
Frontiers in Molecular Neuroscience 01 frontiersin.org

Brain-protective mechanisms of 
autophagy associated circRNAs: 
Kick starting self-cleaning mode 
in brain cells via circRNAs as a 
potential therapeutic approach 
for neurodegenerative diseases
Rabea Basri 1, Faryal Mehwish Awan 1*, Burton B. Yang 2,3,4, 
Usman Ayub Awan 1, Ayesha Obaid 1, Anam Naz 5, Aqsa Ikram 5, 
Suliman Khan 1, Ijaz ul Haq 6, Sadiq Noor Khan 1 and Muslim Bin 
Aqeel 1

1 Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Pakistan, 
2 Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON, Canada, 
3 Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, 
Canada, 4 Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada, 5 Institute of 
Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore, Pakistan, 
6 Department of Public Health and Nutrition, The University of Haripur (UOH), Haripur, Pakistan

Altered autophagy is a hallmark of neurodegeneration but how autophagy is 

regulated in the brain and dysfunctional autophagy leads to neuronal death 

has remained cryptic. Being a key cellular waste-recycling and housekeeping 

system, autophagy is implicated in a range of brain disorders and altering 

autophagy flux could be an effective therapeutic strategy and has the potential 

for clinical applications down the road. Tight regulation of proteins and 

organelles in order to meet the needs of complex neuronal physiology suggests 

that there is distinct regulatory pattern of neuronal autophagy as compared to 

non-neuronal cells and nervous system might have its own separate regulator 

of autophagy. Evidence has shown that circRNAs participates in the biological 

processes of autophagosome assembly. The regulatory networks between 

circRNAs, autophagy, and neurodegeneration remains unknown and warrants 

further investigation. Understanding the interplay between autophagy, 

circRNAs and neurodegeneration requires a knowledge of the multiple steps 

and regulatory interactions involved in the autophagy pathway which might 

provide a valuable resource for the diagnosis and therapy of neurodegenerative 

diseases. In this review, we  aimed to summarize the latest studies on the 

role of brain-protective mechanisms of autophagy associated circRNAs 

in neurodegenerative diseases (including Alzheimer’s disease, Parkinson’s 

disease, Huntington’s disease, Spinal Muscular Atrophy, Amyotrophic Lateral 

Sclerosis, and Friedreich’s ataxia) and how this knowledge can be leveraged for 

the development of novel therapeutics against them. Autophagy stimulation 

might be  potential one-size-fits-all therapy for neurodegenerative disease 

as per considerable body of evidence, therefore future research on brain-

protective mechanisms of autophagy associated circRNAs will illuminate an 
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important feature of nervous system biology and will open the door to new 

approaches for treating neurodegenerative diseases.
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1. Introduction

Circular RNAs (circRNAs) are a novel recognized class of 
endogenous single stranded regulatory noncoding RNAs 
(ncRNAs) characterized by forming circular transcripts 
(backsplicing) with neither 5′-to-3′ polarity nor a polyadenylated 
tail (Memczak et al., 2013). CircRNAs exhibit cell-specific, tissue-
specific and developmental stage specific expression patterns with 
high stability due to the lack of free ends typically targeted by 3′ 
and 5′ exoribonucleases and have a half-life of more than 48 h 
compared to linear transcripts with half-life of ~6 h (Huang et al., 
2017b). Furthermore, circRNAs exhibits distinct disease-specific 
characteristics under different pathological states which makes 
them promising therapeutic targets as well as potential diagnostic, 
predictive, and prognostic biomarkers for many incapacitating 
human diseases (Verduci et al., 2021; Zhao et al., 2022). Numerous 
ncRNAs have been reported to regulate cell death processes 
including autophagy, apoptosis and necrosis. Among reported 
ncRNAs, circRNAs have been reported to play key role in the 
regulation of autophagy either by affecting the expression of key 
autophagy proteins or by affecting the inhibition or activation of 
signaling pathways regulating autophagy (Wang et al., 2022). A 
number of studies have shown that there is a significant link/ 
correlation between circRNAs and autophagy (Zhang et al., 2017).

Autophagy is a fundamental biological process and a core 
molecular pathway that significantly affects nearly all aspects of 
human health and diseases, especially in neurodegenerative 
diseases (Yang and Klionsky, 2020; Klionsky et al., 2021). Being a 
catabolic process, autophagy ensures neuronal health through 
preventing cell toxicity by removing long-lived proteins or 
defective organelles in the central nervous system (Filippone et al., 
2022). There is accumulating evidence that autophagy pathways 
are deregulated in neurodegenerative diseases which contributes 
to the formation and accumulation of misfolded protein 
aggregates (a hallmark shared by several neurodegenerative 
diseases; Filippone et al., 2022). During this highly conserved 
cellular degradation process, organelles and portions of cytosol are 
sequestered into double membrane vesicles called autophagosome 
which then fuses with the lysosome for degradation by lysosomal 
hydrolases, therefore ensuring cellular and tissue level homeostasis 
under physiological and pathological conditions (Mizushima, 
2007). Research efforts have focused heavily on developing 
strategies to facilitate the autophagic clearance of protein 
aggregates for therapeutic purposes in neurodegenerative 
disorders (Chandran and Rochet, 2022). Abnormal protein 

accumulation in nerve cells harbors a direct link with impaired 
macroautophagy (Yang and Klionsky, 2020). In one of the study, 
authors reported that autophagy associated circRNA may delay 
senile dementia which may prevent or delay the progress of AD 
suggesting that enhanced autophagy could be  a potential 
therapeutic strategy for AD (Diling et al., 2019). Compared to 
cancers, research on the roles of autophagy in neurodegenerative 
diseases is still a nascent area of research, as relevant clinical 
investigations and preclinical studies are lagging far behind. There 
are still lot of unanswered questions between autophagy and some 
of the most common neurodegenerative diseases which warrants 
further in-depth clinical investigations.

Being an evolutionary conserved catabolic process that helps in 
recycling cellular components and damaged organelles, autophagy 
also enables cells to adapt to stress and changes in the internal and 
external environments (Wang et al., 2022). A number of studies 
have highlighted the crucial role of autophagy in regulating several 
pathological and physiological processes that are also regulated by 
circRNAs, such as cardiovascular diseases, autoimmune disorders, 
cancers, and neurodegenerative diseases (Figure 1; Wang et al., 
2022). This suggests that, there may be regulatory crosstalk between 
autophagy and circRNAs in the development and progression of 
these human diseases (Zhou et al., 2021b).

CircRNAs have been reported to be unusually enriched in the 
nervous system (with continuous increase from the embryonic to 
the adult stage) especially in synapses with important regulatory 
roles in various brain functions (Sekar and Liang, 2019; Chen et al., 
2022). CircRNA CDR1 (ciRS-7) was the first circRNA discovered in 
the human hippocampal CA1 formation. Later on researchers 
revealed the significance of cirRS-7/miR-7/UBEA2 axis in AD. They 
reported that down-regulation of ciRS-7 in AD contributed to an 
up-regulation of miRNA-7 which in turn down-regulated an 
autophagic, phagocytic protein essential in the clearance of 
neurotoxic amyloid-beta (Aβ) peptides namely ubiquitin protein 
ligase A (UBE2A; Zhao et al., 2022). It has been suggested that the 
deregulation of circRNA signaling is involved in blood–brain barrier 
disruption, angiogenesis, inhibition of pro-inflammatory signaling, 
apoptosis, autophagy disruption and alteration of cognitive 
functions in both acute and chronic CNS injury (Zhao et al., 2022). 
Regardless of the well-documented synaptic and neuronal circRNAs 
that display abnormalities in brain diseases, an ample understanding 
of the circRNA landscape and its downstream regulatory pathways 
in the human brain is still missing (Li et al., 2022c).

