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Fingolimod is an oral immunomodulatory drug used in the treatment of 

multiple sclerosis (MS) that may change lipid metabolism. Peroxisome 

proliferator-activated receptors (PPAR) are transcription factors that regulate 

lipoprotein metabolism and immune functions and have been implicated in 

the pathophysiology of MS. CD36 is a scavenger receptor whose transcription 

is PPAR regulated. The objective of this study was to evaluate whether 

fingolimod treatment modifies PPAR and CD36 gene expression as part of 

its action mechanisms. Serum lipoprotein profiles and PPAR and CD36 gene 

expression levels in peripheral leukocytes were analysed in 17 female MS 

patients before and at 6 and 12 months after fingolimod treatment initiation. 

Clinical data during the follow-up period of treatment were obtained. We found 

that fingolimod treatment increased HDL-Cholesterol and Apolipoprotein E 

levels and leukocyte PPARγ and CD36 gene expression. No correlations were 

found between lipid levels and variations in PPARγ and CD36 gene expression. 

PPARγ and CD36 variations were significantly correlated during therapy and 

in patients free of relapse and stable disease. Our results suggest that PPARγ 

and CD36-mediated processes may contribute to the mechanisms of action 

of fingolimod in MS. Further studies are required to explore the relation of the 

PPARγ/CD36 pathway to the clinical efficacy of the drug and its involvement 

in the pathogenesis of the disease.
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Introduction

Fingolimod (FTY720, Gilenya) was the first oral disease-
modifying treatment (DMT) approved in MS. Fingolimod is a 
synthetic sphingosine analogue which once phosphorylated to 
sphingosine-1-phosphate (S1P) binds to several S1P receptors 
(S1PR). High levels of S1PR1 receptor subtype are expressed in 
lymphocytes and required for their egress from lymphoid organs. 
By inducing internalization and degradation of S1PR1, 
phospho-FTY720 impairs this egress, resulting in a significant 
reduction of circulating T and B cells and infiltration in the CNS 
(Roy et  al., 2021). Modulation of S1P receptors present in 
endothelial cells, neurons, glial cells and the innate immune 
system may also contribute to the efficacy S1PR-directed therapies 
in MS (Thomas et al., 2017; Roy et al., 2021; Mirzaei et al., 2022). 
Within circulation, S1P is mainly present in high-density 
lipoprotein (HDL-C), and mediates the regulatory properties of 
this lipoprotein in immune responses (Blaho et  al., 2015). 
Interestingly, it was recently observed that fingolimod increases 
plasma HDL-Cholesterol (HDL-C) levels in MS patients, although 
no association with the anti-inflammatory effects of the treatment 
was found (Blumenfeld Kan et al., 2019). Dyslipidaemia has been 
suggested to play a role in MS pathogenesis and some studies have 
shown the protective effects of HDL-C on disability progression 
and development of new brain lesions in MS patients (Zhornitsky 
et al., 2016). However, as in other chronic inflammatory disorders, 
the profile and composition of lipoprotein sub-fractions could 
be altered in MS patients and result in a dysfunctional HDL with 
impaired anti-inflammatory effects (Jorissen et al., 2017). In sum, 
the molecular mechanisms underlying the therapeutic effects of 
fingolimod in MS are complex and not fully understood. Here, 
we  questioned whether peroxisome proliferator-activated 
receptors (PPAR) could be implicated in the mechanism of action 
of fingolimod therapy in these patients.

PPARs are ligand-activated transcriptional factors involved 
in the regulation of lipid and glucose metabolism and adaptive 
and innate immunity. The PPAR subfamily of nuclear receptors 
comprises the members PPARα (NR1C1), PPARβ/δ (NR1C2) 
and PPARγ (NR1C3) which, after ligand activation, regulate 
gene transcription by dimerizing with the retinoid X receptor 
and acting on specific DNA sequences. PPAR can regulate gene 
expression also by interfering with other transcriptional factors 
and other proteins implicated in human disease (Rigamonti 
et al., 2008; Surgucheva and Surguchov, 2008). PPAR are widely 
distributed in human cells, including in the CNS, and have been 
implicated in the pathophysiology of MS (Ferret-Sena et al., 
2018). For instance, PPARγ expression in CNS myeloid cells was 
shown to control inflammatory activation in experimental 
autoimmune encephalomyelitis (EAE) (Hucke et al., 2012) and 
its agonist pioglitazone decreases systemic inflammatory 
activity and the development of new brain lesions in MS obese 
patients (Negrotto et al., 2016). In line with this scenario, recent 
work has shown that MS-associated inflammatory mediators 
reduce the expression of PPARγ in monocyte-derived 

