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The prevalence of hearing loss-related diseases caused by different factors is

increasing worldwide year by year. Currently, however, the patient’s hearing

loss has not been effectively improved. Therefore, there is an urgent need to

adopt new treatment measures and treatment techniques to help improve the

therapeutic effect of hearing loss. G protein-coupled receptors (GPCRs), as

crucial cell surface receptors, can widely participate in different physiological

and pathological processes, particularly play an essential role in many disease

occurrences and be served as promising therapeutic targets. However, no

specific drugs on the market have been found to target the GPCRs of the

cochlea. Interestingly, many recent studies have demonstrated that GPCRs

can participate in various pathogenic process related to hearing loss in the

cochlea including heredity, noise, ototoxic drugs, cochlear structure, and

so on. In this review, we comprehensively summarize the functions of 53

GPCRs known in the cochlea and their relationships with hearing loss, and

highlight the recent advances of new techniques used in cochlear study

including cryo-EM, AI, GPCR drug screening, gene therapy vectors, and

CRISPR editing technology, as well as discuss in depth the future direction

of novel GPCR-based drug development and gene therapy for cochlear

hearing loss. Collectively, this review is to facilitate basic and (pre-) clinical

research in this area, and provide beneficial help for emerging GPCR-based

cochlear therapies.
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Introduction

Hearing disease currently affects nearly 1.5 billion people
worldwide.1 Most hearing loss is mainly occurred in the cochlea
of the inner ear. The cochlea can be divided into five parts:
Organ of Corti (OC), Stria Vascularis (SV), Reissner’s Membrane
(RM), Mesenchymal Cell (MC), Bony Labyrinth (BL), and Spiral
Ganglion Neurons (SGNs) (Figure 1A; van der Valk et al.,
2021; Kelley, 2022). Among them, the OC is the main organ
of sound perception in the cochlea, particularly the hair cells
(HCs) and various supporting cells (SCs) of the OC are essential
for hearing (Wagner and Shin, 2019; Driver and Kelley, 2020),
but cell abnormalities in other areas of the cochlea can also
cause hearing damage (Jang et al., 2022). Hearing damage can be
caused by a variety of factors, including heredity, noise, ototoxic
drugs, damage to the cochlear environment and structure.
However, current treatment options (cochlear implants and
hearing aids) mainly depend on the capacity of residual HCs and
SGNs to improve the patient’s hearing level to a certain extent
(Wolf et al., 2022).

G protein-coupled receptors (GPCRs) with seven
transmembrane domains are the largest superfamily of
mammalian cell surface receptors, which have more than 800
members (Foord et al., 2005; Wingler and Lefkowitz, 2020).
GPCRs govern a wide range of physiological processes, such as
hormone release, neurotransmitter transmission, and immune
responses, mainly through the recognition and activation of
heterotrimeric G proteins (Gα, Gβ, and Gγ) by binding to
a variety of ligands (proteins, peptides, and lipids, etc.), as
well as GPCRs phosphorylated by G protein-coupled receptor
kinases (GRKs) to recruit β-arrestins and internalize and
inactivate GPCRs (Wang et al., 2018; Insel et al., 2019). Based
on structural similarity, GPCRs in humans are divided into
five major families: Rhodopsin receptors (Class A), Secretin
receptors (Class B1), Adhesion receptors (Class B2), Glutamate
receptors (Class C), and Frizz/Taste 2 (Class F) (Kochman,
2014; Hauser et al., 2017). Currently, more than 100 GPCRs
could be regarded as therapeutic targets, especially more than
30% of marketed drugs have been designed for GPCRs (Hauser
et al., 2017).

Compared with extensive studies on GPCRs in mental
illness (Pasquini et al., 2022) and cancer (Chaudhary and
Kim, 2021), the function studies of GPCRs in the cochlea are
very limited, scattered, and unsystematic. In particular, there
are still no specific drugs on the market targeting the GPCR
of the cochlea. With the in-depth study of GPCRs in the
cochlea, we believe that more GPCR functions in the cochlea
will be revealed, and more drugs and treatment programs
targeting cochlear GPCRs will be discovered. In this review,
we therefore characterized the distribution and function of 53

1 www.who.int/publications-detail-redirect/world-report-on-hearing

GPCRs expressed in the cochlea, as well as their relationships
with hearing loss. Notably, five GPCRs (V2R, EDNRB, S1PR,
VLGR1, and mGluR7) of them in the cochlea have been
reported to be directly associated with human hearing disorders
(Figure 1B). We also summarize the new advances in cochlear
research techniques, and suggest the future direction of novel
GPCR-based drug development and gene therapy for cochlear
hearing loss.

Roles of class A G protein-coupled
receptors in cochlea

Vasopressin and oxytocin receptors

Vasopressin type 2 receptor (V2R) is primarily expressed
in the kidney and participates in controlling water homeostasis
(Kim et al., 2021; Zhou et al., 2021). V2R is activated by
arginine vasopressin (AVP), which in turn induces the
buildup of downstream cAMP (Wang et al., 2021). Numerous
V2R-related human diseases have been identified, including
nephrotic syndrome of inappropriate diuresis (NSIAD),
X-linked congenital nephrogenic diabetes insipidus (NDI), and
hyponatremia (Makita et al., 2020). V2R-related antagonists
have also been extensively studied, such as Tolvaptan (de la
Nuez Veulens et al., 2022).

In the cochlea, V2R is mainly expressed in HCs, SGNs, and
SVs (Takumida et al., 2012). V2R is thought to play a role in
endolymphatic hydrops (EH). EH is caused by an imbalance in
the volume of endolymph and is thought to be associated with
the pathology of Menière’s disease (MD) that is a kind of hearing
loss’s inner ear disease (Zou et al., 2019; Wang et al., 2022). EH
can be also inhibited via reducing the expression of V2R. The
degree of cochlear hydrops can be alleviated by applying the
V2R antagonist (OPC-41061/Tolvaptan) (Egami et al., 2016).
Additionally, the expression level of V2R in the cochlea can be
significantly inhibited by vincamine, thereby reducing EH and
regulating hearing (Li et al., 2018). However, studies found that
EH is significantly attenuated by electroacupuncture (EA), but
V2R is up-regulated (Jiang L. et al., 2019; Jiang L. Y. et al., 2019).
Therefore, it is still needed to validate the function of V2R in the
regulation of EH.

Endothelin receptors

Endothelin receptor B (EDNRB) is activated by endothelins
(ETs), and three ETs (ET-1, ET-2, and ET-3) have equal affinity
for EDNRB (Shihoya et al., 2016; Izume et al., 2020). EDNRB
is widely expressed in circulatory organs including vascular
endothelium, brain, and intestine, especially endothelin receptor
antagonists have been used to treat circulatory system diseases
(Bondurand et al., 2018; Shihoya et al., 2018). Heterozygous
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FIGURE 1

Structure of the cochlea and the GPCR related to human hearing disease. (A) Schematic of the mammalian mature cochlea (cross-section). The
cochlea can be divided into five parts, including Organ of Corti (OC), Stria Vascularis (SV), Reissner’s Membrane (RM), Spiral Ganglion Neurons
(SGNs), Bony Labyrinth (BL) (not shown), and Mesenchymal Cell (MC) (not shown). Among them, two kinds of hair cell (HC) and various kinds of
supporting cell (SC) can be subdivided in OC. (B) The summary of five key GPCRs (V2R, EDNRB, S1PR, VLGR1, and mGluR7) in cochlea related to
human hearing disease (USH2C, WS-IV, NIHL, ARHL, and MD).

and homozygous mutations in EDNRB and ET-3 are found in
patients of Waardenburg-Shah syndrome (WS-IV) that is one
kind of syndromes with genetic hearing loss (GHL) (Huang
et al., 2021). Homozygous mutations of the EDNRB gene can be
also identified in Moroccan deaf patients (AitRaise et al., 2022).

EDNRB is expressed in SV’s melanocytes and the SGN
of the cochlea, which is important for postnatal hearing
development (Ida-Eto et al., 2011; Renauld et al., 2021).

