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Characterization and prediction of individual difference of pain sensitivity are of great
importance in clinical practice. MRI techniques, such as functional magnetic resonance
imaging (fMRI) and diffusion tensor imaging (DTI), have been popularly used to predict
an individual’s pain sensitivity, but existing studies are limited by using one single
imaging modality (fMRI or DTI) and/or using one type of metrics (regional or connectivity
features). As a result, pain-relevant information in MRI has not been fully revealed and
the associations among different imaging modalities and different features have not
been fully explored for elucidating pain sensitivity. In this study, we investigated the
predictive capability of multi-features (regional and connectivity metrics) of multimodal
MRI (fMRI and DTI) in the prediction of pain sensitivity using data from 210 healthy
subjects. We found that fusing fMRI-DTI and regional-connectivity features are capable
of more accurately predicting an individual’s pain sensitivity than only using one type of
feature or using one imaging modality. These results revealed rich information regarding
individual pain sensitivity from the brain’s both structural and functional perspectives as
well as from both regional and connectivity metrics. Hence, this study provided a more
comprehensive characterization of the neural correlates of individual pain sensitivity,
which holds a great potential for clinical pain management.

Keywords: pain sensitivity, fMRI, DTI, regional-connectivity features, machine learning

INTRODUCTION

Pain is a subjective, complex, and multidimensional sensory experience that exhibits huge inter-
subject variability (Rainville, 2002; Nielsen et al., 2009; Coghill, 2010). The study of individual
differences in pain sensitivity is of great importance in clinical practice (Werner et al., 2010;
Abrishami et al., 2011) and in pharmaceutical research (Chizh et al., 2009; Angst et al., 2012).
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For example, pain sensitivity is a predictive factor for the
treatment outcome of many clinical diseases (Abrishami et al.,
2011; Rehberg et al., 2017). Hence, investigating the underlying
neural mechanism of individual differences in pain sensitivity
cannot only deepen our understanding of pain sensitivity but
can also be used to develop a predictive model of individual
pain sensitivity.

With the fast development of neuroimaging technologies and
associated data analytics, using neural images and signals, such as
magnetic resonance imaging (MRI) and electroencephalography
(EEG), to probe the neural mechanisms of pain has been
widely adopted in pain researches, which include the studies of
momentary (acute or chronic) pain experience (Apkarian et al.,
2005) and pain sensitivity (Coghill et al., 2003; Zunhammer et al.,
2016). The complex brain activity underlying pain sensitivity
plays a major role in the representation and modulation of
pain (Rainville, 2002; Apkarian et al., 2005). Several studies
have revealed that individual differences in pain sensitivity are
reflected in differences in brain structure and function by using
different MRI modalities (Geisler et al., 2021; Niddam et al.,
2021).

Resting-state functional magnetic resonance imaging
(rs-fMRI) uses blood oxygenation level-dependent (BOLD)
responses to study spontaneous brain activity in individuals
when performing no specific task. A very widely used rs-fMRI
feature is Regional Homogeneity (ReHo), which calculates
Kendall’s coefficient of concordance to measure regional
synchronizations of temporal changes in BOLD activities in a
voxel-wise manner (Baumgartner et al., 1999). Several studies
used ReHo to investigate the local features of spontaneous brain
activity in chronic pain such as migraine (Yu et al., 2012; Zhao
et al., 2013; Zhang et al., 2016) and headache (Wang et al., 2014).
These ReHo-based results showed that patients with chronic
pain exhibited increased or decreased ReHo values in certain
regions compared to healthy subjects. For example, Yoshino
et al. (2017) found that ReHo at the dorsolateral prefrontal
cortex significantly decreased in chronic pain patients. Another
type of rs-fMRI feature popularly used in pain research is
functional connectivity (FC). Unlike ReHo, which measures
regional brain activities, FC measures the statistical relationship
between BOLD signals of different brain regions. Many studies
have demonstrated that FC between some specific regions is
related to pain perception and can be used as a neural indicator
of individual pain sensitivity. For example, Tu et al. (2019)
used multivariate pattern analysis to find that resting-state FC
could predict individual pain thresholds with high accuracy
(a correlation coefficient of 0.60 between predicted and real
values of heat pain thresholds). Meanwhile, they found that
the connections within medial-frontal and frontal-parietal
networks are the most predictive FC features of pain sensitivity.
Another study (Spisak et al., 2020) also identified and validated a
pain-free resting-state FC pattern that is predictive of individual
differences in pain sensitivity.

