic dysfunction (Benilova et al.,

2012) and cellular toxicity (Haass and Selkoe, 2007; Glabe,

2008). Our study provides evidence that Aβ25−35, Aβ1−42 and

Aβ1−40 are generally considered as the main damage agents

in the amyloid cascade hypothesis. The amino acid sequence

and identified methods regarding Aβ peptide are shown in

Table 7. According to the literature, the damage action time of

24 h has been generally adopted, while the concentrations of

20, 10, and 25µM of Aβ25−35, Aβ1−42 and Aβ1−40 have been

applied frequently, respectively. As an essential form of ROS

(Matsushita et al., 2020), H2O2 is widely used as the inducer for

oxidative damage and apoptotic cell death (Maroto and Perez-

Polo, 1997). Some intracellular apoptotic pathways, such as the

PI3K/Akt signal pathway (Li et al., 2020), could be activated by

excessive ROS. The application of H2O2 in PC12 cells could be

considered as a proper model system for analyzing antioxidants

and the apoptosis prevention mechanism (Hu et al., 2014; Chen

et al., 2015), especially regulating apoptosis-related proteins,

such as anti-apoptosis/pro-apoptosis proteins, and caspases (Jin

et al., 2013). The oxidative damage action time of 24 h and

the concentrations of 100 and 150µM are typically adopted.

Besides, H2O2 could increase γ-secretase activity to facilitate Aβ

production through c-Jun N-terminal kinase (Shen et al., 2008).

In addition, evidence suggests that neuropathological hallmarks

of AD include stress-induced hyperphosphorylation of tau

(Krstic and Knuesel, 2013). The hyperphosphorylated tau could

make a contribution to synaptic dysfunction, mitochondrial

dysfunction and cognitive impairment (Di et al., 2016). OKA

acts as a potent and highly selective PP2A inhibitor to induce

hyperphosphorylated tau (Kamat et al., 2014). The damage

action time of 4 h and concentrations of 90 nM are frequently

used within the literature. Based on the associated hypothesis

of AD, the damaging agent-induced cellular models provide an

excellent approach to study the pathological hallmarks of AD.

In an attempt to better reflect the AD-related pathological

features, selecting appropriate verifiable methods and indicators

for the analysis is equally crucial to establishing successful

cellular models. Levels of anti-apoptotic Bcl-2, pro-apoptotic

Bax and caspases have been shown to correlate with apoptosis

in PC12 cells in vitro. Studies show that PC12 cell apoptosis

could be prevented by downregulating the caspase-3 protein

and inhibiting the Bax/Bcl-2 ratio (Hao et al., 2015). The ROS,

MDA and antioxidant enzyme activities are closely correlated

with oxidative stress. DCFH-DA essay is regarded as the

dominant method for determining the level of ROS in PC12

cells (Eruslanov and Kusmartsev, 2010), and the increase in

ROS leads to damaged mitochondria and activation of the

apoptotic cascade (Zeng et al., 2017). Antioxidant enzymes, such

as SOD, CAT, and GPx, are suggested to be the oxidative defense

system in PC12 cells (Poprac et al., 2017). ACh has a crucial

role in the pathophysiology of AD. The level of ACh in the

brain is regulated by AChE and butyrylcholinesterase (BChE).

The decreased expression of pro-inflammatory cytokines, such

as interleukin-1-beta converting enzyme (IL-1β) and tumor

necrosis factor-alpha (TNF-α), are taken as common indicators

of inflammation (Ma et al., 2019).