In mouse models, both EDNRB spontaneously mutated and
EDNRB homozygous knockout (EDNRB−/−) mice developed
severe congenital deafness (Gariepy et al., 1996; Matsushima
et al., 2002). In the case of EDNRB−/−, melanocytes in the SV
of the cochlea are defective and the SGN undergoes postnatal
degeneration (Ida-Eto et al., 2011). The introduction of human
DBH-EDNRB transgene can restore the SGN of EDNRB−/−

mice to a certain extent and improve the hearing levels, but the
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defect of melanocytes does not change (Ida-Eto et al., 2011).
Therefore, targeted modulation of EDNRB expression in SGN
might be a new strategy to treat congenital hearing loss patients
with WS-IV.

Glycoprotein hormone receptors

Thyrotropin receptor (TSHR) can be activated by
thyrotropin (TSH), which then stimulates thyroid hormone
production through the Gs and Gq signaling pathways
(Tuncel, 2017; Vieira et al., 2022). Abnormalities in TSHR
can lead to autoimmune diseases such as hypothyroidism and
hyperthyroidism. Recent studies have elucidated the structures
of the activated and inactivated states of TSHR with different
types of antibodies, which provides a structural basis for
subsequent antibody drug and small molecule drug discovery
(Duan et al., 2022; Faust et al., 2022).

In a mouse model, TSHRhyt/hyt mutant mice express the
gene encoding the TSHR with a point mutation in the highly
conserved transmembrane structure, rendering TSHR unable
to bind with TSH (Gu et al., 1995). The autosomal recessive
TSHRhyt/hyt mutant mice develop severe hearing loss, and outer
hair cells (OHCs) of the cochlea exhibit developmental defects
and loss of functional integrity (O’Malley et al., 1995; Li et al.,
1999; Song et al., 2006). Of note, the exact role of TSHR in the
cochlea remains currently in a stagnant state.

Lysophospholipid (S1P) receptors

Sphingosine-1-phosphate receptors (S1PR1 to S1PR5) can
be involved in the regulation of immune and vascular systems
after activation by sphingosine-1-phosphate (S1P) (Cartier and
Hla, 2019). Three inherited missense mutations (R108P, R108Q,
and Y140C) in S1PR2 are found in patients with deaf (Santos-
Cortez et al., 2016; Hofrichter et al., 2018). A recent protein
structure study revealed that three mutation sites associated with
human autosomal recessive hearing loss (ARHL) lead to changes
of the protein structure of S1PR2 (Chen et al., 2022). These
structural changes affect the binding of S1PR2 to the ligand S1P,
to G13, suggesting that the S1PR2-G13 signaling complex plays a
role in maintaining normal hearing function of the cochlea.

S1PR1-3 was also found to be expressed in the mouse
cochlea (Nakayama et al., 2014). Among them, S1PR2 can be
specifically expressed in HCs, SCs, SGNs, and SVs (Ingham et al.,
2016). In mouse models, both mutation (S1PR2stdf /stdf ) and
knockout of S1PR2 (S1PR2−/−) result in progressive hearing
loss, essentially starting at 2–4 weeks postnatally with varying
degrees of hearing impairment to complete deafness, which is
characterized by the defect of SV at the onset and followed
by decreased intracochlear potential (EP) and subsequent loss
of HCs and SGNs (Herr et al., 2007, 2016; Kono et al., 2007;

Ingham et al., 2016). Remarkably, mice lacking the S1PR3 did
not develop a hearing impairment phenotype (Kono et al.,
2007). S1PR2 is also a potential target to protect hearing loss
by preventing the ototoxic drugs induced apoptosis of HC and
SGN. Administration of an S1PR2 antagonist (JTE013) resulted
in the increase of gentamicin ototoxicity (Nakayama et al.,
2014), whereas administration of an S1PR2 agonist (CYM-5478)
reduced the cisplatin ototoxicity by reducing ROS accumulation
(Wang et al., 2020). Of note, antagonists of S1PR1 and S1PR3
failed to increase gentamicin ototoxicity (Nakayama et al., 2014).
Overall, S1PR2 plays a key role in maintaining hearing function
and inhibiting damage caused by ototoxicity, particularly it is
worthy of in-depth study as an ear protection therapeutic drug
target.

P2Y receptors (purinergic receptors)

P2Y receptor (P2YR), as a GPCR subfamily of eight subunits
(P2YR1, 2, 4, 6, 11–14) known, can respond to extracellular
nucleotides (Cabou and Martinez, 2022). Among them, P2YR1,
11–13 are activated by ATP/ADP, P2YR4, 6, 14 are activated
by UTP/UDP, and P2YR2 receptors are activated by ATP/UTP
(Abbracchio et al., 2006; Koles et al., 2019). The expression of
six P2YRs (P2YR1, 2, 4, 6, 12, 14) could be detected in the
cochlea (Parker et al., 2003; Huang et al., 2010; O’Keeffe et al.,
2010; Koles et al., 2019). Before hearing maturation (<P15), five
P2YRs except P2YR1 could be detected in both sensory and non-
sensory cells in the cochlea. After hearing maturation (>P15),
only P2YR12 and P2YR14 could not be detected in HCs. The
specific expressions of six P2YRs in the cochlea are shown in
Table 1.

P2YR1, 2, 4 have been functionally studied to some extent in
the cochlea. Among them, P2YR1 plays an important role in the
burst firing before hearing onset. The maturation of emerging
neural circuits is facilitated by spontaneous bursts of electrical
activity in the developing nervous system (Blankenship and
Feller, 2010). K+ release can be triggered when P2RY1 is
activated in SCs, thereby activating inner hair cells (IHCs)
and SGNs (Babola et al., 2020, 2021). Both pharmacological
(MRS2500) inhibition of P2RY1 or P2RY1 deletion significantly
reduced burst firing in SGNs (Babola et al., 2020, 2021).
Moreover, P2YR4 mediated the inhibition of Na+ uptake in
cochlear RMs, possibly in response to noise exposure (Kim et al.,
2010). In particular, P2YR2 and P2YR4 in the cochlea can also
induce the propagation of Ca2+ waves (Piazza et al., 2007).

Dopamine receptors

G protein-coupled dopamine receptors execute almost
all the physiological functions of catecholaminergic
neurotransmitter dopamine. This dopamine receptor family
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TABLE 1 Class A GPCRs relevant to cochlea.

GPCR family Subtypes Roles in cochlea Localization Genetic
modulation

References

Class A GPCRs

Vasopressin and oxytocin receptors V2R Play a role in endolymphatic hydrops (EH) HC, SGN, SV - Zou et al., 2019;
Wang et al., 2022

Associated with human Menière’s disease (MD) with
hearing loss

Endothelin receptors EDNRB Associated with human Waardenburg–Shah syndrome
(WS-IV) [a kind of genetic hearing loss (GHL)]

SV’s melanocytes, SGN EDNAB−/− mice Ida-Eto et al., 2011

Affect hearing function: severe congenital deafness when
knockout

DBH-EDNAB mice

SV’s melanocytes are defective and the SGN undergoes
postnatal degeneration when knockout

WS4 mice Matsushima et al.,
2002

Glycoprotein hormone receptors TSHR TSHR hyt/hyt mutant mice (autosomal recessive) develop
severe hearing loss

- TSHRhyt/hyt mice Gu et al., 1995

Affect OHC development and function

Lysophospholipid (S1P) receptors S1PR1 - Cochlea - Nakayama et al.,
2014

S1PR2 Associated with human autosomal recessive hearing loss
(ARHL)

HC, SC, SGN, SV S1PR2stdf /stdf Ingham et al., 2016

Lead to progressive hearing loss when knockout or mutated S1PR2−/− Herr et al., 2007

Affect the development of SV at the onset

Inhibit damage caused by ototoxicity

S1PR3 No hearing impairment phenotype when knockout Cochlea S1PR3−/− mice Kono et al., 2007

P2Y receptors (Purinergic receptors) P2YR1 Play an important role in the burst firing before hearing
onset

RM, SC (<P15) P2RY1−/− mice Babola et al., 2020

OHC, OSC, RM (>P15) P2RY1-LacZ mice

P2YR2 Induce the propagation of Ca2+ waves OHC, IHC, PC, DC, HSC,
OSC, SV, RM (<P15)

- Koles et al., 2019

OHC, PC, OSC (>P15)