macrophages from healthy subjects (Wouters et al., 2020). A 
significant amount of data supports a major role of PPAR in the 
cross-talk between lipoprotein metabolism and inflammatory 
responses (Rigamonti et al., 2008; Ferret-Sena et al., 2018). In 
low HDL-C subjects, increased expression of inflammatory 
genes in monocyte-derived macrophages is associated with 
decreased expression of PPARγ (Sarov-Blat et al., 2007) and 
pioglitazone treatment increases HDL-C levels (Kabeya et al., 
2011). In addition, PPARγ agonists increase S1PR1 expression 
in lymphocytes and regulate intracellular and blood levels of 
S1P (Liu et  al., 2016; Kurano et  al., 2018). Cluster of 
Differentiation 36 (CD36) is a membrane receptor upregulated 
by PPARγ expressed in many cells that modulates immune 
functions (Rigamonti et  al., 2008; Silverstein and Febbraio, 
2009). CD36 is a scavenger receptor for oxidized low-density 
lipoprotein (oxLDL) and other lipids generated by inflammatory 
processes during atherogenesis (Silverstein and Febbraio, 2009) 
and implicated in reparative mechanisms of MS lesions 
(Grajchen et al., 2018, 2020). Based on these data, the present 
exploratory study investigated PPAR and CD36 gene expression 
in blood leukocytes and associated plasma lipoprotein profile in 
MS patients under fingolimod treatment.

Materials and methods

Patients enrolment

Seventeen female patients with relapsing–remitting MS 
(RRMS) (Polman et al., 2005) were recruited from two MS clinical 
centres in Lisbon (Portugal). All individuals who received 
fingolimod as a second-line therapy (0.5 mg/day) due to prior 
failure of disease-modifying treatment (DMT) were studied 
during a follow-up period of 12 months. The Expanded Disability 
Status Score (EDSS) (Kurtzke, 1983) was determined at the 
enrolment time and after 6 months and 12 months of treatment. 
Number of relapses in the last year previously to treatment and 
during the follow-up period was also recorded. Relapses were 
defined as the appearance or worsening of neurological signs 
lasting over 24 h and not associated with fever. Clinical indexed 
information included age at disease onset and disease duration, 
previous therapies, body mass index (BMI) (kg/m2), current 
smoking habits and oral contraceptive use. Data on magnetic 
resonance imaging (MRI) and blood cell counts from the 1-year 
follow-up were also collected. Brain MRI at 1.5 Tesla with and 
without gadolinium infusion was performed according to the 
standard procedures. No evidence for disease activity (NEDA-3) 
was defined by the absence of relapses and sustained EDSS 
progression and no new or enlarging T2-weighted and contrast-
enhancing lesions on T1-weighted. None of the patients were 
taking lipid-lowering medication before and during the study or 
suffered from any metabolic disorder. All patients signed informed 
consent and the study was conducted according to the Declaration 
of Helsinki and approved by the local Ethics Committees (Central 
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Lisbon University Hospital Centre and Fernando da 
Fonseca Hospital).

Blood collection, isolation of leukocytes, 
and RNA extraction

Blood samples were collected by venepuncture in fasting 
conditions and coded for blinded analysis. Purification of mRNA 
from leukocytes was performed according to QIAamp RNA Blood 
Mini Kit (Qiagen) protocol. Erythrocytes were selectively lysed 
and leucocytes recovered by centrifugation, processed 
immediately and RNA stored at-80°C until analysis. Plasma 
sample was also collected and stored at-80°C until use for lipid 
and apolipoprotein analysis.

Lipid and apolipoprotein analysis

Serum triglycerides (TG), total cholesterol (TC), high-density 
lipoprotein (HDL), and low-density lipoprotein (LDL) cholesterol 
(HDL-C and LDL-C) were measured enzymatically by using the 
Roche automated clinical chemistry analyser (COBAS 6000). 
Non-HDL-C cholesterol levels were calculated by subtracting 
HDL-C from TC. Apolipoprotein A-1 (ApoA1), Apolipoprotein 
B (ApoB), and Apolipoprotein E (ApoE) were determined by 
turbidimetry methods (Roche, COBAS 6000). Lipoprotein(a) 
(Lp(a)) was measured by nephelometry. Oxidized LDL (oxLDL) 
was determined by commercially available Enzyme-Linked 
Immunosorbent Assay (ELISA) kits from Mercodia eBioscience.