However, not all aspects of AD pathogenesis can be

covered in PC12 cells. As a result, the in vitro models

used in parallel with PC12 cells also play an essential role

in AD studies. Of the articles analyzed, the PC12 cells are

mainly involved in 77% of the literature. The other 23% of

experiments adopt other parallel cell types and PC12 cells,

including (mainly cortical) primary neurons, the SH-SY5Y

cell line, HEK293, and Neuro-2a cell lines. The expression of

nAChR or mAChR could be found on the surface of these

cells. The loss of cholinergic neurons is tightly associated with

AD pathology. These cells would provide a global overview

of the landscape and diversity of cellular models that can

be used in AD. These cellular models also presented their

own limitations. The primary neuron possessed a limited

life span (typically days to weeks) (Li, 2011) and needed to

be generated from the embryonic or early postnatal brain

(Sahu et al., 2019). The differentiation state of SH-SY5Y

cells was undefined and ranged from tumor tissue state

(neuroblastoma) to neural progenitor cells or post-mitotic

neurons (Feles et al., 2022). Although differentiated SH-SY5Y

cells were commonly used to study the growth of neuronal

processes (Kovalevich and Langford, 2013; Shipley et al.,

2016; Peng et al., 2021), mechanisms involving in neuronal

function and excitability cannot be easily compared with the

physiological state derived from brain tissue-derived cells. Due

to deficient DNAmismatch repair, HEK293 cells were especially

vulnerable to genotype drift caused by external disruptions

(Panigrahi et al., 2012). However, compared with cerebellar

granule neurons, voltage-gated sodium channel expression in

Neuro-2a cells was approximately 20-fold lower, and NMDAR

expression was also not expressed in Neuro-2a cells (Lepage

et al., 2005). Meanwhile, an increase in dopamine neuronal

characteristics was manifested only after dbcAMP induced
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TABLE 7 The amino acid sequence and identified methods for Aβ peptide.
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Aβ25−35 C45H81N13O14S 1060.27 H-Gly25-Ser-

Asn-Lys-Gly-

Ala-Ile-Ile-

Gly-Leu-

Met35-OH

PDB

(1QWP)

√ √ √ √ √ √ √ √ √
Yankner

et al., 1990;

Terzi et al.,

1994; Sato

et al., 1995;

Kubo et al.,

2002; Naldi

et al., 2012;

Chen et al.,

2017

Aβ1−42 C203H311N55O60S 4514.1 H-Asp-Ala-

Glu-Phe-

Arg-His-

Asp-Ser-Gly-

Tyr-Glu-Val-

His-His-Gln-

Lys-Leu-Val-

Phe-Phe-

Ala-Glu-

Asp-Val-Gly-

Ser-Asn-Lys-

Gly-Ala-Ile-

Ile-Gly-Leu-

Met-Val-Gly-

Gly-Val-Val-

Ile-Ala-OH

PDB

(1IYT)

√ √ √ √ √ √ √ √ √ √ √
colorimetric,

fluorometric

methods,

differential

interference

contrast optics,

laser scanning

confocal

immunofluorescence

Naiki and

Gejyo,

1999;

Anderson

et al., 2004;

Urbanc

et al., 2004,

2010;

Inouye and

Kirschner,

2005;

Bartolini

et al., 2007;

Middleton,

2007;

Ahmed

et al., 2010;

Chen et al.,

2017
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TABLE 7 (Continued)
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Aβ1−40 C194H295N53O58S1 4329.9 H-Asp-Ala-

Glu-Phe-

Gly-His-

Asp-Ser-Gly-

Phe-Glu-

Val-Arg-His-

Gln-Lys-

Leu-Val-

Phe-Phe-

Ala-Glu-

Asp-Val-

Gly-Ser-Asn-

Lys-Gly-Ala-

Ile-Ile-Gly-

Leu-Met-

Val-Gly-Gly-

Val-Val-OH

PDB

(1AML)

√ √ √ √ √ √ √ √
Urbanc

et al., 2004,

2010;

Williams

et al., 2005;

Sachse

et al., 2006;

Meinhardt

et al., 2009;

Bertini

et al., 2011;

Naldi et al.,

2012; Chen

et al., 2017

The table mainly describes the molecular and molecular formula, amino acid sequence, structure and identified methods in Aβ peptide. To present the results in a systematic manner, the peptide is segmented as follows: (i) Asp-1–Lys-16 is the N-

terminal region; (ii) Leu-17–Ala-21 is the central hydrophobic cluster (CHC); (iii) Glu-22–Gly-29 is the turn A (TRA) region; (iv) Ala-30–Met-35 is the mid-hydrophobic region (MHR); (v) Val-36–Val-39 is the turn B (TRB) region; and (vi) Val-40 or

Val-40–Ala-42 is the C-terminal region (CTR).

EFM, electrostatic force microscopy; AFM, atomic force microscopy; SKM, scanning Kelvin microscopy; cryo-EM, cryo-electron.
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differentiation of Neuro-2a cells (Tremblay et al., 2010). In

addition, the cellular metabolism of CHO cells was altered

during long-term culture (LTC), including extracellular alanine

accumulation and enhanced utilization of glucose and lactate

(Bailey et al., 2012). Furthermore, CHO cells was also involved

a slower growth rate and low-stress resistance (Fischer et al.,

2015). For microglia cells, the limitations probably contributed

to the cognitive loss and neuronal damage (Giulian, 1999).