P2YR4 Mediate to inhibit Na+ uptake in cochlear RMs OHC, IHC, SGN, HSC, OSC,
SV, RM (<P15)

- Koles et al., 2019

Induce the propagation of Ca2+ waves OHC, IHC, SGN, PC, DC,
HSC, OSC, SV, RM (>P15)

P2YR6 - OHC, IHC, SGN, PC, SV, RM
(<P15)

- Koles et al., 2019

OHC, SGN, PC, SV, RM
(>P15)

P2YR12 - OHC, SGN, PC, RM (<P15) - Koles et al., 2019

SGN, RM (>P15)
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TABLE 1 (Continued)

GPCR family Subtypes Roles in cochlea Localization Genetic
modulation

References

P2YR14 - OHC, IHC, SGN, OSC
(<P15)

- Koles et al., 2019

SGN, OSC (>P15)

Dopamine receptors DRD1 Activate adenylyl cyclase OHC, SGN DRD1−/− mice Maison et al., 2012

Chemokine receptors DRD2 Inhibit adenylyl cyclase OHC, SGN DRD2−/− mice Maison et al., 2012

DRD4 Inhibit adenylyl cyclase SGN DRD4−/− mice Maison et al., 2012

DRD5 Activate adenylyl cyclase OHC, SGN DRD5−/− mice Maison et al., 2012

CXCR4 Regulates cochlear development and stem cell homing SGN - Zhang et al., 2015

CX3CR1 Regulation of inflammatory response Macrophages, monocytes CX3CR1−/− mice Zhang et al., 2021

Dopamine receptors CCR2 Regulating inflammatory response to noise–and
drug-induced hearing impairment

Monocytes CCR2−/− mice Hirose and Li, 2019

Cannabinoid receptors CCR7 Protects against noise-induced auditory cell damage Monocytes - Maeda et al., 2018

Apelin receptors CB2R Ototoxicity induced by cisplatin treatment was inhibited,
and inflammation and oxidative stress were reduced

OC, SLF, SGN - Ghosh et al., 2018

APJ Anti-oxidation, prevent cell apoptosis OHC, IHC - Yin et al., 2020

Adenosine receptors AA1R Protects the mouse cochlea from noise damage, cisplatin
induced ototoxicity, and age-related hearing loss, and
reduces the death of auditory cells

SGN, SC, IHC AA1R−/− mice Vlajkovic et al., 2009

AA2AR Coupled with Gs proteins that promote adenylate cyclase SGN, OC AA2AR−/− mice Vlajkovic et al., 2017

AA2BR Coupled with Gs proteins that promote adenylate cyclase SGN, OC - Manalo et al., 2020

AA3R Coupled with Gi/o proteins inhibit adenylate cyclase
activity

SC, IHC - Vlajkovic et al., 2007

Class A orphan receptors GPR26 Deleted as part of a recessive mouse mutant (hb/hb) that
exhibits severe hearing impairment

SLF, SGN hb/hb mice Buniello et al., 2013

GPR26−/− mice Zhang et al., 2011

LGR4 Involved in the regulation of Wnt/β-catenin activity by
playing a permissive role in the Wnt/β-catenin signaling
pathway

HC, PC, DC LGR4-LacZ mice Zak et al., 2016

LGR5 Regulate cochlear development and promote hair cell
regeneration

IPC, SC, DC LGR5-eGFP mice Cheng et al., 2017

LGR5-EGFP-IRES-
CreERT2
mice

Zak et al., 2016

LGR6 Regulation of progenitor cell proliferation IPC, SC LGR6-EGFP-IRES-
CreERT2
mice

Zhang Y. et al., 2018

HC, hair cell; SGN, Spiral Ganglion Neuron; SV, Stria Vascularis; SC, supporting cell; RM, Reissner’s Membrane; OHC, outer hair cell; OSC, outer sulcus cell; IHC, inner hair cell; PC, Pillar cell; DC, Deiters’ cell; HSC, Hensen cell; OC, Organ of Corti; IPC,
inner Pillar cell; SLF, spiral ligament fibrocytes.
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includes five GPCR subtypes, and can be divided into two
categories: DRD1 (dopamine receptor D1) and DRD5 binding
to G proteins and activating adenylyl cyclase; DRD2, DRD3,
and DRD4 binding to G proteins and inhibiting adenylyl
cyclase (Beaulieu and Gainetdinov, 2011). Transcriptome
sequencing of whole cochlear samples from adult mice
revealed the presence of DRD1, DRD2, DRD4, and DRD5
transcripts, but not DRD3 mRNA. DRD1, DRD5, and DRD2
receptors were expressed in OHCs and SGNs, but DRD4
receptors were expressed only in SGNs (Maison et al.,
2012).

There is no consensus on which receptors can mediate
the hearing (Meredith and Rennie, 2021), but it is widely
accepted that activated dopamine receptors can decrease the
excitotoxicity of IHC synapses through the effect of dopamine
on afferents (Oestreicher et al., 1997). Current biochemical and
pharmacological evidence suggests that dopamine release from
lateral cochlear efferent neurons can inhibit the cochlear nerve
fiber activity (Gaborjan et al., 1999; Ruel et al., 2001). Studies
have also shown that the administration of dopamine and
dopaminergic agonists may reduce the action potentials’ firing
rate in frog semicircular canal afferents (Andrianov et al., 2009).
In guinea pigs and rats, dopamine reduced the rate of action
potential firing from cochlear auditory afferents (Oestreicher
et al., 1997; Wu et al., 2020). Exposure to sound also raise
dopamine in mouse efferent neurons, revealing that dopamine
has very vital neuroprotective effect (Maison et al., 2012; Wu
et al., 2020). When the DRD1, DRD2, DRD4, and DRD5
dopamine receptor knockout mice were respectively exposed
to noise, all four mutants demonstrated increased vulnerability
(Maison et al., 2012). These studies not also support the
role of dopaminergic signaling in the HC system of different
species, but reveal its potential application value in hearing
protection.

Chemokine receptors

Chemokines regulate cell migration and proliferation,
as well as immune and inflammatory responses. Twenty
chemokine receptors have been identified, including four
subfamilies (Sanchez et al., 2019). Chemokine receptors and
chemokines can participate in various physiological and
pathological processes, including cancer cell growth (Smith
et al., 2004) and metastasis (Zlotnik et al., 2011), angiogenesis
(Keeley et al., 2010; Lin et al., 2015), and immune responses
of patient prognosis (He et al., 2022). Chemokine receptors
reported in the cochlea include CXCR4, CX3CR1, CCR2, and
CCR7.

CXCR4 and its ligand CXC chemokine ligand 12 (CXCL12,
also called as stromal cell-derived factor-1) involve in
regulating neural stem cell migration, differentiation and
maturation (Zhang et al., 2015), vertebrate embryogenesis

(Peyvandi et al., 2018b). In the cochlea, CXCR4 protein is
mainly expressed in SGNs. CXCR4/CXCL12 participates
in cochlear development in neonatal mice and rats (Zhang
et al., 2015, 2016), and stem cell homing in noise-induced
injury areas in adult rats (Zhang et al., 2014; Peyvandi et al.,
2018a). CX3CR1, as a receptor for the chemokine Fractalkine,
is found to express in NK cells, macrophages, monocytes,
microglia, and partly T cells (Jung et al., 2000). CX3CR1 is also
expressed in macrophages and monocytes of the mouse cochlea
(Claussen et al., 2022). In response to the transformation of
monocytes and migration of macrophages in hearing damage
caused by noise stimulation (Shin et al., 2022a,b), CX3CR1
regulates the inflammatory response caused by cochlear injury
(Zhang et al., 2021). CX3CR1-deficient cochlear macrophages
can also aggravate the ototoxicity of kanamycin (Sato et al.,
2010). Remarkably, CCR2 and CCR7 may be also involved
in regulating inflammatory response in hearing impairment
induced by noise and drugs (Sautter et al., 2006; Maeda et al.,
2018; Hirose and Li, 2019). Therefore, chemokine receptors
and chemokines play important roles in cochlear development,
stem cell homing and immune response after hearing damage,
suggesting them with a potential to repair hearing damage and
protect nerves.