Quantitative PCR

PPARα, PPARβ/δ, PPARγ, and CD36 mRNA expression in 
leucocytes was evaluated by quantitative RT-PCR. RNA was 
reverse-transcribed using random hexamer primers and 
Superscript reverse transcriptase (Life Technologies, France) and 
cDNAs were quantified using specific oligonucleotides (for PPAR, 
CD36, and cyclophilin) by Master Mix II Agilent on an Mx3000 
apparatus Stratagene, La Jolla, CA (see Supplementary Information 
for primers and probes used). The relative expression of each gene 
was calculated by the ΔCt method, where ΔCt is the value 
obtained by subtracting the Ct (threshold cycle) value of 
cyclophilin mRNA from the Ct value of the target gene. The 
amount of target relative to the cyclophilin mRNA was expressed 
as 2−(ΔCt).

Statistical analysis

Statistical analysis was performed by an expert statistician 
using SPSS version 21.0 and R version 3.6.1. Variations during the 
12-month follow-up were assessed by Friedman test. Data from 

the 6-month and 12-month follow-ups were compared with 
baseline data through a nonparametric Wilcoxon test. The 
correlations between the changes in HDL-C, PPARγ and CD36 
and other variables were carried out using Spearman’s rank 
correlation coefficient. Fold changes were estimated for this 
purpose to quantify changes between baseline and 12 months and 
obtained by the ratio of the two quantities. A value of p < 0.05 was 
considered statistically significant.

Results

The main demographic and clinical characteristics of the 17 
MS female patients treated with fingolimod are summarized in 
Table 1. All patients received fingolimod as a second-line therapy. 
Interferon β was the most frequent previous DMT (76.5%). Mean 
body mass index (BMI) was stable in most patients. A decrease in 
BMI by more than one point was observed in 2 patients (12%). 
EDSS was stable and the mean relapse rate of the patient cohort in 
comparison to the last year prior to treatment significantly 
decreased (p < 0.001). Five patients remained with clinical and/or 
imaging evidence of disease activity. As expected, a significant 
decrease in absolute lymphocyte count (ALC) and an increase in 
the neutrophil/lymphocyte ratio during fingolimod treatment 
were observed (p = 0.001). Eleven patients were hormonal 
contraceptive users and five patients were smokers since 
treatment initiation.

Table 2 summarizes patients lipid profile assessed at baseline, 
6-months, and 12-months after fingolimod initiation. At baseline, 
17.6% of patients had HDL-C at the recommended level (≥60 mg/
dl), but this percentage increased to 29.4% at 6 and 12 months of 
follow-up. This treatment was associated with a significant 
increase in HDL-C (p = 0.015), with a 10.4% increase after 
6 months (p = 0.014) and 15.7% increase after 12 months 
(p = 0.002). No significant differences for other lipids and lipid 
ratios were found in patient’s post-treatment compared with 

TABLE 1 Patient’s demographic and clinical data.

Baseline 12 months p-Value

Female, n (%) 17 (100) – –

Age, years 39.1 ± 8.5 – –

Disease duration, years 9.2 ± 6.9 – –

Previous DMT 

Interferon β, n (%)

13 (76.5) – –

BMI, kg/m2 24.5 ± 5.1 24.7 ± 5.7 0.708

EDSS 2.6 ± 2.2 2.8 ± 2.1 0.867

ARR 1.4 ± 0.9 0.1 ± 0.3 <0.001

Lymphocytes, × 109/L 1.7 ± 0.9 0.6 ± 0.5 0.001

N/L ratio 3.6 ± 3.1 7.7 ± 4.3 0.001

DMT, disease-modifying therapy; BMI, Body Mass Index; EDSS, Expanded Disability 
Status Scale; ARR, annualized relapse rate; N/L, neutrophils/lymphocytes. Data are 
presented as mean and standard deviation (SD), value of ps obtained through 
nonparametric Wilcoxon test. Bold values means significant differences.
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pre-treatment levels. Regarding apolipoproteins, a significant 
increase in ApoE was found at 12 months of treatment (p = 0.049). 
No correlation was found between HDL-C levels and ALCs.