Among different risk factors reported so far, aging has been 
established as the most important and greatest known primary 
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risk factor for the common neurodegenerative diseases such as 
Alzheimer’s disease (AD) and Parkinson’s Disease (PD; Gandhi 
and Abramov, 2012). Accumulating evidence supports a beneficial 
and direct role of autophagy in the aging process, with multiple 
genetic experiments revealing its significance in counteracting 
ageing and age-related diseases (Hansen et al., 2018). Research has 
shown that during brain aging, hundreds of circRNAs dramatically 
increase their expression profile compared to the host genes in 
various organisms (D’anca et al., 2022).

Oxidative stress is another well accepted risk factor inked 
with neuronal dysfunction and neurodegenerative diseases and 
has been reported to be involved in the propagation of neuronal 
injury (Paloczi et al., 2018). In-addition activation of astrocytes, 
the most abundant cell type in the central nervous system (CNS) 
has been reported to play detrimental role in various neurological 
pathologies, including stroke, PD and AD (Huang et al., 2017a). 
Previously reported research has demonstrated that activation of 
nuclear factor erythroid 2-related factor 2 (Nrf2), a ubiquitous 
master transcription factor that up-regulates antioxidant 
response elements (AREs) in astrocytes plays a neuroprotective 
role in both acute neuronal damage and chronic 
neurodegeneration-related oxidative stress (Zhang et al., 2013). 
In order to identify key circRNAs that regulate Nrf2-mediated 
neuroprotection in the brain Yang et al., performed microarray 
analysis of corpus striatum and substantia nigra in Nrf2 (−/−) 
and Nrf2 (+/+) mice. A total of 65 differentially expressed 
circRNAs were found in substantia nigra tissue whereas 50 
significant differentially expressed circRNAs were obtained in 
corpus striatum tissue, respectively. Further analysis revealed 17 
shared differentially expressed circRNAs in both tissues. The 
authors proposed that by sponging mmu-miR-34a and 
mmu-miR-27a, MmucircRNA-015216 might play a role in Nrf2 
neuroprotection (Yang et  al., 2018). Huang and co-authors 

revealed that specific blockage of circRNA circHIPK2 shows 
potential as a therapeutic target for a broad range of 
neuroinflammatory disorders through inhibition of astrocyte 
activation (Huang et al., 2017a).

Research has shown that cerebral ischemia is another one of 
the most common pathological factor in many neurodegenerative 
diseases and is being regulated by complex gene regulatory 
networks. Cerebral ischemia may lead to aggregation of 
neurodegeneration-related disease proteins including PSF/SFPQ, 
p54/NONO, TDP43, FUS, and hnRNPA1, all of which have been 
linked to neurodegeneration associated with frontotemporal 
dementia and amyotrophic lateral sclerosis (ALS; Kahl et  al., 
2018). In order to determine common regulators of cerebral and 
retinal neurodegeneration, Jiang et  al., performed circRNA 
microarray profiling on C57BL/6J mice with transient middle 
cerebral artery occlusion. Analysis revealed 217 differentially 
expressed circRNAs. After in-depth analysis of 217 circRNAs, 
authors examined the role of circ-GLIS3 in neurodegeneration. 
Analysis of ischemia-induced neurodegenerative models unveiled 
significant up-regulation of circ-GLIS3. Authors concluded that 
circGLIS3 is a common regulator of neurodegeneration as well as 
a regulator of neuronal cell injury by acting as miR-203 sponge 
(Jiang et al., 2021). Extensive and progressive neurodegeneration 
has been observed in Ischaemic stroke survivors compared to 
stroke-free controls (Egorova et al., 2020).

Glial cells (non-neuronal cells) namely astrocytes, 
oligodendrocytes, and microglial cells exist throughout the mature 
central nervous system, and have been reported to play important 
role in regulating various aspects of neural development and 
function (including synaptogenesis and synaptic function; Liu et al., 
2022). Glial cells constitute around 50% of the total brain volume 
and recently reported transcriptomics and genetic studies have 
strongly suggested that glia are the first cells changing with aging 

FIGURE 1

The interplay between circRNAs, autophagy and neurodegeneration.
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which is one of the most important most important risk factor for 
the common neurodegenerative diseases (Salas et al., 2020). In order 
to identify senescence-regulated astroglial circRNAs, Diling et al., 
generated D-galactose glial cell aging model. Results revealed 
significant number of differentially expressed circRNAs in astrocytes 
demonstrating their positive correlation with different degrees of 
aging. Authors selected circNF1-419 for further analysis because of 
having greatest differential expression and generated over-expressed 
circNF1-419-transfected rat astrocyte. Analysis revealed differential 
levels of LC3B, LC3A and ATG12 in overexpressed rat astrocyte 
compared to wild type astrocyte. Further in-vivo experiments in 
12 months old Balb/c mice and 8 months old SAMP8 mice revealed 
that circNF1-419 accelerates the process of autophagy by binding to 
Adaptor protein 2 B1 and Dynamin-1 proteins. The authors 
concluded that circNF1-419 may defer senility and therefore delay 
the progress of AD, further suggesting that enhanced autophagy 
could be an effective therapeutic strategy for AD (Diling et al., 2019).

Diagnostic tools and therapeutic strategies based on autophagy 
associated circRNAs have a strong and currently untapped potential 
role in neurodegenerative diseases. Further in-depth research on 
regulatory roles of autophagy associated circRNAs can identify 
multiple innovative epigenetic and molecular biomarkers for 
age-related neurodegenerative disorders. Meanwhile no effective 
treatment strategy exists for a number of neurodegenerative diseases 
which should serve as a natural driver for the implementation of 
these types of circRNA-mediated therapies. Moreover the success 
rate of neurological drug trials to date is very low and trails have not 
revealed any promising results. In addition, progress on identifying 
novel candidates that potentiates autophagy has been limited by the 
drawbacks of existing assays designed to monitor autophagic flux.

In this review, we aimed to summarize the latest studies on the 
role of brain-protective mechanisms of autophagy associated 
circRNAs in neurodegenerative diseases (including AD, PD, 
Huntington’s disease (HD), Spinal Muscular Atrophy (SMA), ALS, 
and Friedreich’s ataxia (FRDA)), and how this knowledge can 
be leveraged for the development of novel therapeutics against 
them. Autophagy stimulation might be potential one-size-fits-all 
therapy for neurodegenerative disease as per considerable body of 
evidence, therefore future research on brain-protective 
mechanisms of autophagy associated circRNAs will illuminate an 
important feature of nervous system biology and will open the 
door to new approaches for treating neurodegenerative diseases.

2. The enigmatic connection 
between circRNAs, autophagy, and 
neurodegeneration

2.1. Interplay between circRNAs, 
autophagy, and AD

AD is a progressive neurological condition associated with 
aging, and is the primary cause of dementia in humans, comprising 
around 60–80% of cases (Crous-Bou et al., 2017). By 2050, it is 

estimated that the global incidence of people with AD is set to 
increase to more than 100 million (Lynch, 2020). AD was first 
described in 1906; despite decades of study, the molecular basis of 
AD’s pathogenesis remains a mystery. In contrast, no well-
documented therapeutic approaches exists which can slow or arrest 
the disease’s advancement. Multiple risk factors, such as aging, 
genetic predisposition, hereditary, occupation, and neurological 
damage, contributes to AD development (Association, A. S, 2010). 
AD is defined by developing distinct protein aggregates namely 
extracellular amyloid-beta (Aβ) plaques formation and intracellular 
neurofibrillary tangles (NFTs) formation. As the condition 
worsens, afflicted brain areas succumb to toxic stress, as indicated 
by massive neuronal death and CNS shrinkage (Querzfurth, 2010). 
Studies have revealed that autophagy is a primary modulator of Aβ 
generation and clearance (Nilsson and Saido, 2014). In addition, 
there is substantial evidence that failure in autophagy process is 
related to AD and other neurodegenerative disorders which leads 
towards gradual accumulation of misfolded proteins particularly 
Aβ aggregates (Oddo et al., 2006). In contrast, in healthy brain 
tissues, the synthesis of Aβ peptides is substantially lesser compared 
to the clearance rate, at 7.6 and 8.2% per hour, respectively 
(Bateman et al., 2006).