Cannabinoid receptors

Cannabinoid 2 receptors (CB2Rs), one type of cannabinoid
receptor, are found in peripheral tissues of immunological
origin (Munro et al., 1993; Brown et al., 2002) and are
distributed in different brain regions (Ishiguro et al., 2022).
CB2Rs are post-synaptically expressed and up-regulated in
response to injury and inflammation (Ishiguro et al., 2022).
CB2Rs are mainly distributed in OC, spiral ligament and
SGN cells in the cochlea of rats and mice (Kim et al.,
2014; Kaur et al., 2016; Ghosh et al., 2018). CB2Rs can
protect the cochlea and reduce ototoxicity, inflammation and
oxidative stress with cisplatin treatment in rats (Vlajkovic
et al., 2006; Dhukhwa et al., 2021). The effect of CB2Rs
on preventing cisplatin induced hearing loss was blocked by
injection of the antagonist AM630, but HC loss was reduced
by injection of JWH105 (one agonist of CB2R). Of note,
after knock-down of CB2Rs by siRNA, the cochlea is more
sensitive to cisplatin induced hearing loss (Ghosh et al., 2018).
Therefore, CB2Rs may be an important therapeutic target
against ototoxicity.

Apelin receptors

Apelin receptor (APJ) and its ligand Apelin are key
participators involved in the regulation of oxidative stress.
Among various subtypes of Apelin, Apelin-13 has the strongest
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biological activity (Niknazar et al., 2019). APJ/Apelin is
widely expressed in the heart, brain, kidney, stomach and
intestines (Fournel et al., 2017; Lv et al., 2017), and has
antioxidant and apoptotic effects in distinct cell types
(Bircan et al., 2016; Aminyavari et al., 2019). Apelin
attenuates DNA damage caused by ROS accumulation
in cisplatin-induced myocardial toxicity (Zhang P. et al.,
2017). Apelin-13 protects cardiomyocytes by reducing
oxidative damage in a rat model of myocardial infarction
(Azizi et al., 2013).

Both APJ and Apelin are expressed in mouse cochlear
HCs and HEI-OC1 cells, and the expression of APJ in OHCs
is significantly higher than that in IHCs (Yin et al., 2020).
Cisplatin can down-regulate the expression of Apelin in HCs
and HEI-OC1 cells, and treatment with Apelin in advance can
improve the survival rate of HEI-OC1 cells under cischloride
ototoxicity and alleviate the damage of cochlear mitochondrial
membrane potential by ROS (Yin et al., 2020). In addition,
noise-induced oxidative stress and DPOAE response were
significantly altered and inhibited by Apelin-13 pretreatment
(Khoshsirat et al., 2021).

Adenosine receptors

This adenosine receptor family includes four GPCRs,
designated as A1, A2A, A2B, and A3. Adenosine A1 receptor
(AA1R) and adenosine A3 receptor (AA3R) coupled with Gi/o

proteins to inhibit adenylate cyclase activity, whereas adenosine
A2A receptor (AA2AR) and adenosine A2B receptor (AA2BR)
coupled with Gs proteins to activate adenylate cyclase (Vlajkovic
et al., 2007). Together, the adenosine receptor family and
its signaling molecules regulate cellular activity in peripheral
organs.

The distribution of four adenosine receptors in the cochlea
is diverse (Vlajkovic et al., 2009; Manalo et al., 2020). AA1R
is distributed in SGNs, and in SCs and IHCs of the OC, but
AA2AR and AA2BR localize to SGNs, OC, and cochlear vessels.
AA3R is mainly expressed in SCs and inner HCs of the OC. The
balance between AA1R and AA2AR determines the cochlear
response to oxidative stress. AA1R can protect the cochlea of
mice from noise injury, cisplatin-induced ototoxicity and age-
related hearing loss (Vlajkovic et al., 2011, 2017; Sheth et al.,
2019). Similar results have been reported in rat, chinchilla and
guinea pig (Ramkumar et al., 1994, 2004; Tabuchi et al., 2012).
Administration of AA1R probiotics R-PIA and ADAC was more
significant in inhibiting cisplatin-induced ototoxicity (Vlajkovic
et al., 2010; Kaur et al., 2016), and the protective effect of R-PIA
was inhibited by combined use of AA1R antagonist DPCPX
(Whitworth et al., 2004). In contrast, AA2AR and AA2BR play a
negative regulatory role in hearing loss, with cochlear protection
achieved by the use of the inhibitor (istradefylline) (Han et al.,
2019; Manalo et al., 2020; Shin et al., 2021).

Class A orphan receptors

GPR26, one class of orphan receptors for Class A, is mainly
expressed in the brain and attracted attention due to its role
in central nervous system diseases (Alavi et al., 2018; Watkins
and Orlandi, 2020). GPR26 is deleted along with two other
genes (CPMX2 and CHST15) in recessive mouse mutant mice
(hb/hb) that exhibit severe hearing impairment (Buniello et al.,
2013). Symptoms of anxiety and depression were presented in
GPR26 knockout mice, but no hearing function was reported
(Zhang et al., 2011). In the mouse cochlea, GPR26 expression
was detected in spiral ligament fibrocytes (SLF) and SGNs
(Buniello et al., 2013), but hb/hb mutant mice in the cochlea
without GPR26 expression, indicating that it is worth using the
GPR26−/− mice to examine the role of GPR26 in the cochlea.

Another class of orphan receptors for Class A is one
member of the leucine-rich repeat-containing G-protein-
coupled receptors (LGRs) family. LGR4, LGR5, and LGR6
could be expressed in the cochlea (Zak et al., 2016; Zhang Y.
et al., 2018; Smith-Cortinez et al., 2021). LGR5 is considered
as a marker of cochlear stem cells and participates in the
development of auditory HCs (Smith-Cortinez et al., 2021).
LGR5 regulates cochlear development by enhancing the Wnt/β-
catenin signaling pathway (Cheng et al., 2017; McLean et al.,
2017), especially LGR5-positive SCs have the potential to
transdifferentiate into HCs, suggesting that it may be acted as
a therapeutic target for hearing loss (Cox et al., 2014; Zhang S.
et al., 2017; Smith-Cortinez et al., 2021; Ma et al., 2022). LGR5-
deficient mice produce additional HCs, and LGR4-deficient
mice show similar results (Zak et al., 2016). LGR6+ cells, a
subtype of LGR5+ progenitor cells, also regulate progenitor cell
proliferation and HC production (Zhang Y. et al., 2018).

Roles of class B1 G
protein-coupled receptors in
cochlea

Vasoactive intestinal peptide and
pituitary adenylate cyclase-activating
peptide receptors

Vasoactive intestinal peptide (VIP) and pituitary adenylate
cyclase-activating peptide (PACAP) receptors include VPAC1R,
VPAC2R, and PAC1R, which are activated by VIP and PACAP
(Hollenstein et al., 2014; Langer et al., 2022). Among them,
unlike VPAC1R and VPAC2R, PAC1R can specifically binds to
PACAP but has a lower affinity toward VIP (Vaudry et al., 2009).
These two neuropeptides are widely distributed and involved in
development, anti-apoptosis, and neuroprotection together with
their receptors (Langer et al., 2022). In the cochlea, VIP and VIP
receptors are mainly expressed in SGNs (Kitanishi et al., 1998).
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In addition, the levels of VIP and VPAC1R were down-regulated
in the cochlea of chronic alcoholic rats, implying that they
might act as neurotransmitters (Feng and Liu, 2015). However,
there are still few studies on VIP and VIP receptors, and their
specific mechanisms of action in the cochlea need to be further
studied.

PACAP and PAC1R are expressed in HCs, SCs, SGNs,
afferent, and efferent nerve fibers, and stria vascularis of the
cochlea (Abu-Hamdan et al., 2006; Drescher et al., 2006; Ruel
et al., 2021). Endogenous PACAP plays important roles in
protection against noise-induced hearing loss (NIHL) (Ruel
et al., 2021), maintenance of hearing during aging in mice (Fulop
et al., 2019) and against oxidative stress-induced apoptosis
(Racz et al., 2010). Current functional studies focused on the
role of PACAP in the cochlea as well as the PAC1R in the
protection of NIHL (Ruel et al., 2021). After noise injury, the
PAC1R−/− knockout mice exhibited a significant increase in
hearing threshold, but the humanized mice expressing human
PAC1R (TgHPAC1R) showed a relatively small increase in
hearing threshold. Taken together, with the establishment of a
mouse model corresponding to the PAC1R, other roles of the
PAC1R in the cochlea will be gradually uncovered.