The results concerning PPARS and CD36 mRNA expression 
in blood leukocytes are presented in Figure 1. No significant 
alterations in PPARα (Figure 1A) and PPARβ/δ (Figure 1B) 
gene expression were found at 6 and 12 months after therapy. At 
6 months, patients had higher PPARγ mRNA expression in 
comparison to the baseline (mean difference 117.9, p = 0.004). 
Although a slight decrease in the relative mRNA levels was 
observed at 12 months, PPARγ mRNA expression remained 
higher in comparison to the baseline (mean difference 41.1, 
p = 0.017) (Figure 1C). Higher CD36 gene expression was also 
observed at 6 months in comparison to baseline (mean 
difference 88.4, p = 0.001). Similar mRNA levels were found at 
12 months, with a mean difference of 85.9 to baseline levels 
(p = 0.002) (Figure  1D). A significant correlation between 
PPARγ and CD36 was observed for the cohort of patients at six 
(r = 0.549, p = 0.022) and 12 (r = 0.748, p = 0.001) months of 
treatment but not at baseline (r = 0.463, p = 0.061). Furthermore, 
a strong correlation between PPARγ variation and CD36 
variation was found for patients with no relapses (r = 0.863, 
p < 0,001) (Figure  2A) and stable disease activity (r = 0.878, 
p = 0.001) during treatment (Figure  2B). No significant 
correlations were observed between PPARγ and CD36 
variations and HDL-C levels and ALCs.

Discussion

Dyslipidaemia has been implicated in the pathogenesis of the 
MS (Zhornitsky et al., 2016) and fingolimod therapy was recently 
observed to change the serum lipid profile in these patients 
(Blumenfeld Kan et al., 2019). In agreement with this last study, 
we found specific increases of HDL-C levels at 6 and 12 months 
after treatment initiation. As also reported by Blumenfeld Kan 
et al. (2019) (Blumenfeld Kan et al., 2019), fingolimod therapy was 
not associated with significant changes in BMI, despite an increase 
of the percentage of patients reaching the recommended level of 
HDL-C ≥ 60 mg/dl. Some studies have shown that higher levels of 
HDL-C are associated with anti-inflammatory effects in MS 
(Weinstock-Guttman et al., 2013; Fellows et al., 2015). In contrast 
to fingolimod, natalizumab therapy in MS is linked to 
sequestration of activated lymphocytes in the systemic circulation 
and decreases plasma HDL-C levels (Moccia et  al., 2018). 
However, as previously observed (Blumenfeld Kan et al., 2019), no 
correlation between HDL-C levels and absolute lymphocyte 
counts (ALCs) was found in the present study. Whether the 
increase in HDL-C induced by fingolimod may represent a 
potential biomarker of the protective effects of the drug remains 
to be  explored. Beyond prominent effects on lymphocyte 
trafficking (Roy et al., 2021), fingolimod has slower effects on 
innate immune cells (Thomas et al., 2017). In this context, it is 
intriguing that an increase of ApoE levels was only observed after 
1-year of therapy, suggesting a slower alteration of apolipoprotein 
metabolism by the drug. A potential role of ApoE in the 
pathophysiology of MS is equivocal (Zhornitsky et  al., 2016). 
However, recent studies suggest an involvement of ApoE in 
modulating disability progression (Sena et al., 2019; McComb 
et al., 2020). Moreover, myeloid-derived ApoE present in HDL-C 
controls the innate and adaptive immune reactivities and its 
deficiency may promote autoimmune responses (Bonacina et al., 
2018). Longer follow-up studies are warranted to characterize the 
composition of lipoprotein fractions in fingolimod-treated 
patients and its potential contribution to the mechanisms of action 
of the drug.

The main objective of the current study was to investigate 
whether PPAR could be involved in the mechanisms of action of 
fingolimod in MS patients. PPAR have been implicated in the 
pathophysiology of EAE and MS and are major players in the 
interactions between inflammatory responses and lipid 
metabolism (Ferret-Sena et al., 2018). Specific increases of PPARγ 
and CD36 gene expressions in blood leukocytes were observed 
during the one-year follow-up period of the study. It is well 
known that PPAR repress the expression of several 
proinflammatory mediators that are involved in MS pathogenesis. 
MS patients exhibit decreased PPARγ expression in peripheral 
blood mononuclear cells (PMNC) compared with controls (Klotz 
et al., 2005) and in obese MS patients, pioglitazone (a PPARγ 
agonist) decreases inflammatory activity and the development of 
new brain lesions (Negrotto et al., 2016). Furthermore, PPARγ 
expression in CNS myeloid cells was shown to control 

TABLE 2 Patient’s lipid profile.