Aβ peptides are produced by the autophagosomal cleavage of 
amyloid precursor protein (APP) during the autophagic 
changeover of APP-rich organelles. In AD, autophagolysosome 
development and retrograde trafficking to the neural body are 
inhibited (Nixon, 2007), resulting in an enormous accumulation 
of autophagic vacuoles in neural cells. This accumulation might 
be  associated with ESCRT-III malfunction, leading to 
neurodegeneration (Lee et al., 2007; Yamazaki et al., 2010), and 
may impair the fusing of autophagosomes with the endo-
lysosomal system, hence affecting autophagosome differentiation 
(Rusten and Stenmark, 2009). The clearance of Aβ from the brain 
is accomplished by several mechanisms. First, they are susceptible 
to being destroyed directly by different Aβ-degrading proteases, 
such as BACE1 and CTSD (Saido and Leissring, 2012). Second, 
Aβ peptides aggregate in dystrophic neurites (the major elements 
of neuritic senile plaques in AD), becoming a significant source of 
the main intracellular pool of lethal peptides (Nixon et al., 2005; 
Yu et al., 2005). In addition, the recycling route of Aβ peptides is 
found in the neurons of patients with AD (Nilsson et al., 2013; 
Nilsson and Saido, 2014). According to a recently published study, 
neurons produce Aβ peptides in an autophagy-dependent way, 
and the deposition of intracellular Aβ aggregation is cytotoxic to 
CNS, enabling the development of AD (Nilsson et al., 2013). In 
conclusion, defective autophagy is a well-documented pathway in 
the pathophysiology of Aβ metabolism associated with AD.

AD primarily impacts the hippocampus, amygdala, and other 
parts of the brain (Association, A. S, 2019). It is commonly 
thought that Aβ deposition, tau protein NFTs, neurotoxicity, 
neurovascular dysfunction, and oxidative stress are involved in the 
etiology of AD (Youdim, 2010; Robinson et al., 2017). Reports 
have shown that circRNAs accumulate in the brains of aged 
people, and they are found in higher concentrations in the brains 
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of mammals than in any other tissue (Rybak-Wolf et al., 2015; You 
et al., 2015). Some circRNAs accrue considerably in the brain 
subcellular compartments (such as synapses) throughout the 
course of neuronal ageing compared to their respective mRNAs; 
as a result, they might be considered as distinct class of ageing 
biomarkers (Gruner et  al., 2016). In addition, ageing-related 
defective alternative splicing might result in an upsurge in 
neuronal circRNA biosynthesis (Fletcher et al., 2018). Synapses 
have the highest amount of circRNAs and their frequency rises 
with ageing, revealing they are involved in neurodevelopment and 
synaptic plasticity (Gruner et  al., 2016). Various species 
accumulate circRNA throughout ageing, suggesting it might be a 
harmful agent for ageing and age-related disorders, likewise AD 
(Cai et  al., 2019; Lo et  al., 2020). CircRNAs have been 
demonstrated to ameliorate AD-like clinical symptoms in cellular 
and animal models of the disease, highlighting their function in 
regulating AD progression (Dube et al., 2019).

Extensive research has focused predominantly on circRNAs, 
and it is becoming apparent that few of them (such as circRNA 
Cdr1as and circ 000950) act as microRNA sponges, disrupting 
downstream miRNAs and contributing to the development of 
neurodegenerative disorders (Piwecka et al., 2017; Wang et al., 
2018). In one of the study, authors performed microarray analysis 
to study the expression pattern of circRNAs in SAMP8 mice 
(animal model of overproduction of APP and oxidative damage). 
Results revealed 85 differentially expressed circRNAs. One of the 
most significantly dysregulated circRNA, mmu_circRNA_017963, 
was found to be strongly related with autophagosome assembly 
which reveals possible implication of involvement of autophagy 
associated circRNA in AD (Figure  2; Huang et  al., 2018; 
Tables 1 and 2).

Accumulation of Aβ proteins is an initial pathological feature 
of AD, which is exacerbated by the faulty production of APP and 
the abnormal level of BACE1 (Alcendor, 2020). Research revealed 
that miR-138 levels in APP/presenilin-1 (PS1) mice increased with 
age, indicating that miR-138 might decrease disintegrin and 
metalloproteinase 10 (ADAM10) expression and enhance Aβ 
synthesis in the mouse model. In addition, AD patients might 
have reduced levels of circHDAC9, which might boost miR-138 
expression and reverse Sirt1 repression and excessive Aβ synthesis 
generated by miR-138 (Lu et al., 2019). UBE2A, the key effector of 
the ubiquitin-26 s proteasome system, which regulates the clearing 
of Aβ by proteolytic cleavage, is yet another mechanism that 
circRNAs might impact AD. However, it is reported that brains 
affected by sporadic AD have lower levels of UBE2A, which 
contributes to the accumulation of Aβ and the production of 
senile plaque deposits. In a study by Zhao and colleagues, the 
ciRS-7-miR-7-UBE2A circuit was considerably dysregulated in 
the neocortex and hippocampus CA1 of individuals with sporadic 
AD. The considerable reduction in UBE2A expression seemed to 
be driven by deficiencies in ciRS-7-mediated events, which caused 
overexpression of miR-7. Additionally, ciRS-7 decreased the 
proteins APP and BACE1 by enhancing their disintegration via 
the lysosome and proteasome (Zhao et al., 2016). Furthermore, a 

2017 research by Shi and co-authors reported overexpression of 
the AD-associated sirtuin 7 gene inhibited the translation of the 
NF-κB while increasing the trafficking of the protein in the 
cytoplasm, where it promoted degradation of BACE1 and APP 
(Shi et al., 2017). Bigarré et al. (2021) reported that a rise in the 
expression levels of circ 0131235 in the middle temporal cortex of 
individuals with AD might be used as a biomarker for the disease. 
In addition, it is also hypothesized that enhanced circ 0131235 
expressions could be part of a physiologic means to prevent Aβ 
aggregation (Bigarré et al., 2021).