Corticotropin-releasing factor
receptors

Corticotropin-releasing factor receptors (CRFRs) in
mammals only express CRFR1 and CRFR2, which are
activated by corticotropin-releasing factor (CRF). As the main
regulator of stress response, they participate in neuroendocrine,
metabolism and response to stress (Vetter, 2015; Dedic et al.,
2018). Among them, CRFR1 has a higher affinity for CRF than
CRFR2 does.

CRFR1 is mainly localized in inner sulcus cells (ISCs),
Hensen cells (HSCs), Deiters’ cells (DCs), and border cells
(BCs) in the cochlea (Graham and Vetter, 2011), but no
expression in HCs and SGNs. CRFR1 plays an important
role in maintaining normal auditory function, IHC and HC
innervation development. In CRFR1−/− mice, both ABR
thresholds and DP thresholds were elevated, suggesting that
elimination of CRFR1 might result in decreased cochlear
sensitivity and impaired OHC motility (Graham and Vetter,
2011), as well as defects in IHC, afferent and efferent innervation
(Graham and Vetter, 2011).

Likewise, the effects of CRFR2 on the cochlea are diverse.
CRFR2 is mainly expressed in ISCs, DCs, inner border cells
(IBCs), SGNs, Claudius cells (CCs), and Boettcher cells (BoCs)
(Graham et al., 2010), but not in HCs. CRFR2 constitutively
modulates hearing sensitivity under normal conditions and
performs an important protective function in noise-induced
hearing loss. Mice lacking CRFR2 exhibited significantly lower
hearing thresholds under normal conditions, but more severe

hearing impairment when exposed to noise (Graham et al.,
2010). Interestingly, there was no loss of IHCs or OHCs in
the cochlea of CRFR2−/− mice exposed to moderate ambient
noise (Graham et al., 2010). CRFR2 affects cochlear hearing
function by acting on glutamatergic transmission, purinergic
signaling and activation of Akt/PKB signaling in the cochlea
(Graham et al., 2010). Currently CRFR1 and CRFR2 have been
considered as promising targets for the treatment of asthma
and alcoholism drug therapy (Tantisira et al., 2004; Lowery and
Thiele, 2010).

Calcitonin receptors

Calcitonin Gene-Related Peptide Receptor (CGRPR) is
a heterodimeric membrane protein complex composed of
receptor activity-modifying protein 1 (RAMP1) and calcitonin
receptor-like receptor (CLR) with the ability to bind to CGRP
(Liang et al., 2018). As an important sensory neuropeptide,
CGRP is widely expressed in the nervous system and exists
in two forms, i.e., α-CGRP and β-CGRP (Lv et al., 2022).
CGRP plays important roles in migraine pathophysiology,
inflammatory response, and blood pressure (Mehkri et al.,
2022). At present, good progress has been made in the drug
research of GCRP and CGRPR, and four related monoclonal
antibodies have been developed (Deganutti et al., 2021). In
addition, GCRP plays an important role in the cochlea.
GCRP is expressed in the lateral olivocochlear (LOC), medial
olivocochlear (MOC) efferent neurons and type II SGNs
(SGN IIs) and up-regulates excitatory of auditory nerve
(AN) activity (Schrott-Fischer et al., 2007; Vyas et al., 2019;
Le Prell et al., 2021). In αCGRP knockout mice, ABR
thresholds were reduced and hearing impairment was presented
(Maison et al., 2003). Additionally, the CGRPR complex in
the cochlea exhibits maturation during the first 3 months,
which corresponds to an increase in cochlear nerve activity
(Dickerson et al., 2016). However, research on CGRPR in
the cochlea is relatively lagging, particularly the location and
specific function of CGRPR in the cochlea are currently
unknown.

Roles of class B2 G
protein-coupled receptors in
cochlea

Adhesion G protein-coupled receptor
C

Cadherin EGF LAG Seven-pass G-type Receptor 1
(CELSR1), also named as Adhesion G-protein Receptor C1
(ADGRC1), is mainly distributed in the nervous system. In
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humans and mice, mutations in CELSR1 strongly affect neural
tube development (Ravni et al., 2009; Allache et al., 2012).

CELSR1 is expressed in both inner ear HCs and SCs, and
is considered as a key Planar cell polarity (PCP) protein in
the cochlea to be involved in cellular communication and
coordination between HCs and SCs (Shima et al., 2002; Curtin
et al., 2003; Davies et al., 2005). In two CELSR1 mutant mice (Scy
and Crsh), the OHCs were massively misoriented, most severely
at the apex of the cochlea (Curtin et al., 2003). Interestingly,
no significant auditory HC dislocation and hearing impairment
were observed in CELSR1 knockout mice but not in mutant
strains, which may be due to compensatory effects from other
CELSR genes (e.g., CELSR2, 3) (Tissir and Goffinet, 2006;
Duncan et al., 2017). In addition, there are some PCP proteins
in cochlear HCs, but whether and how CELSR1 cooperates with
other PCP proteins to effect on the plane polarity of HCs, which
is largely unknown and needs to further study.

Adhesion G protein-coupled receptor
V

Very large G protein-coupled receptor 1 (VLGR1), known
as MASS1, Adhesion G-protein Receptor V1 (ADGRV1),
Neurepin and G protein-coupled receptor 98 (GPR98), is
to date the largest known protein in GPCR super-families
including about 6,300 amino acid residues (Sun et al.,
2013). Several VLGR1 mutations have been reported to cause
Usher syndrome type IIC (USH2C) in humans, a genetically
heterogeneous autosomal recessive disorder characterized by
hearing impairment and epileptic seizures (Kimberling et al.,
1995; Ebermann et al., 2007; Bonnet and El-Amraoui, 2012).

In the inner ear, VLGR1 is expressed in the ankle region
of HCs stereocilia, which can form the ankle-link complex
with Usherin, Vezatin, and Whirlin (Michalski et al., 2007).
VLGR1 was identified to form a complex with Clarin-1, CDH23,
and PCDH15 at the ribbon synapses of HCs (Zallocchi et al.,
2012b), and can also interact with various proteins including
Harmony (Verpy et al., 2000), PDZ7 (Colcombet-Cazenave
et al., 2022), MyosinVIIa (Michalski et al., 2007), and SNAP25
(Zallocchi et al., 2012a). In various VLGR1 mutant or knockout
mouse models, the stereociliary development of auditory HCs
is impaired, the ankle-links are absent, and hearing impairment
of varying degrees occurs (Skradski et al., 2001; McMillan and
White, 2004; Yagi et al., 2005). Collectively, VLGR1 can carry
out the stereociliary development and hearing function.

Adhesion G protein-coupled receptor
A

G protein-coupled receptor 125 (GPR125) is also named
as adhesion G protein-coupled receptor A3 (ADGRA3), and

involve in regulating planar cell polarity signaling (Li et al.,
2013). GPR125 is widely expressed in the cochlea, especially
in OHCs, SGNs, and interdental cells (ICs) (Sun et al.,
2021). However, in GP125-deficient mice, various types of cells
developed normally, and hearing function was not impaired
(Sun et al., 2021), implying that GPR125 may not regulate the
planar cell polarity in the cochlea.

Roles of class C G protein-coupled
receptors in cochlea

Metabotropic glutamate receptors

The metabotropic glutamate receptor (mGluR) family
includes eight known subtypes (mGluR1∼8) that are
subdivided into three groups (group I-III) (Niswender
and Conn, 2010; Reiner and Levitz, 2018; Ge and Wang,
2022). In general, group I (mGluR1 and mGluR5) mainly
positively regulate the activity of glutamatergic synapses.
In contrast, both group II (mGluR2 and mGluR3) and III
mGluR (mGluR4, mGluR6∼8) function in limiting the release
of neurotransmitters. In addition, most mGluRs can be
alternatively spliced at the intracellular C-terminus to generate
isoforms such as mGluR7a and mGluR7b, and then form homo-
and heterodimers for dynamic regulation (Seebahn et al., 2011;
Habrian et al., 2019).