Baseline 6 months 12 months p-Value 
(*)

TC (mg/dl) 156.1 ± 29.7 160.2 ± 30.7 168.4 ± 27.8 0.056

HDL-C  

(mg/dl)

48.9 ± 11.0 54.0 ± 12.4 56.6 ± 15.6 0.015

Non-HDL-C 

(mg/dl)

107.2 ± 36.2 106.2 ± 32.9 111.8 ± 29.9 0.257

TC/HDL-C 3.4 ± 1.4 3.1 ± 1.0 3.2 ± 0.9 0.327

LDL-C  

(mg/dl)

85.7 ± 29.9 87.7 ± 30.2 91.8 ± 23.8 0.073

TG (mg/dl) 106.8 ± 61.8 92.6 ± 36.3 99.9 ± 45.1 0.146

ApoA1  

(mg/dl)

149.6 ± 23.1 157.3 ± 24.1 156.3 ± 30.9 0.191

ApoB (mg/dl) 77.8 ± 27.3 75.8 ± 24.3 80.4 ± 19.2 0.280

ApoE (mg/dl) 3.0 ± 0.9 3.2 ± 1.1 3.5 ± 0.8 0.049

ApoB/A1 ratio 0.54 ± 0.22 0.49 ± 0.19 0.54 ± 0.18 0.838

Lp(a) (mg/dl) 19.6 ± 19.2 21.5 ± 22.7 24.1 ± 23.4 0.193

Oxidized LDL 

(mg/dl)

38.9 ± 16.4 45.3 ± 15.2 50.9 ± 21.9 0.627

OxLDL/LDL 

ratio

19.1 ± 8.4 21.9 ± 11.1 21.8 ± 9.2 0.420

*Comparisons between Baseline and 12 months. TC, total cholesterol; HDL-C, high-
density lipoprotein cholesterol; LDL-C, low-density lipoprotein; cholesterol; TG, 
Triglycerides; ApoA1, Apolipoprotein A1; ApoB, Apolipoprotein B; ApoE, 
Apolipoprotein E; Lp(a), Lipoprotein(a). Data are presented as mean and standard 
deviation (SD). Value of ps obtained through nonparametric Wilcoxon test. Bold values 
means significant differences.

https://doi.org/10.3389/fnmol.2022.1077381
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org


Ferret-Sena et al. 10.3389/fnmol.2022.1077381

Frontiers in Molecular Neuroscience 05 frontiersin.org

inflammatory activation in EAE (Hucke et al., 2012). Despite the 
potential involvement of other PPAR subtypes in the disease, it is 
remarkable that only PPARγ protein concentration in CSF was 

found to be  increased in these patients, possibly reflecting a 
protective mechanism to counteract the inflammatory activity of 
the disease (Szalardy et al., 2017). Supporting this hypothesis, 

A B

C D

FIGURE 1

PPAR𝛼 (A), PPARβ/𝛿 (B), PPAR𝛾 (C), and CD36 (D) leukocyte gene expressions at baseline, and at 6 and 12 months of treatment with Fingolimod. 
Value of ps obtained through nonparametric Wilcoxon test are presented.