2.2. Interplay between circRNAs, 
autophagy, and PD

PD, also known as paralysis agitans is the second most common 
progressive age-related motoric neurodegenerative disorder that 
affects approximately 1% of the population over the age of 65 years 
with a prevalence set to double by 2030 (Aarsland et al., 2021). Loss 
of dopaminergic neurons in the substantia nigra pars compacta 
results in slow and insidious cognitive decline along with disabling 
motor abnormalities including slow movements, tremor, poor 
balance and rigidity (Junn et al., 2009). It is suggested that circRNAs 
are important biomolecules for understanding and for addressing 
the initiation of PD neurodegenerative processes (Hanan et al., 
2020). Studies have reported variable expression of circRNAs in the 
brains of patients with PD, and mounting evidence highlights their 
possible pathogenic role in PD development (Feng et al., 2020; 
Hanan et al., 2020; Kong et al., 2021). In one of the study, the authors 
reported alteration in the expression profiles of six circRNAs in the 
peripheral blood mononuclear cells obtained from the patients with 
PD compared with healthy control subjects including circ_0001566, 
circ_0006916, circ_0000497, circ_0001187, circ_0004368, and 
circ_0003848 (Ravanidis et al., 2021). One distinguishing feature of 
PD is the aberrant expression and aggregation of α-synuclein 
(SNCA), which is found in Lewy bodies. miR-7 has been reported 
to directly suppress SNCA expression by binding to the 3′ UTR of 
the SNCA gene and inhibiting its translation. The authors reported 
decreased expression of miR-7  in the substantia nigra Pars 
Compacta of patients with PD (McMillan et al., 2017). As circRNA 
ciRS-7 targets miR-7 (this circRNA contains 63 binding sites for 
miR-7), it probably serves as an important factor involved in the 
functioning of neurons as well as a responsible candidate in brain 
tumour development and neurological disorders (Hansen et al., 
2013). Moreover, in another study done on PD, authors reported 
that clearance of SNCA and its aggregates were facilitated by 
miR-7 in autophagy dependent manner in differentiated ReNcell 
VM cells. The authors further revealed that miR-7 increases the 
formation of LC3 puncta and facilitated the conversion of LC3-I to 
LC3-II, which indicates increased autophagosome formation (Choi 
et al., 2018). In addition miRNAs (miR-7, miR-153, miR-214, and 
miR-133b) which targets SNCA have displayed protective role 
against the PD models (MPP+/MPTP). The authors revealed that 
by upregulating SNCA, miR-7 expression is involved in 
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degeneration of the nigrostriatal system in the MPTP-induced 
neurotoxin model of PD in cultured cells and in mice (Junn et al., 
2009). Moreover, miR-7 transfection resulted in more effective 
SNCA inhibition in the HeLa cell line in the absence of circRNA 
ciRS-7, showing that ciRS-7 may influence SNCA expression in 
miR-7-dependent manner, which is also correlated with the 
pathogenesis of PD (Wang et al., 2021b). In another study circSNCA 
was shown to sponge miR-7 and up-regulate the production of 
SNCA mRNA in SH-SY5Y cells, resulting in suppression of 
autophagy and upregulation of apoptosis (Sang et al., 2018). Authors 
reported that circSNCA down regulation increased the expression 
of the autophagy-related protein LC3B-II and the anti-apoptotic 
protein BCL2, demonstrating the suppression of apoptosis and the 
promotion of autophagy in PD. The researchers found that after 
treatment with a dopamine D2/D3 receptor agonist (pramipexole, 
commonly used in PD therapy), the expression profiles of SNCA 
and circSNCA were significantly reduced. The authors further 
reported that the expression of pro-apoptotic genes (CASP3, BAX, 
PTEN and P53) was reduced as a result of circSNCA downregulation 
(Sang et al., 2018).

One of the crucial mechanisms of circRNA in disease 
progression is through its interaction with disease-associated 
miRNAs (Ghosal et al., 2013). The role of circRNAs as a miRNA 
sponge in various diseases has also been investigated (Guo et al., 
2014). In PD, circRNA zip-2 knockdown led to the reduction of 
SNCA protein aggregation by sponging miR-60, resulting in better 

survival outcomes of PD patients (Kumar et al., 2018). In another 
study authors reported that via sponging miR-7, circRNA s-7 
promoted the expression of important genes associated with PD 
and AD (Lukiw, 2013). Suppressing circHIPK2 expression greatly 
reduced astrocyte activation through regulating autophagy and 
endoplasmic reticulum (ER) stress via targeting MIR124–2HG and 
SIGMAR (Huang et  al., 2017a). CircDLGAP4 functions as a 
molecular sponge in PD patients and competes with MIR134-5p 
to suppress its activity. It encourages BECN1 and LC3-II 
expression, which increases autophagy, inhibits apoptosis, and 
decrease mitochondrial damage (Feng et al., 2020). In PD mouse 
models, circDLGAP4 is downregulated, which may contribute to 
the onset of PD by influencing cell viability, apoptosis, 
mitochondrial damage, and autophagy (Feng et al., 2020). It has 
been revealed that in PD, circSAMD4A altered the AMPK/mTOR 
cascade via miR-29c-3p, thus contributing to the death and 
autophagy of dopaminergic neurons. miR-124 has also been shown 
to protect dopaminergic neurons in PD via regulating the AMPK/
mTOR mediated apoptosis and autophagy (Wang et al., 2021b).

In healthy brain’s substantia nigra, circRNAs accumulate in an 
age-dependent manner, whereas in the substantia nigra of patients 
with PD, the total number of circRNAs is reduced due to loss of 
this connection (Hanan et  al., 2020). In one of the study, the 
authors reported increased expression of circSLC8A1 (this 
circRNA contains 7 binding sites for miR-128) in the substantia 
nigra of individuals with PD as well as in oxidative stress model 

FIGURE 2

Role of different circRNAs in AD reported in both In-vitro and In-vivo models (Wang et al., 2015; Xie et al., 2016; Zhao et al., 2016; Ray et al., 2017; 
Shi et al., 2017; Zhang et al., 2018; Cheng et al., 2019; Diling et al., 2019; Lu et al., 2019; Yang H. et al., 2019; Li et al., 2020b; Bigarré et al., 2021; 
Ravanidis et al., 2021; Zhang and Bian, 2021).
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created in cultured cells through Paraquat exposure. Authors 
further reported that expression profiles of miR-128 targets were 
also increased in PD individuals (Hanan et  al., 2020). Above 
mentioned data has highlighted the importance of autophagy-
associated circRNAs as potential therapeutic targets for 
PD. Studies of how circRNAs regulate autophagy during PD are 
still scarce and more investigations are needed.

2.3. Interplay between circRNAs, 
autophagy, and ALS

ALS is a neurodegenerative disease which damages upper and 
lower motor neurons of the brainstem, and spinal cord, causing 
paralysis of the voluntary muscles and the death of spinal motor 
neurons (Brown and Al-Chalabi, 2017; Ramesh and Pandey, 

TABLE 1 List of circRNAs reported to be associated with autophagy and neurodegeneration.

circRNAs Neurodegenerative Diseases Functions References

circNF1-419 Alzheimer’s disease Delays the progress of Alzheimer’s disease and defer 

senility

Diling et al., (2019)

circHDAC9 Alzheimer’s disease Mediates synaptic and amyloid precursor protein 

processing deficits in Alzheimer’s disease

Lu et al., (2019)

ciRS-7 Alzheimer’s disease Shuttle neurotoxic and immunogenic amyloid 

peptides into proteolytic pathways via regulating 

miR-7/UBE2A signaling circuit

Zhao et al., (2016)

hsa_circ_0131235 Alzheimer’s disease Prevents damage from Aß aggregation Bigarré et al., (2021)

mmu_circRNA_017963 Alzheimer’s disease Associated with Alzheimer’s disease pathogenesis via 

regulating autophagosome assembly, apoptotic 

process, exocytosis, transport and RNA splicing

Huang et al., (2018)

hsa_circ_0023919 Amyotrophic lateral sclerosis Function is unknown, may function via targetting 

miR-9

Dolinar et al., (2019)

hsa_circ_0063411 Amyotrophic lateral sclerosis Function is unknown, may function via targetting 

miR-647

Dolinar et al., (2019)

hsa_circ_0088036 Amyotrophic lateral sclerosis Function is unknown Dolinar et al., (2019)

circ-Hdgfrp3 Amyotrophic lateral sclerosis Function is unknown, found to be associated with 

aggregates containing ALS-related FUS P525L (highly 

pathogenic mutation)

D'Ambra et al., (2021)

circHIPK2 Huntington’s disease Regulates astrocyte activation via targeting miR124–

2HG-SIGMAR1 pathway

Huang et al., (2017a)

circHectd1 Huntington’s disease Regulates astrocyte activation via targeting miR142-

TIPARP signaling circuit

Han et al., (2018)

circ016719 Huntington’s disease plays a critical role in neuron cell apoptosis via 

targeting miR-29c/Map2k6 signaling circuit

Tang et al., (2020)

circRNA Cdr1as Neurodegenerative disorders Regulates neuronal development via sponging miR-7 Piwecka et al., (2017) and Wang 

et al., (2018)

circ-GLIS3 Neurodegeneration Regulates middle cerebral artery occlusion (MCAO)-

induced cerebral neurodegeneration

Jiang et al., (2021)

circSNCA Parkinson’s disease Affects autophagy and cell apoptosis via regulating 

miR-7/SNCA signaling cascade

Sang et al., (2018)

circDLGAP4 Parkinson’s disease Increases autophagy, inhibits apoptosis and exerts 

neuroprotective effects via modulating miR-134-5p/

CREB pathway

Feng et al., (2020)

circSAMD4A Parkinson’s disease Associated with autophagy and apoptosis of 

dopaminergic neurons via modulating miR-29c-3p/

AMPK/mTOR pathway

Wang et al., (2021b)

circSLC8A1 Parkinson’s disease Might play a role in oxidative stress via sponging 

miR-128

Hanan et al., (2020)
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TABLE 2 List of autophagy associated circRNAs and neurodegeneration associated circRNAs along with possible connection and correlation.