Among all mGluRs, mGluR1 is present both in the SGNs
and HCs (Ye et al., 2017). mGluR4, mGluR7a, mGluR7b,
and mGluR8b were found at the pre-synaptic ribbons of
IHCs, while mGluR2 is localized at post-synaptic type I SGNs
(SGN Is) and efferent lateral olivocochlear GABAergic fibers
(Doleviczenyi et al., 2005; Klotz et al., 2019; Klotz and Enz,
2021). Moreover, mGluR7 and mGluR8 can be detected at the
OHCs (Friedman et al., 2009; Girotto et al., 2014). Especially,
mGluR1 can enhance efferent inhibition of developing IHCs
and promote excitatory neurotransmission in SGN Is (Peng
et al., 2004; Ye et al., 2017). In contrast, mGluR2 can
protect cochlea from damage by inhibiting efferent dopamine
release onto IHCs (Doleviczenyi et al., 2005). Interestingly,
mGluR7 is also associated with ARHL and NIHL in humans
(Friedman et al., 2009; Newman et al., 2012; Chang et al.,
2018; Yu et al., 2018; Matyas et al., 2019), and mGluR7
knockout mice exhibited hearing deficits (Fisher et al., 2020).
These studies suggest that mGluRs, especially group II and
III mGluRs, can play a key role in preventing excitotoxicity
induced by excessive glutamate release from IHCs. However,
mGluR4 and mGluR8b, which co-localize with the mGluR7,
warrant further investigation of their specific functions in
IHCs. In addition, whether mGluR4, mGluR7a, mGluR7b, and
mGluR8b can form different homologous and/or heterodimeric
receptors to execute diverse roles in IHCs deserves further
investigation.
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γ-Aminobutyric acid B receptors

The γ-aminobutyric acid receptor type B (GABA B
receptor), as a metabotropic receptor, can be activated by
γ-aminobutyric acid (GABA) and mediate long-term, slow
signaling responses mainly in the form of heterodimers
(Mao et al., 2020; Fritzius et al., 2022; Vlachou, 2022).
GABAB receptors are composed of two distinct subunits, GB1
and GB2. Due to the alternative splicing of GB1 subunit
mRNA, 14 different GB1 isoforms can be generated, of
which GB1a and GB1b are most widely studied (Bowery
and Enna, 2000; Shaye et al., 2021; Shen et al., 2021).
What’s more, GABA B receptors were found to be localized
at all mature or nascent cochlear SGNs, including SGN I
and SGN II, but not in HCs (Lin et al., 2000; Reijntjes
and Pyott, 2016). GABA B receptors affect OHC function
in the cochlea. In mice knocked out of GABA B1, hearing
thresholds increased by about 10 dB (Maison et al., 2009).
In addition, GABA B(1a,2) on the SGN modulates the
strength of the SGN-HC synapse by inhibiting the release of
acetylcholine (Ach) following GABA activation (Wedemeyer
et al., 2013). In contrast to the few studies that work in
the cochlea, research on GABA B receptors in the auditory
domain is currently focused on the cochlear nuclear complex
(CNC) of the brain (Kou et al., 2013; Qu et al., 2015).
Whether there is a potential correlation between the GABA
B receptors of the cochlea and CNC is worthy of follow-up
study.

Calcium-sensing receptors

The calcium-sensing receptor (CaSR) works as a key
regulator by sensing extracellular Ca2+ fluctuations to affect
downstream intracellular signaling pathways (Tuffour et al.,
2021). Thus, CaSR plays a key role in maintaining cellular
Ca2+ homeostasis. In cochlea, Ca2+ homeostasis is also
essential for acoustic transduction and proper development
of cochlea, including synaptic transmission, mechanoelectrical
transduction and the network of SCs (Ceriani and Mammano,
2012; Sirko et al., 2019). CaSR expression is detected in
fibrocytes of the spiral ligament and spiral limbus, smooth
muscle cells (SMCs) of the spiral modiolar arteries and
epithelia of the osseous spiral lamina (Wonneberger et al.,
2000; Minakata et al., 2019). Only one work has reported the
role of CaSR in cochlear fibrocytes, where CaSR can regulate
Ca2+ concentration (Minakata et al., 2019). When the CaSR
inhibitor (NPS2143 and Calhex231) was used, the hearing
threshold increased by 20–30 dB, indicating that the Ca2+

signal mediated by CaSR is required for hearing. Therefore,
the study of the complete regulatory pathway of CaSR to
maintain cochlear Ca2+ homeostasis will help to treat hearing
loss.

Class C orphans receptors

GPR156, as an orphan GPCR of class C, has a significant
sequence homology with GABA B receptor (Calver et al.,
2003), and has a high Gi/o constitutive activity (Watkins and
Orlandi, 2021). GPR156 is currently only reported as a key
regulator of orientation in sensory HCs (Kindt et al., 2021).
GPR156 is expressed in all HCs of the cochlea, and knockout
of GPR156 causes hearing loss but not HC death (Kindt
et al., 2021). GPR156 distribution can be polarized by the
transcription factor EMX2, which is then signaled by Gαi to
trigger a 180◦ reversal of HC orientation (Kindt et al., 2021).
The EMX2 > GPR156 > Gαi signaling cascade is therefore
required for HC orientation (especially OHC1 and OHC2)
and hearing function. In this signaling cascade, how EMX2
affects GPR156 and whether there are agonists combined with
GPR156 to participate in the reversal of HCs worth further
research.

Roles of class F G protein-coupled
receptors in cochlea

Frizzled receptors

Class F of GPCR or frizzled GPCR family includes ten
Frizzleds (FZD1-10) and Smoothened (SMO), all of them have
this cysteine-rich domain (CRD) in their extracellular region
(Schulte and Wright, 2018; Zhang X. et al., 2018; Kozielewicz
et al., 2020; Schulte and Kozielewicz, 2020). These receptors
play key roles in embryonic development, cellular polarity,
proliferation, differentiation, and maintenance of stem cells.

The 10 FZDs coordinate the Wnt signaling in two ways:
through disheveled (DVL1-3)–dependent pathway (Clevers
and Nusse, 2012; Grainger and Willert, 2018) and through
heterotrimeric G-protein-mediated pathway (Dijksterhuis et al.,
2014; Kilander et al., 2014). In addition to FZD5 and FZD8,
the other eight FZDs have been reported to couple to various
types of G proteins (Schulte and Wright, 2018). Most of these
FZDs were detected by RT-PCR in the rat cochlea (Daudet et al.,
2002) and RNA in situ hybridization in the chicken cochlea
(Sienknecht and Fekete, 2008). In the mammalian cochlea,
FZD1 and FZD2 were both expressed at lower levels in sensory
HCs, but at higher levels in SCs (Yu et al., 2010). And the
expression of FZD4 can be detected in auditory and vestibular
HCs (Wang et al., 2001). Furthermore, both FZD3 and FZD6
are expressed in cochlear SCs (Ghimire and Deans, 2019) and
the medial side of HCs (Montcouquiol et al., 2006; Chang
et al., 2016), but FZD3 is expressed in SGNs (Duncan et al.,
2019; Stoner et al., 2021). While the expression of FZD9 can be
detected in early cochlear inner phalangeal cells (IPhCs), IBCs,
and the third-row DCs (Zhang et al., 2019).
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FIGURE 2

The summary of reported 30 Class A GPCRs in cochlea. The blue circle indicates that GPCR are functional in the cochlea. Pink circle indicates
GPCR associated with hearing loss. Red circle indicates GPCR associated with human hearing disorders. Green circle indicates GPCR involved in
hearing protection. The orange circle indicates that the GPCR has resolved the protein structure. Open circles indicate conjectures or
confirmed conclusions.