A B

FIGURE 2

Spearman correlation between PPARγ fold variation and CD36 fold variation for patients with: No relapses during the 12-months follow-up (A) and 
No evidence of disease activity (NEDA-3) (B).
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recent work has shown that MS-associated inflammatory 
mediators reduce PPARγ mRNA expression in monocyte-derived 
macrophages from healthy donors (Wouters et al., 2020). These 
data suggest that the specific PPARγ gene expression induced by 
fingolimod may be associated with the anti-inflammatory effects 
of the drug. Interestingly, there is evidence for physiological 
interactions between PPARγ and S1P. PPARγ directly interacts 
with S1P (Parham et al., 2015) and PPARγ activation increases 
S1P synthesis and upregulates S1PR expression (Liu et al., 2016; 
Kurano et al., 2018). Induction of S1PR1 expression by PPARγ 
affects immune cells trafficking, macrophage and T cell 
polarization and B-cells activation (Liu et al., 2016). Fingolimod 
has protective effects on blood–brain barrier (BBB) permeability 
and leukocyte migration by blocking the expression and 
activation of multiple signaling molecules in endothelial cells 
(Zhao et  al., 2018). In several experimental models, PPARγ 
activity has been shown to promote BBB integrity (Sivandzade 
and Cucullo, 2019). PPARγ activation is an important signal for 
CD36 expression, a receptor involved in inflammatory and 
oxidative stress regulation (Rigamonti et al., 2008; Silverstein and 
Febbraio, 2009; Sini et al., 2017). Increased CD36 expression in 
macrophages/microglia may play crucial roles in suppression of 
inflammatory activity and in promoting repair mechanisms of 
MS lesion (Grajchen et al., 2020). CD36 is a scavenger receptor 
for oxLDL and other oxidized lipids and is implicated in the 
phagocytosis of myelin debris in MS lesions (Grajchen et  al., 
2018). In MS, elevated levels of circulating oxLDL were associated 
with adverse clinical outcomes (Zhornitsky et  al., 2016). 
Interestingly, fingolimod therapy was not associated with 
alterations in serum oxLDL levels and oxLDL/LDL ratio. In line 
with this scenario, we  have reported that the systemic 
inflammatory activity induced by natalizumab therapy is 
associated with a reduction of PPARγ and CD36 gene expressions 
in PMNC (Ferret-Sena et al., 2016). Dysfunctional HDL, with 
proinflammatory propriety, may be present in MS (Jorissen et al., 
2017)and could stimulate the PPARγ/CD36 pathway (Sini et al., 
2017). However, no correlations between PPARγ and CD36 
variations and HDL-C levels and ALCs were found. Moreover, 
PPARγ and CD36 gene expressions were not correlated at 
baseline, but significantly correlated during fingolimod treatment 
and in patients free of disease activity. It should be noted that no 
direct link between ALCs and therapeutic response to fingolimod 
has been observed, although this drug induces selective changes 
in blood lymphocytes subsets that were not assessed in this 
present study (Boffa et al., 2020). Since fingolimod is a lipophilic 
molecule, it crosses the BBB and may exert protective effects 
within the CNS by inducing metabolic reprogramming and 
neuroinflammatory modulation (Mirzaei et  al., 2022). Taken 
together, our data suggest that activation of the PPARγ/CD36 
pathway could contribute to the reparative and neuroprotective 
effects of fingolimod therapy in MS patients.

The main limitation of this study concerns the small cohort of 
participants, preventing comparison between patients with active 
versus stable disease. As only women were included, our results 

cannot be generalized to male patients because immune regulation 
by PPAR may depend on gender (Park and Choi, 2017). However, 
there is no evidence for gender-related differences in the 
mechanisms of action and clinical efficacy of fingolimod. Therefore, 
it seems likely that similar data may be anticipated for male patients. 
Although the use of oral contraceptives may alter the lipoprotein 
profile in MS patients (Sena et al., 2019), all women taking oral 
contraceptives started their use prior to fingolimod treatment and 
did not change its formulation. It seems unlikely that prior 
treatments could have biased the results, as the vast majority of 
patients were treated with interferon β formulations. Unfortunately, 
due to insufficient blood volume, PPARγ and CD36 protein levels 
could not be determined. In sum, additional studies in a larger 
cohort of participants including male gender and longer follow-up 
analyses are needed to confirm the pathophysiological and clinical 
relevance of the present results. Vitamin D levels were not assessed. 
Nevertheless, previous work found no correlation between the lipid 
profile and vitamin D levels in patients treated with fingolimod 
(Blumenfeld Kan et al., 2019). Data on changes in lifestyle, diet, and 
physical activity during the follow-up period were not collected. 
However, during treatment, body weight remained stable and an 
effect attributed to these factors seems unlikely.

In conclusion, this pilot study indicates that fingolimod 
therapy increases PPARγ and CD36 gene expressions in circulating 
leukocytes of women with MS. PPARγ and CD36 variations were 
correlated during treatment but not with associated changes in the 
serum lipoprotein profile. Further studies are required to assess 
the contribution of the PPARγ/CD36 pathway for the clinical 
efficacy of the drug and the pathogenesis of MS.
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