CircRNAs 
related to 
Autophagy

CircRNAs related 
to Neurode-
generation

Autophagy 
associated 
CircRNAs 
related to 
Neurode-
generation

Proposed 
Autophagy 
associated 
circRNAs 
related to 
Neurode-
generation

miRNA/mRNA 
Regulatory Axis

References

circMUC16  

(Gan et al., 2020)

circMUC16  

(Zhou et al., 2021b)

circMUC16 hsa-miR-199a-5p/DRAM1, 

WNT2 hsa-miR-183/ 

UVRAG, FOXO1, FOXO3 

hsa-miR-138, /NLRP3, 

Sirt1, hsa-miR-200a/ ATG7, 

OGG1-2a, hsa-miR-132/

Tau, EP300, Sirtuin-1 and 

FOXO1a, hsa-miR-141/

BCL2, BDNF, and SIRT1, 

hsa-miR-199a/ p62, Sp1, 

LRRK2, hsa-miR-29a/ 

NAV3, Puma, Bim, Bak, or 

Bace1 and HO-1

Min et al., (2010); Shioya et al., 

(2010); Roshan et al., (2014); 

Huangfu et al., (2016); Ye et al., 

(2017); Delavar et al., (2018); 

Fan et al., (2018); Roser et al., 

(2018); Fu et al., (2019); Li 

et al., (2019b, 2020a,b); Miao 

et al., (2020); Feng et al., 

(2021); Liu et al., (2021) and  

Zhou et al., (2021a)

circ_NF1-419  

(Wang et al., 2022)

circ_NF1-419 (Zhou 

et al., 2021b)

circ_NF1-419  

(Wang et al., 2021a)

hsa-miR-149-5p/AKT1/

mTOR

Zhang et al., (2019)

circDLGAP4  

(Wang et al., 2022)

circDLGAP4 (Zhang and 

Bian, 2021)

CircDLGAP4  

(Feng et al., 2020)

hsa-miR-143 /p53, p62 

hsa-miR134-5p/ BECN1 

and LC3-II

Bai et al., (2016) and Feng 

et al., (2020)

ciRS-7  

(Meng et al., 2020)

ciRS-7  

(Kondo et al., 2020)

ciRS-7  

(Zhao et al., 2016)

hsa-miR-7/ LKB1-AMPK-

mTOR, UBE2A

Gu et al., (2017) and Zhou 

et al., (2019)

circHDAC9  

(Zhang et al., 2020)

circHDAC9  

(Lu et al., 2019)

hsa-miR-138, /NLRP3, 

Sirt1

Ye et al., (2017) and Feng et al., 

(2021)

circHectd1  

(Wang et al., 2022)

circHectd1  

(Han et al., 2018)

hsa-miR-1,256/CAB39, 

hsa-miR-133b/ PTBP1, 

EGFR, hsa-miR-142 /

CAMK2A, ATG16L1, 

hsa-miR-137/NR4A2, 

CPLX1, NSF, SYN3 and 

SYT1

Smrt et al., (2010), Sugiyama 

et al., (2016), Lu et al., (2018), 

Xu et al., (2019), Yang Q. et al., 

(2019), Gupta et al., (2020) and 

Tian et al., (2020)  

Cdr1-as  

(Wang et al., 2022)

Cdr1as  

(Piwecka et al., 2017, 

Wang et al., 2018)

Hsa-miR-1,270/ IRF8 Yang Q. et al., 2019 and 

Jiménez-Ortega et al., (2017)

circAkap7  

(Wang et al., 2022)

Hsa-miR-155-5p/SOCS1, 

TNF-α, IL13Rα1, SHIP1, 

TNFSF10 and SOCS-3

Cardoso et al., (2012); Xu et al., 

(2020); Burgaletto et al., 

(2021); and Zingale et al., 

(2021)

MmucircRNA-015216 

(Yang et al., 2018)

mmu-miR-34a and mmu-

miR-27a/ Nrf2

Yang et al., (2018)

circGLIS3  

(Jiang et al., 2021)

hsa-miR-203/Akirin2, 

Bcl2l2, Dgkb, Mapk10 and 

Vsnl1

Li et al., (2022a)

circLrp1b  

(Wang et al., 2022)

circLRP1B  

(Wang et al., 2022)

hsa-miR-27a-3p/GSK3ß, 

Wnt/ß-catenin, GLP1R

Zeng et al., (2021) and Harati 

et al., (2022)

(Continued)
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2017). There are number of factors that predispose ALS such as 
smoking, exposure to chemicals, metals and radiations leading to 
environmental causes of disease progression (Sutedja et al., 2009). 
Work done by Zarei et al. suggested that smoking and heavy metal 
cause mitochondrial damage, glutamate excitotoxicity as well as 
neurotoxicity (Zarei et al., 2015). Mutations in 40 different genes 
have been linked with the development of ALS including SOD1, 
C9ORF72, TARDBP, FUS, OPTN, and TANK-binding kinase 1 
(TBK1; Cirulli et  al., 2015). Furthermore, mutation in the 
autophagy pathway genes including p62/SQSTM, OPTN, TBK1, 
VCP, and C9ORF72 have been reported in ALS patients (Rudnick 
et al., 2017). The author showed that in both sporadic and familial 
ALS, mutations in autophagy gene were found. SOD1 was the first 
gene whose mutations were linked to ALS account accounting for 
about 3% of total ALS cases with more than 180 mutations 
discovered thus far linked to ALS (Peggion et al., 2022).

The accumulation of neurotoxic misfolded proteins, inclusions, 
and aggregates within motor neurons is the primary clinical 
signature in all cases of ALS. Autophagy has been found to 
be deregulated in both familial and sporadic cases of the disease 
(Vicencio et al., 2020). In order to protect the survival of extremely 
sensitive and specialized neurons, targeting autophagy through 
pharmacological autophagy-inducing agents has resulted in 
reduction in disease progression in different in vitro and in vivo 

models of neurodegenerative diseases (Amin et al., 2020). TBK1 
cause the phosphorylation of autophagy adaptors which has a major 
role in both autophagy and mitophagy (Oakes et al., 2017). The 
authors showed that ALS causing gene have similar role in the 
autophagy such as SQSTM1/p62 and OPTN. Mutation in TBK1 lead 
to impairement of autophagy pathway that lead to accumulation of 
proteins and lead to pathogensis of ALS (Oakes et al., 2017). Another 
study by Kwiatkowski et al. revealed that mutation in FUS gene 
(which plays significant role in autophagy) lead to ALS (Kwiatkowski 
et al., 2009; Vance et al., 2009). Various atudies have reported shared 
mechanisms and connections between apparent dysregulations in 
autophagy and ALS pathophysiology (Nguyen et al., 2019).