BV-2 cells have weaker responses to LPS and interferon-

gamma stimuli compared with primary mouse microglia

(Stohwasser et al., 2000). Due to the complexity and diversity

of AD pathogenesis, these cell models only partly imitate AD

pathological microscopic characterizations.

In addition to the above cells, induced pluripotent stem

cells (iPSCs), miRNA-induced neurons, neuronal cells, Brain

microvascular endothelial cells (BMECs), and genetically

engineered cells are broadly applied to construct the AD

model. The iPSCs are currently utilized for establishing familial

AD cellular models in vitro (Amin et al., 2019). The iPSC

from AD patients carried the same AD-causing gene and

obtained the same phenotype and function as AD neuronal

cells. The iPSC, derived from mouse embryonic fibroblasts,

could be generated by transduction of transcription factors

with Oct3 /4, Sox2, c-Myc, and Klf4 (Takahashi et al., 2007).

Fibroblast of iPSC obtained from AD patients can be used

for orthotopic modeling, whose procedure involves seeding

tumor cell lines or patient-derived cell xenografts into animal

models (Brodaczewska et al., 2016). However, in vitro models

of iPSC lack cellular diversity and possess structural complexity

in two-dimensional model (Majolo et al., 2019). The microRNA

(miRNA)-induced neurons have great potential as neurotoxicity

screening. The miRNA plays an essential role in neuronal

development, proliferation and differentiation, apoptosis, and

homeostasis (Kaur et al., 2012; Denk et al., 2015; Sun and

Shi, 2015).The hippocampal neuronal cells and cerebral cortical

neural cells are considered as reliable AD cellular models to

unravel pathological changes of AD.Hippocampus degeneration

is closely associated with learning and memory dysfunction in

AD patients (Fujishiro et al., 2006). The cerebral cortex of AD

patients appear abundant neurofibrillary lesions and neuritic

plaques (Fitzpatrick et al., 2017). Yet the application of neuronal

cells was precluded owing to the inaccessibility and lack of

proliferation. BMECs are also used to establish the AD cellular

model for the following two reasons. BMECs are taken as

a crucial component of blood brain barrier (BBB) (Zlokovic,

2008). BBB decomposition is thought to be an initiating factor

in the pathogenesis of AD (Yoon et al., 2021). Furthermore,

APP and β-secretase enzyme could also be found in BMECs

(Bourassa et al., 2019). APP and β-secretase enzyme are co-

localized to the site of intracellular Aβ production (Long and

Holtzman, 2019). With the development of biomedical and

genetic engineering technologies, genetically engineered cells

are used to establish the AD cellular model. AD genetically

engineered cell lines, particularly PC12, SK-N-SH, and A172,

were constructed by the cloned amyloid cDNA that contains a

region encoding A4 (beta-polypeptide) amino acids along with

recently developed tumor virus vectors derived from simian

virus 40 (Marotta et al., 1989). The stable Myh9 in PC12 cells

were knocked out by CRISPR/Cas9 nucleases (Wang et al.,

2017, 2020), powerful genome engineering tools (Rose et al.,

2020). The CRISPR/Cas9-mediated genome editing technology

has become a promising approach for the choice of gene

targeting (Pelletier et al., 2015), which is broadly applied for

gene editing in multiple cell types and organisms (Platt et al.,

2014).

Additionally, these cell model systems are also used

to mimic AD pathophysiology, discover biomarkers or

potent therapeutic drugs, or conduct high throughput

drug screening. Traditionally, 2D cell culture models do

not cover the complex cellular microenvironments in

vivo; thus, they are insufficient to predict in vivo efficacy

and toxicity. More advanced 3D cell culture models (e.g.,

organoids, microtissues, spheroids) have been adopted to

mimic not only the microenvironment (Lee et al., 2022)

but also gene expression and functional characteristics of

tissues in vivo (Edmondson et al., 2014). 3D-culture emulate

complex cell interactions, multicellular architecture, cell-cell

interactions and physical microenvironment of interactions

(Ingber, 2018). The 3D cell culture models of human cell

lines and primary cells provide a promising approach to

improve drug development and screening. In in vitro 3D

culture system, neuronal cells differentiated by the iPSCs

obtained from familial AD patients accelerate Aβ plaques and

neurofibrillary tangles associated (Choi S. H., et al., 2014).

As is mentioned above, the 3D cell culture model might

provide a promising insight to mimic the complex pathogenesis

of AD.