Among the 10 FZDs, FZD 2, 3, 4, 6, and 9 play different
important roles in the cochlea. Knockout of FZD2 in the mouse
cochlea results in defects in OHC number and orientation,
which are most severe in the apical region. In addition, a
recent study identified FZD2 as a signature gene in one of three
distinct SGN I populations by using single-cell transcriptome
(Grandi et al., 2020). In the mouse cochlea, planar polarity
is guided by the PCP proteins FZD3 and FZD6. However,
FZD3 and FZD6 are functionally redundant, and the orientation
of HCs is severely affected only in FZD3/6 double knockout
mice (Wang et al., 2006). Moreover, FZD3 and FZD6 play a
key role in guiding SGN II peripheral axons turning (Ghimire
and Deans, 2019). A recent study uncovered SPAG6 as a
regulator of FZD6, because FZD6 lost its normal polarized
distribution in SPAG6−/− mice (Li et al., 2021). Furthermore,

a novel non-canonical Wnt pathway was identified in cochlear
HCs that signals through PI3K, Rac1 and Gsk3β to regulate
the PCP pathway by promoting the junctional localization
of core PCP proteins such as FZD6 (Landin Malt et al.,
2021). Compared with the above-mentioned FZDs, FZD4
does not affect HC survival but only affects HC function, so
only the late onset hearing loss can be found in FZD4−/−

mice (Wang et al., 2001). The main role of FZD9 in
cochlea is HC regeneration, and FZD9+ cells have strong
ability of proliferation, differentiation and HC generation. It
still has HC-generating capacity at 6 days after treatment
in vivo lineage tracing, especially it can act as an effective
marker for HC progenitors (Zhang et al., 2019). Therefore,
FZD9 has clinical translational value for the regeneration of
HCs.
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FIGURE 3

The summary of reported Class B1/B2/C/F GPCRs in cochlea. (A) The summary of reported 5 Class B1 GPCRs in cochlea. (B) The summary of
reported 3 Class B2 GPCRs in cochlea. (C) The summary of reported 8 Class C GPCRs in cochlea. (D) The summary of reported 7 Class F GPCRs
in cochlea.

SMO mediates the Hedgehog (Hh) signaling pathway,
activated SMO lead Gli to translocate into the nucleus to
activate target genes, in which SMO can couple to Gi/o

and G12/13 (Gorojankina, 2016; Qi et al., 2019; Okashah
et al., 2020). In the auditory field, SMO is found to
participate in cochlear development, HC differentiation and
hearing function. In mouse embryos carried inner ear
conditional knockout of Smoothened (SMOecko), the cochlea
exhibited hypoplasia, in which the cochlear duct and saccule

were completely absent in SMOecko embryos (Brown and
Epstein, 2011; Muthu et al., 2019). What’s more, in SMOcko

mouse (similar to SMOecko mouse) early cochlea, apex
HCs preferentially accelerate differentiation (Tateya et al.,
2013). Although SMOcko mice survive after birth, HCs
in the apical region appear disorganized and reduced in
number, causing hearing loss which predominantly at low
frequencies. And SMOecko has also been used to identify
key genes that are activated and repressed by Shh signaling
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in the cochlea during the initial stages of growth (Muthu
et al., 2019). In addition, SMO may be associated with
otosclerosis (Brown and Epstein, 2011) and cochlear neural
stem cell (NSC) transplantation (Huang et al., 2018). The
use of taurine during transplantation can up-regulate Hh
pathway proteins such as SMO, thereby stimulating the
cell proliferation and differentiation of NSCs into SGNs.
These results suggest that SMO has potential applications
in the treatment of hearing impairment and cochlear NSC
transplantation.

Emerging G protein-coupled
receptor-based treatment

G protein-coupled receptor-based
drug development

G protein-coupled receptors are keeping great advantages
as drug targets, thanks to the rapid development of single-
particle cryo-electron microscopy (cryo-EM) technology and
artificial intelligence (AI) technology in recent years. Since
the first use of cryo-EM to resolve the complex structure
of GPCR and G protein in 2017, the number of GPCR
structures resolved every year has grown exponentially
(Liang et al., 2017; Kooistra et al., 2021). Compared
with previous X-ray crystallography studies required
higher thermal stability, cryo-EM can obtain different
conformations of stable GPCRs and structures of complexes
with G proteins that are closer to the native state, which
greatly improves the efficiency of ligand screening or drug
design (Renaud et al., 2018). So far, the structures of 30
GPCRs functioning in the cochlea have been successfully
resolved (Figures 2, 3; Supplementary Table 1). In recent
years, the application of AI in structural biology has
also greatly promoted the elucidation of GPCRs and the
corresponding drug design. For example, AlphaFold2
and RosettaFold are the most typical applications at
present (Baek et al., 2021; Jumper et al., 2021) with high
accuracy, high speed, and convenience for GPCR structure-
oriented drug design. In addition, according to statistics,
GPCRs remain one of the most important drug targets
(Hauser et al., 2017).

There are many types of GPCRs targeting drugs in clinical
trials, including peptides, monoclonal antibodies, recombinant
proteins, small molecules, and nanobodies (Saikia et al., 2019).
According to the mode of action, it can be divided into
agonists, antagonists, positive allosteric modulators (PAM),
negative allosteric modulators (NAM) and so on (Hauser et al.,
2017; Odoemelam et al., 2020). When a ligand binds to a
GPCR, the receptor undergoes a conformational change in
which agonists can activate and antagonists can inhibit signal
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transduction pathways. In contrast to orthosteric ligands such
as agonists and antagonists, allosteric modulators (PAM or
NAM) as promising therapeutic agents can infiltrate into a
pocket that is different in space than the orthotopic site,
and modulate signaling only in the presence of the natural
ligand to prevent adverse side effects (Massink et al., 2020;
Yang et al., 2022).

In cochlear research and treatment, GPCR-targeted
drugs have also been used to some extent. For example,
S1PR2 agonist (CYM-5478) (Wang et al., 2020), CaSR
inhibitors (NPS2143 and Calhex231) (Minakata et al.,
2019), V2R antagonist (OPC-41061/Tolvaptan) (Egami
et al., 2016), CB2R agonist (JWH105) (Vlajkovic et al., 2006;
Dhukhwa et al., 2021), AA1R agonists (R-PIA and ADAC)
(Vlajkovic et al., 2010; Kaur et al., 2016), AA2AR antagonist
(istradefylline) (Han et al., 2019; Manalo et al., 2020; Shin
et al., 2021) all have a therapeutic and protective effect
on the cochlea. Among these GPCR-targeted drugs, V2R
antagonist (OPC-41061/Tolvaptan) and AA2AR antagonist
(istradefylline) have been approved by the US Food and
Drug Administration (FDA) (NDA022075, NDA022275).
V2R antagonist (OPC-41061/Tolvaptan) is approved for
the treatment of autosomal dominant polycystic kidney
disease, fibrosis, hyponatremia, heart failure, and the
syndrome of dysregulated antidiuretic hormone secretion
in humans (Cao et al., 2022; Martin-Grace et al., 2022).
AA2AR antagonist (istradefylline) is widely used to treat
Parkinson’s disease in humans (Merighi et al., 2022). However,
many GPCRs extensively developed in the cochlea, such as
CRFR1 (Graham and Vetter, 2011), CRFR2 (Graham et al.,
2010), and CGRPR (Maison et al., 2003) mentioned above,
also have great potential in the future of cochlear therapy
to treat or prevent of noise- and pharmaceutical-induced
auditory toxicity (Lowery and Thiele, 2010; Hauser et al.,
2017; Deganutti et al., 2021). Therefore, besides existing
drugs targeting GPCRs that can be further tried to be
applied to the treatment of the cochlea, more structures of
potential GPCRs targets are helpful to design drugs in cochlear
therapy.

G protein-coupled receptor-based
gene therapy

The use of drugs generally only works when the target
protein exists and expresses. Considering that one out of
every 1,000 births in the world is hereditary deafness
(Ajay et al., 2022), and mutations or deletions of 124
genes have been found to cause hearing loss,2 so these
hereditary hearing impairments are difficult to treat with

2 https://hereditaryhearingloss.org/
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TABLE 4 Class C GPCRs relevant to cochlea.