CircRNAs are greatly localized in the tissues of human 
neurons, indicating that they may be significant in the control of 
the central nervous system (Li et  al., 2019a). The study was 
conducted by Armakola et al. which revealed that deletion of Dbr1 
gene which encodes an RNA lariat debranching enzyme was 
found to significantly lower cytoplasmic TAR DNA-binding 
protein 43 (TDP-43) toxicity. The main reason is that the lack of 
the debranching enzyme causes the development of intronic 
lariats (ciRNA), which bind to TDP-43 and reduce its toxicity 
(Armakola et al., 2012). Along with TDP-43, a mutation in the 
RBP known as fused in sarcoma (FUS) is also strongly linked to 
ALS. Proteins move from the nucleus to the cytoplasm as a result 

TABLE 2 (Continued)

CircRNAs 
related to 
Autophagy

CircRNAs related 
to Neurode-
generation

Autophagy 
associated 
CircRNAs 
related to 
Neurode-
generation

Proposed 
Autophagy 
associated 
circRNAs 
related to 
Neurode-
generation

miRNA/mRNA 
Regulatory Axis

References

circ_0000950  

(Zhang et al., 2020)

hsa-miR-103/ SOX2, Ndel1 Li et al., (2018)

Hsa_circ_0001546 

(Ravanidis et al., 2021)

hsa-miRNA-421/ ATM/

Chk2/p53

Wu et al., (2020)

circSNCA  

(Sang et al., 2018)

hsa-miR-7/SNCA Sang et al., (2018)

circRNA zip-2  

(Kumar et al., 2018)

hsa-miR-60/ SNCA Kumar et al., (2018)

circHipk2  

(Wang et al., 2022)

circHIPK2  

(Wang et al., 2022)

hsa-miR-124–2HG/ 

SIGMAR

Huang et al., (2017a)

circAKAP7  

(Xu et al., 2020)

hsa-miR-155-5p/ ATG12 Xu et al., (2020)

circSAMD4A  

(Wang et al., 2021b)

hsa-miR-29c-3p/ AMPK/

mTOR hsa-miR-124/ 

AMPK/mTOR

Wang et al., (2021b)

circSLC8A1  

(Hanan et al., 2020)

hsa-miR-128/AEG-1 Cao et al., (2020) and 

Hanan et al., (2020)

circ016719  

(Tang et al., 2020)

hsa-miR-29c/ MAP2K6, 

BECN1

Tang et al., (2020)
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of FUS mutations, which also produce inclusion bodies in the 
cytoplasm and cause toxicity (Kwiatkowski et al., 2009, Vance 
et al., 2009). Additionally, FUS not only control the synthesis of 
circRNA and the introns that flank the back-splicing junctions in 
N2a cells through their binding (Errichelli et al., 2017). However, 
the formation of circRNAs (linked to the development of ALS) 
was shown to be reduced significantly by FUS depletion or its 
alteration (Verheijen and Pasterkamp, 2017). Another study by 
D’Amber et al. showed that there is no direct connection between 
mutant FUS and circ-Hdgfrp3 which is analyzed by post-
acquisition and 3D rendering analyses, however circ-Hdgfrp3 is 
present in FUS-aggregates that connect circ-Hdgfrp3 with the 
p62/SQSTM1 protein (D'Ambra et  al., 2021). These results 
suggests that it is possible that these granules will eventually 
be  degraded via autophagy. The authors reproted that p62/
SQSTM1 has connection with FUS inclusions in the brain and 
spinal cord of ALS patients (D'Ambra et al., 2021). Furthermore 
microarray profiling showed that hsa_circ_0023919, hsa_
circ_0063411, and hsa_circ_0088036 have significant role in ALS 
patients (Dolinar et al., 2019). Evidences reported till now revealed 
that there is a correlation between circRNAs, autophagy and ALS 
which warrants further in-depth investigations.

2.4. Interplay between circRNAs, 
autophagy, and HD

Being a protein quality control system, autophagy process is 
involved in recycling obsolete cellular constituents as well as 
eliminating protein aggregates and organelles after being 
damaged. These substrates then reach lysosomes either by 
delivery within autophagosomes or endosomes. Disruptions 
caused by these interactions affect neuronal functions, which may 
cause several neurodegenerative diseases including HD. Studies 
have shown that autophagy disruption is linked with early 
cognitive changes in HD and is therefore a potential target for 
HD treatment (Grosso Jasutkar and Yamamoto, 2021). 
Furthermore, mutations of autophagy associated genes may 
specifically increase the risk of HD (Nixon, 2013), which is 
characterized by psychiatric disturbances cognitive dysfunction, 
and severe motor dysfunction (Sturrock and Leavitt, 2010). 
Autophagy associated miRNAs (a type of ncRNA and a target for 
circRNA) has been reported to be involved in the progression of 
HD (Choi and Cho, 2021). Expansion of the CAG repeat in the 
HTT gene is the main causative factor behind HD 
pathophysiology. In order to identify differentially expressed 
circRNAs in HD, Marin et al., did microarray analysis of murine 
cell line model expressing mutant HTT. The authors reported that 
differentially expressed circRNAs were found to regulate MAPK 
pathway, Long-term depression pathway as well as dopaminergic 
synapse which have been previously involved in HD 
physiopathology (Marfil-Marin et  al., 2021). The authors 
concluded that in-depth understanding of the HD specific 
circRNA-miRNA-mRNA axis can lead to identify novel 

biomarkers and potential therapeutic targets for HD. HTT has 
been previously reported to play a crucial role in selective 
autophagy, where the loss of the polyQ stretch enhances 
autophagic capacity in neurons (Zheng et al., 2010). Moreover 
HTT gene has also found to be structurally similar to selective 
autophagy proteins known as Atg11, Atg23, and Vac8 (Steffan, 
2010). It also promotes autophagy initiation, where as its loss in 
CNS has been suggested to cause protein accumulation, which 
might contribute to HD pathogenesis (Gelman et  al., 2015). 
Researchers are still working to find out possible associations and 
links between autophagic processes and HD pathogenesis (Croce 
and Yamamoto, 2019). In one of the study, the author identified 
a circRNA derived from HTT locus in brain districts and in 
iPS-derived neuronal cell lines. The authors reported that 
overexpression of the circHTT might cause alteration in the wild-
type and mutant HTT expression (Döring et  al., 2021). The 
authors concluded that circRNAs might serve as innovative 
avenues for therapeutic intervention to treat HD. A number of 
studies have explored the relationship between neurological 
disorders, autophagy and circRNAs but association of circRNAs 
and autophagy with HD is still in infancy and therefore need 
further studies. In one of the study the authors reported that 
upregulation of circ016719 expression (which binds miR-29c) in 
neurons promotes autophagy. Circ016719 ultimately increased 
the expression of MAP2K6, which then promotes the expression 
of BECN1, thereby increasing the rate of autophagy in neurons. 
The authors further reported that circ_016719 knockdown 
significantly inhibited autophagy (Tang et al., 2020). In another 
study miR-29c was found among nine miRNAs (miR-128, 
miR-132, miR-22, miR-218, miR-222, miR-29c, miR-138, 
miR-344, and miR-674) which were downregulated in YAC128 
transgenic mice expressing a full-length mutant HTT (Dong and 
Cong, 2021). Above mentioned studies supports the notion that 
circ016719/miR-29c/autophagy axis should be explored in HD 
models. In another study, upregulation of circHectd1 in astrocytes 
was found to promote the expression of TIPARP (through 
miR-142-TIPARP axis), which then induces the expression of 
LC3-II, thereby activating autophagy (Han et al., 2018). miR-142 
has been reported to be linked with HD (Martí et al., 2010) which 
shows that circHectd1/miR-142/autophagy axis might have 
implications in HD. In another study circAKAP7 was shown to 
target miR-155-5p to promote the expression of ATG12, thereby 
increasing the risk of autophagy (Xu et al., 2020). One of the 
study reported that in the animal models, overexpression of 
miR-155 lowered the mutant HTT aggregates in cortex and 
striatum, as result there was improved performance in behavioral 
tests (Martinez and Peplow, 2021). A number of other circRNAs 
might contribute to HD via regulating autophagy such as 
circLRP1B that inhibits miR-27a-3p, circDLGAP4 that inhibits 
miR-134-5p, circHIPK2 that inhibits miR-124. We believe that by 
regulating autophagy, circRNAs might impact the development 
and/or recovery of HD. However, this hypothesis needs to 
be  confirmed by studying the role of autophagy associated 
circRNAs in HD development (Wang et al., 2022; Figure 3).
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2.5. Interplay between circRNAs, 
autophagy and SMA