In addition to cellular models, animal models could

be widely adapted in the earlier preclinic stage of drug

development. Particularly, transgenic animal models contain

linear human chromosomes and a similar number of genes

as humans (Waterston et al., 2002). In order to dissect

the mechanisms underlying AD, transgenic animal models

present an efficient pathophysiological process and early typical

symptoms in AD, such as memory impairments, Aβ pathology

and neuroinflammation (Bilkei-Gorzo, 2014; Saito et al., 2014).

At the same time, transgenic models could also be thought as

the identification and validation of drug targets for AD (Zahs

and Ashe, 2010).

Additionally, metabolomics is widely applied in AD

pathogenesis (Arnold et al., 2020). The levels of metabolites

were significantly different among the brain tissue and liver

of AD wild-type and transgenic mice (Wang et al., 2019).

The unusual metabolic pathway of amino acid metabolism,

energy metabolism, and gut microbiota could be found in the

AD rat model through the metabolomics. Moreover, features
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of AD could be reproduced by neuronal reprogramming of

fibroblasts from familial AD patients into functional neurons

(Qiang et al., 2011). Cell-direct reprogramming could convert

one fully differentiated cells into another differentiated state

(Riva et al., 2022), such as directly reprogramming fibroblasts

into neural stem cells (Han et al., 2016), neuronal cells (Treutlein

et al., 2016), or mature cardiomyocytes (Herrero and Bernad,

2016). Cell-direct reprogramming technology could supplement

iPSC technology and enhance the differentiation of iPSCs via

directly reprogramming somatic cells into iPSCs and lineage-

restricted stem cells (Ring et al., 2012). Therefore, due to a

wide range of sources and a high conversion rate on somatic

cells, direct reprogramming technology of somatic cells could

outperform traditional iPSC technology. Based on above all,

it is speculated that somatic cell reprogramming may have

tremendous potential for disease modeling.

Conclusion

Due to the multifactorial and complex pathogenesis of AD,

the biomarkers associated with the AD pathogenic mechanism

may be crucial for the early detection and prevention of AD

(Kapogiannis et al., 2019). Decreased Aβ1−42 (as a marker of

amyloids) and increased tau (as a marker of neuronal injury)

levels in cerebrospinal fluid (CSF) are the most widely used

characteristic biomarkers of AD patients (Sunderland et al.,

2003; van Maurik et al., 2017), and low CSF levels of Aβ1−42 are

associated with intracranial amyloid deposition, while high CSF

levels of phospho-tau (p-tau) are correlated with tau-associated

neurofibrillary tangles (Hampel et al., 2018c).

Research on biomarkers associated with AD in vitro cell

models would provide valuable insights into the therapeutic

intervention of AD. The cell models can mimic multi-

pathophysiological features underlying AD pathogenesis in the

micro-changes and processes, which can also be regarded as

a promising means for potential therapeutic drug screening.

PC12 cells are utilized extensively as a neuronal model in

neuroscience research. PC12 cells could synthesize, store, and

release norepinephrine and dopamine compared to other cell

models. Furthermore, neurotransmitter receptors associated

with AD are present on the surface of the PC12 cell

membrane (Westerink and Ewing, 2008), especially NMDARs

and cholinergic receptors. The attenuation of neurotransmission

mediated by NMDAR can lead to neuroplasticity damage and

cognitive dysfunction in the aging brain (Lin et al., 2014).

NMDAR activation could inhibit Aβ production and release

by stimulating nonamyloidogenic APP processes (Marcello

et al., 2007; Hoey et al., 2009). The expression of NR1

and NR2 subunits could be manifested in PC12 cells.

Meanwhile, the nicotinic receptor-mediated neurotransmitter

ACh is closely associated with AD pathology. The degeneration

of cholinergic neurons and declining activity of choline-

acetyltransferase (ChAT) have contributions to a decrease in

cognition (Davies and Maloney, 1976; Bartus et al., 1982;

Ballinger et al., 2016; Shimohama and Kawamata, 2018).

The α3 nAChR, α5 nAChR, α7 nAChR, β2 nAChR and

β4 nAChR subunits can be expressed by PC12 cells. In

addition, PC12 cells differentiate into sympathetic nerve-like

cells under the induction of NGF and could be sub-cultured

indefinitely. Therefore, PC12 cells are not only systematically

used to study nerve cell function, differentiation, apoptosis and

neurotransmitter secretion (Spicer and Millhorn, 2003), but

also usually as an ideal cellular model to extensively explore

the pathological molecular mechanisms of AD (Parri et al.,

2011).

The development of cellular models reflecting the

microscopic pathophysiological features of AD is likely to

offer new insights, which also may benefit for exploring the

potential therapeutic targets.
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