GPCR family Subtypes Roles in cochlea Localization Genetic modulation References

Class C GPCRs

Metabotropic glutamate receptors mGluR1 Enhance efferent inhibition of IHCs SGN, HC - Ye et al., 2017

Promote excitatory neurotransmission in SGN I Peng et al., 2004

mGluR2 Inhibit efferent dopamine release onto IHCs SGN I, efferent lateral olivocochlear
GABAergic fiber

- Doleviczenyi et al., 2005

mGluR4 - IHC - Klotz et al., 2019

mGluR7 Associated with ARHL and NIHL HC mGluR7−/− mice Chang et al., 2018

Knockout results in hearing deficits Fisher et al., 2020

mGluR8 - HC - Klotz et al., 2019

GABA B receptors GABA B(1a,2) Affect OHC function SGN GABA B1-GFP reporter mouse Maison et al., 2009

Modulate the strength of the SGN-HC synapse GABA B1a−/− mice Wedemeyer et al., 2013

GABA B1b−/− mice

Calcium-sensing receptors CaSR Maintain cochlear Ca2+ homeostasis Fibrocytes of the spiral ligament and spiral
limbus, SMC of the spiral modiolar arteries
and epithelia of the osseous spiral lamina

- Minakata et al., 2019

Class C Orphans receptors GPR156 EMX2 > GPR156 > Gαi signaling cascade is
required for HC orientation

HC GPR156−/− mice Kindt et al., 2021

GPR156exon2 zebrafish

GPR156sa34566 zebrafish

SGN, Spiral Ganglion Neuron; HC, hair cell; IHC, inner hair cell; SMC, smooth muscle cell.
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TABLE 5 Class F GPCRs relevant to cochlea.

GPCR family Subtypes Roles in cochlea Localization Genetic modulation References

Class F GPCRs

Frizzled receptors FZD1 - HC, SC FZD1−/− mice Yu et al., 2010

FZD2 Guide OHC orientation HC, SC, SGN I FZD2−/− mice Yu et al., 2010

A marker as one distinct type I SGN Grandi et al., 2020

FZD3 Guide planar polarity of HC with FZD6 HC, SC, SGN ATOH1-Cre: FZD3−/− mice Stoner et al., 2021

Guide Type II SGN peripheral axons turning with FZD6 NEUROD1-cre: FZD3−/− mice Wang et al., 2006

FZD3−/− mice Ghimire and Deans, 2019

FZD3−/− ; FZD6−/− mice

FZD4 Knockout results in the late onset hearing loss HC FZD4−/− mice Wang et al., 2001

FZD6 Guide planar polarity of HC with FZD3 HC, SC FZD6−/− mice Wang et al., 2006

Guide Type II SGN peripheral axons turning with FZD3 FZD3−/− ; FZD6−/− mice Ghimire and Deans, 2019

FZD9 Promote hair cell regeneration IPhC, IBC, DC FZD9-CreER; ROSA26-tdTomato Mice Zhang et al., 2019

SMO Affect cochlear development: cochlear duct and saccule were absent when
knockout

HC, NSC FOXG1-Cre; SMOloxp/− (SMOecko) mice Muthu et al., 2019

Affect hair cell differentiation: apical HCs appear disorganized and reduced
when knockout

EMX2-Cre; SMO−/− (SMOcko) mice Brown and Epstein, 2011

Affect hearing function: hearing loss at low frequencies when knockout Tateya et al., 2013

Promote cochlear NSC transplantation Huang et al., 2018

HC, hair cell; SC, supporting cell; SGN, Spiral Ganglion Neuron; IPhC, inner phalangeal cell; IBC, inner border cell; DC, Deiters’ cell; NSC, neural stem cell.
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drugs. Therefore, gene therapy provides a therapeutic direction
for hearing loss caused by gene mutation or deletion
(Lee et al., 2020; Maguire and Corey, 2020). Briefly, the
introducing a normal gene into the target cell through a
delivery vector to replace or enhance the defective gene,
can restore a normal level to avoid loss of function. In
the field of cochlear therapy, gene therapy was first used
to rescue hearing loss in the VGLUT3 knockout mouse,
a model of congenital deafness, as early as 2012 (Akil
et al., 2012). Subsequently, many deafness caused by gene
mutation or deletion were studied by similar gene therapy
approaches, including TMC1 (Nist-Lund et al., 2019), GJB2
(Iizuka et al., 2015), USH1C (Pan et al., 2017), and so
on.

In recent years, the CRISPR (clustered regularly interspaced
short palindromic repeats) based gene editing methods
have opened up new avenues for gene therapy in the
field of hearing (Zuris et al., 2015). It can target gene
disruption or repair mutations to restore gene function,
no need to consider how to produce adequate levels of
exogenous transgene expression. At present, the exploration
of gene editing methods for cochlear gene therapy is mainly
based on CRISPR-Cas9 and CRISPR-Cas13 (Geleoc and
El-Amraoui, 2020; Botto et al., 2021). The CRISPR-Cas9
system edits DNA, and the cure may be permanent
after the correction of disease-causing mutation in vivo.
It has been studied in a series of hearing treatments,
for example, the dominant mutation of the TMC1 gene
in a Beethoven mouse model of hearing loss has been
successfully corrected. Hearing was significantly restored
in the treated mice, and this effect was stable for up to
a year (Gao et al., 2018; Gyorgy et al., 2019). Unlike
the CRISPR-Cas9 system targeting DNA, CRISPR-Cas13
system edits disease-associated RNA transcripts, which
is transient and potentially reversible, thus also offering
improved safety. Two recent studies have revealed the
potential of the CRISPR-Cas13 system in gene therapy for
the repair of hearing loss caused by mutations, including
CRISPR-Cas13X (Xiao et al., 2022) and CRISPR-CasRx
(Guo et al., 2022).

The good news is that the first gene therapy for a
disease caused by a specific genetic mutation has been
approved by the FDA at 2017 (Maguire et al., 2021),
supporting the huge clinical potential of gene therapy.
In the field of GPCR-related gene therapy, considerable
progress has been made in the study of rhodopsin (RHO)
in the retina (Athanasiou et al., 2018). Multiple works
rescue retinal degeneration in RHO mutant mice for
up to 6–9 months by supplementing exogenous RHO
(O’Reilly et al., 2007; Chadderton et al., 2009; Mao et al.,
2011). In addition, there is some work to correct RHO
mutations by CRISPR/Cas9 gene editing for the treatment
of inherited retinal degeneration (Bakondi et al., 2016;

Burnight et al., 2017). Among the nine genes with mutations
or deletions of GPCR-encoding genes that cause hearing
loss, including GABA B1 (Maison et al., 2009), GPR156
(Kindt et al., 2021), mGluR7 (Friedman et al., 2009), VLGR1
(Kimberling et al., 1995), PAC1R (Ruel et al., 2021), EDNRB
(Huang et al., 2021), S1PR2 (Santos-Cortez et al., 2016),
TSHR (Li et al., 1999), and CRFR1 (Graham and Vetter,
2011), five of them mGluR7 (Friedman et al., 2009), VLGR1
(Kimberling et al., 1995), EDNRB (Huang et al., 2021),
V2R (Zou et al., 2019; Wang et al., 2022), and S1PR2
(Santos-Cortez et al., 2016) are directly related to human
deafness, which are especially worth developing for gene
therapy.

Conclusion

In this review, we mainly summarize the expression of
five subfamilies of GPCRs in the cochlea, their functions, their
relationship with hearing loss, and their potential therapeutic
directions (Tables 1–5). A total of 53 GPCRs have been reported
to be expressed in the cochlea, of which 38 have been shown to
function in the cochlea (Figures 2, 3; Supplementary Table 1).
Most importantly, 27 GPCRs were found to be associated
with hearing loss, 5 of which were directly associated with
human hearing disorders (VLGR1, mGluR7, V2R, EDNRB,
and S1PR2). In addition, 13 GPCRs (CXCR4, CX3CR1, CCR2,
CCR7, CB2R, APJ, AA1R, AA2AR, AA2BR, PAC1R, CRFR2,
mGluR7, and S1PR2) were confirmed to play a hearing
protective role in noise and ototoxicity. We also prospect
the GPCR-targeted drug development and gene therapies
in the future. In conclusion, GPCRs have great potential
in the treatment of hearing loss, so more GPCR functions
in the cochlea, more GPCRs related to hearing loss, and
more GPCR-based treatment regimens remain to be further
explored.
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