SMA is a devastating genetic neuromuscular condition and 
the primary cause of infant death, which weakens the muscles 
resulting in low amounts of the Survival Motor Neuron (SMN) 
protein (Sansa et al., 2021). There are five types of SMA: Types 0, 
1, 2, 3, and 4. SMA 1 (also called Werdnig-Hoffmann disease) is 
the most common form of the condition, which is deadly within 
the initial 2 years of life (Park et al., 2010). SMA can appear in a 
variety of severity levels. Patients with lower spinal cord-motor 
neuron impairment cause increasing muscle weakness. The SMN 
protein was given the name “survival motor neuron” because of 
the apparent importance of protein to the motor system and the 
finding that the knockout of SMN in mice was embryonically 
lethal (Schrank et al., 1997). Recent studies have shown that SMN 
genes generates a huge repertoire of circRNAs through inter-
intronic secondary structures (Luo et al., 2022; Singh et al., 2022). 
There are four subtypes of SMN circRNAs namely Type 1, 2, 3 
and 4 circRNAs (Ottesen and Singh, 2020). Most of the SMA data 

has been generated using SMA mouse models which have 
confirmed the significant function of autophagy during SMA. In 
particular, SMA is caused through oxidative stress which 
increases expression of a mutated superoxide dismutase protein 
(SODG93A) by triggering autophagy (Dobrowolny et al., 2008). 
Studies have shown that ncRNAs including circRNAs could 
be potentially exploited for developing additional SMA therapies 
(Singh et al., 2020). Research has indicated that autophagy is 
disrupted during the initial regulatory stages in SMA. The role of 
circRNAs in SMA pathogenesis is still in initial phases.

miRNAs which are the targets of circRNAs have been 
exploited in SMA and reports have revealed their neuroprotective 
abilities (Gandhi et al., 2021). A number of miRNAs including 
miR-23a (reduced the motor neuron death, increased the motor 
neuron size as well as muscle fiber area), miR-375 (protects the 
neuron from apoptosis by inhibiting the tumour suppressor gene 
p53), miR-9 (crucial modulator associated with SMA severity), 
miR-146a (regulates crucial signaling pathways in motor 
neurons), miR-183 (increases the motor neurons survival and 
improves the motor function of mice with mutant SMN), 

FIGURE 3

Autophagy associated circRNAs involved in neurodegenerative diseases.
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miR-206 (role in survival endogenous mechanism), and miR-431 
(rescue the motor neuron neurite length phenotype through 
targeting chondrolectin) have been considered as potential 
therapeutic ncRNAs for treating SMA (Gandhi et  al., 2021). 
These miRNAs have been implicated in autophagy as well as 
targets of circRNAs in separate studies which warrants further 
investigations of circRNAs/miRNAs/autophagy axis in SMA 
(Chang et al., 2012; Zhang et al., 2015; Si et al., 2018; Huang et al., 
2019; Shang et al., 2021; Wei et al., 2021).

2.6. Interplay between circRNAs, 
autophagy, and FRDA

FRDA, a multi-system, autosomal recessive 
neurodegenerative disorder and is the most abundantly existing 
type of hereditary ataxia (Keita et al., 2022). This illness usually 
starts before the age of 25 with subsequent disease progression 
including dorsal root ganglia, sensory peripheral nerves, 
corticospinal tracts, and dentate nuclei of the cerebellum (Santos 
et al., 2010). Apart from these indications, a very high percentage 
of patients also advance to hypertrophic cardiomyopathy leading 
to lower life expectancy. FRDA is caused by the loss of function 
mutations in FXN gene which is responsible for causing 
FRDA. FXN gene (9q13-21) actually encodes for Frataxin 
protein, that is a small protein (210-amino-acids in length) 
produced as a precursor polypeptide and later exported to 
mitochondria where proteolytic cleavage occurs to produce the 
mature type called as m-FXN (Campuzano et  al., 1996; 
Koutnikova et  al., 1997; Priller et  al., 1997; Schmucker et  al., 
2008). It is mainly initiated by a homozygous GAA repeat 
expansion mutation within the intron 1 of the FXN gene 
(Campuzano et al., 1996). Some of patients are also heterozygous, 
having one pathogenic mutation (insertion, deletion, point 
mutation) in one of the FXN allele while having the GAA repeat 
expansion on the other making them compound heterozygous 
(Santos et  al., 2010). Such expansion in FXN genes develop 
repeat-dependent epigenetic silencing signals, including 
repressive histone marks and DNA hypermethylation, that are 
mostly present in intronic region (Greene et  al., 2007). This 
results in almost 30% reduced production of protein frataxin in 
the body, consequently, reduced import into mitochondria and 
reduced mitochondrial functioning, leading to subsequent 
oxidative stress and cell death.

Studies have reported that autophagy has a crucial role in all 
neurodegenerative diseases including FRDA. Many experiments 
have been performed on various cell lines and models to decipher 
the exact role and mechanism of FRDA and the role of autophagy 
in its pathogenesis. It is yet to be clarified whether increase in 
FRDA associated autophagy is a neurodegenerative mechanism 
(Simon et al., 2004) or it may serve a protective role against stress 
(Bolinches-Amoros et  al., 2014). In one set of experiments, 
Caenorhabditis elegans (C. elegans) was used as a model organism 
revealing that a complete knock-out of the frataxin ortholog 

(frh-1) or severe insufficiency of additional nuclear-encoded 
mitochondrial respiratory chain (MRC) proteins results in 
pathological phenotypes such as shorter lifespan and arrested 
development (Rea et al., 2007). Inversely, partial suppression of 
this gene, as well as frh-1, results in activation of some beneficial 
adaptive responses leading to life span extension (Torgovnick 
et al., 2010). It is also observed that FXN protein expression must 
be considerably reduced to activate autophagy, which results in 
reducing lipid content and extended lifespan and in C. elegans. 
There might exist a causal connection among initiation of 
autophagy and extended lifespan subsequent to reduced FXN 
protein expression. This might provide a rationale to further 
investigate autophagy in the pathogenesis and treatment of FRDA.

In one of the experiment, the authors used gene silencing in 
human neuroblastoma cell line, SH-SY5Y, to reveal effects on 
cellular and mitochondrial functioning due to FXN protein 
deficiency (Bolinches-Amoros et al., 2014). Neuroblastoma is 
actually a tumor made from the neural crest, like DRG neurons 
that’s why neuroblastoma cell line seems a better cellular model 
to study ataxia and other related disorders. The authors observed 
that the silencing of FXN gene caused mitochondrial dysfunction 
leading to cellular senescence and an increase in autophagy. 
However, the authors argue that the induced autophagy might 
play a protective role in FRDA. Actually neurons are post mitotic 
cells whose survival is dependent upon autophagy (Lee, 2009). 
On the other hand, the senescence phenotype observed can 
be  linked to degeneration observed in the FRDA patients. 
Collectively, possibility exists that autophagy is initiated to 
protect FXN-deficient DRG neurons from stress, but then again 
observed degeneration might be  because of induction of 
additional pathways in response to various stresses such as 
oxidative stress. The discovery of the Drosophila FXN ortholog, 
fh, (Cañizares et al., 2000) led to the development of fly models 
of FRDA that can be  used to explore FXN function (Calap-
Quintana et al., 2015). Experiments conducted using Drosophila 
model of FRDA, suggested that autophagy is undeniably essential 
for the shielding effect of rapamycin in hyperoxia (Calap-
Quintana et al., 2015).

There are several theories proposed, on the basis of growing 
evidence, of circRNA role in neurological diseases. Firstly, it is 
postulated that all RNA molecules, both non-coding as well as 
protein-coding RNAs communicate with and co-regulate each 
other by competing for binding to shared miRNAs (Salmena 
et al., 2011). This hypothesis collectively refers to all RNAs as 
ceRNA (competitive endogenous RNAs; Salmena et al., 2011). 
Importantly, there is mounting data that suggests that the RNA 
communication system (ceRNA) is disrupted in these diseases 
resulting in a pathogenic state. With reference to FRDA, we can 
observe that the nuclear production of precursor FXN protein to 
its mature delivery to mitochondria, highly depends on such 
interconnected regulation among ceRNAs including circRNAs. 
Secondly, it has been also suggested that such communication 
between RNA molecules may play an important role in several 
repeat-associated diseases including FRDA. FRDA, as already 
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discussed, is mainly caused by homozygous GAA repeat 
expansion mutations in intron 1. There is a strong argument in 
Myotonic dystrophy type 1 disease, which is also caused by CTG 
repeats in the 3′ untranslated region of the dystrophia myotonica 
protein kinase (DMPK) gene (Brook et al., 1992). The expression 
of mutation-containing transcripts causes the sequestration of 
muscle blind-like (MBNL) proteins which normally regulate 
alternative splicing of pre-messenger RNAs (pre-mRNAs) 
encoding proteins critical for skeletal, cardiac, and nervous 
system function (Miller et al., 2000; Pascual et al., 2006). Thus, 
their sequestration and functional inadequacy results in an 
aberrant alternative splicing of many target genes. One of the 
study suggested a role of MBNLs in the production of circRNAs 
(Ashwal-Fluss et al., 2014). The production of circRNAs might 
ensue both post-transcriptionally and co-transcriptionally 
(Wilusz and Sharp, 2013; Ashwal-Fluss et al., 2014; Kramer et al., 
2015). Also, their biogenesis competes with the production of 
linear transcripts (mRNA). Apart from this phenomenon, two 
other important roles have been proposed of circRNAs which 
might play a crucial role in pathogenesis of FRDA including 
contribution in protein and/or RNA transport (Memczak et al., 
2013) and regulation of the synaptic functions in neural tissue 
(You et al., 2015).

There are several studies which have deciphered the role of 
miRNAs in FRDA. CircRNAs act as sponges for these miRNAs 
extending their role in the pathogenesis by effecting the key 
molecules involved in the autophagy associated pathways thereby 
regulating the biological functions of these cells. For example, 
those miRNAs targeting mTOR and AMPK pathway might play 
a crucial role in the progression of FRDA. One such example is 
hsa-miR223-3p, which is slightly upregulated in FRDA patients 
(Seco-Cervera et al., 2017; Quatrana et al., 2022). This miRNA is 
known to be inversely associated with HCLS1 associated protein 
X-1 (HAX-1). It has been found that Hax-1 plays an important 
role in the development of the central nervous system and in the 
pathophysiology of some neurological diseases. The anti-
apoptotic protein HAX-1 has been proposed to modulate 
mitochondrial membrane potential, calcium signaling and actin 
remodeling (Dong et al., 2022). It is possible that this miRNA 
might negatively regulate HAX-1 protein thus reducing the anti-
apoptotic effect and in turn promotes autophagy in FRDA 
patients. Another miRNA hsa-miR-886-3p (miR-886-3p) was 
observed to be upregulated in FRDA patient’s cells as well as 
peripheral patient’s blood samples (Dantham et al., 2018). The 
study identified significant deregulation of following miRNAs; 
hsa-miR-15a-5p, hsa-miR-26a-5p, hsa-miR-29a-3p, hsa-miR-
223–3p, hsa-24–3p, and hsa-miR-21–5p which are shown to 
be associated with neurodegenerative and other clinical features 
in FRDA (Dantham et  al., 2018). These miRNAs have been 
implicated in autophagy as well as targets of circRNAs in separate 
studies which warrants further investigations of circRNAs/
miRNAs/autophagy axis in FRDA. However, further studies are 
warranted to find the exact mechanism of autophagy associated 
circRNAs and their role in FRDA.

3. Conclusion

CircRNAs tends to accumulate in the aging central nervous 
system which makes them potentially suitable therapeutic 
targets as well as diagnostic and prognostic biomarkers for 
age-related diseases, including neurodegenerative diseases. 
Autophagy failure and autophagosomal dysfunction have been 
implicated in the pathogenesis of several neurodegenerative 
diseases, as a result, it has gained increasing attention and 
interest in neuronal cell biology. Research has shown that by 
influencing autophagy, circRNAs indirectly regulate cell 
proliferation, which plays an important role in the development 
of neurodegenerative diseases. Despite mounting research on 
circRNAs and their connection with autophagy, the mechanism 
underlying circRNA-mediated regulation of autophagy in the 
pathogenesis of neurodegeneration remains to be  explored. 
There are many questions that still needs to be  addressed 
regarding complex regulatory roles of autophagy associated 
circRNAs in brain. Studies evaluating the regulatory roles of 
circRNAs in neurodegenerative diseases are still limited, 
however reports suggested that circRNA play regulatory roles 
through diverse mechanisms, including transcription and 
splicing regulation, as ceRNA via sponging miRNAs, mRNA 
traps, post-translational modifications as well as through 
epigenetic modification. Some of the regulatory roles of 
circRNAs in neurodegenerative diseases have been discussed in 
this manuscript (e.g., circHectd1-miR-142-TIPARP axis, ciRS-
7-miR-7/UBE2A axis, circGLIS3/miR-203 axis, circSNCA/
miR-7/SNCA axis, circzip-2/miR-60/SNCA axis, circHIPK2/
miR124/2HG axis, circHIPK2/miR124/SIGMAR axis, 
circSAMD4A/miR-29c-3p AMPK/mTOR axis, circ016719/
miR-29c/MAP2K6 axis, and circAKAP7/miR-155-5p/ATG12 
axis etc.). The regulatory mechanisms of autophagy associated 
circRNA in neurodegenerative diseases are remarkably complex. 
It is therefore essential to use mammalian disease models and to 
employ state of the art genetic and molecular tools to decipher 
the role of autophagy associated circRNAs under normal and 
pathological conditions. Such studies will likely increase our 
understanding of the complex regulatory roles of autophagy 
associated circRNAs and will also uncover new 
therapeutic opportunities.

4. Future perspectives

With the advancement and progress in circRNA research, 
the mechanism by which autophagy associated circRNAs 
influence neurodegenerative diseases is gradually being 
discovered. Before they can be  considered for clinical 
implications, a number of major questions should be addressed, 
e.g., what role do autophagy associated circRNAs play during 
different stages of neurodegeneration, their effects on 
neuroplasticity, neurogenesis, and behavior and how circRNAs 
influence multiple signaling pathways at the synapse. Moreover 
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in order to determine how autophagy associated circRNAs 
impact neurodegeneration, transgenic animal models, cell lines 
as well as efficient and conditional knockdowns, or over-
expression models of specific circRNAs should be developed to 
establish suitable in-vivo and in-vitro systems. Mapping region-
specific autophagy associated circRNAs across the entire brain 
would also be useful. In the coming years, studies that expand 
our knowledge on in-depth mechanistic understanding of 
autophagy associated circRNAs will facilitate the development 
of specific and effective approaches to target these circRNAs in 
vivo will be  the key in advancing the clinical potential of 
circRNA-based therapeutics. Furthermore, research efforts 
need to be  channeled toward dissecting and characterizing 
their specific regulatory roles and evaluating the extent to 
which they contribute towards pathogenesis of 
neurodegenerative diseases.
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