Besides rs-fMRI, diffusion tensor imaging (DTI), which maps
white matter anatomical connections in the living human
brain, is another common MRI modality that has been
gradually used to study individual differences in pain sensitivity
(Deppe et al., 2013; Porpora et al., 2018). Fractional anisotropy

(FA) is the most widely used quantitative DTI measure and it
reflects how the diffusion of water is directionally constrained
along axons (Alexander et al., 2007). Several DTI studies have
found abnormal white matter changes in migraine and other
chronic pain conditions (Mansour et al., 2013; Michels et al.,
2017). On the other hand, DTI is able to characterize the
structural connectivity (SC) based on the fibers connecting each
pair of brains regions. DTI-based SC has also been used to
investigate the pain-related brain networks. For example, by
using the graph analysis of probabilistic tractography based
on DTI, one study found that the anterior insula connectivity
was related to the individual degree of pain vigilance and
awareness (Wiech et al., 2014). Also, studies demonstrated that
SC provides new insights into the understanding of chronic pain.
For example, Huang et al. (2021) found that patients with chronic
prostatitis/chronic pelvic pain syndrome had alterations of SC
within the frontal-parietal control network.

However, most of the existing MRI studies regarding pain
sensitivity are limited by only using one single modality of
MRI (rs-fMRI or DTI) or only using one single type of feature
(regional or connectivity features) to explore the relationship
between pain sensitivity and MRI features. However, pain
has a complicated neural mechanism, which influences and is
influenced by the brain’s structure and function. Also, both
brain patterns within local regions and brain connections
among local regions contribute to an individual’s sensitivity
of pain. Thus, only using one MRI modality or using one
type of feature (regional or connectivity) cannot offer a
complete characterization of brain patterns related to pain and
cannot provide sufficient information to accurately predict the
individual pain sensitivity. Accumulated evidence have shown the
importance of using multiple MRI modality in the understanding
of cognitive functions and the diagnosis of neurological diseases
(Michels et al., 2017; Dhamala et al., 2020). For example,
Xiao et al. (2021) built a model to predict visual working
memory capacity by using voxel-wise multimodal MRI features
(amplitude of low-frequency fluctuations from fMRI, gray matter
volume from structural MRI, and FA from DTI). On the other
hand, MRI studies based on both regional patterns and inter-
regional connectivity patterns are also gaining popularity in the
research of brain disorders. For example, Luo et al. (2020) used
multi-features, including both regional features and connectivity
features extracted from fMRI and DTI, to significantly improve
the prediction performance of adult outcomes in childhood-
onset attention-deficit/hyperactivity disorder compared to using
the models based on one type of features. However, combining
both regional and connectivity features from both rs-fMRI and
DTI in the prediction of pain sensitivity is still lacking. As a
result, it remains unclear how the brain’s structure, function, and
connectivity interact and synergize in the determination of an
individual’s pain sensitivity.

In the present study, we hypothesize that both regional
and connectivity features from both rs-fMRI and DTI are
predictive of an individual’s pain sensitivity. This hypothesis
was proposed based on the following facts. First, scattered
evidence has shown that, either regional or connectivity patterns
measured from either fMRI or DTI were correlated with an
individual’s pain threshold (Rogachov et al., 2016; Hsiao et al.,
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2020; Geisler et al., 2021). Second, for either fMRI or DTI, its
regional patterns and connectivity patterns are associated (Ma
et al., 2010; Straathof et al., 2019). Third, because of the brain’s
structural-functional coupling, fMRI and DTI are also correlated
in terms of regional characteristics or connections (Gu et al.,
2015; Tang and Bassett, 2018; Straathof et al., 2019). These
literature supports will be further elaborated in the Discussion.

To validate this hypothesis, we acquired rs-fMRI and
DTI data as well as laser pain threshold from 210 healthy
participants and explored the relationship between multi-modal
MRI features and individual pain sensitivity. For each participant,
we extracted regional and connectivity features from two MRI
modalities (ReHo and FC from rs-fMRI; FA and SC from DTI).
We used machine learning and feature selection methods to
construct prediction models and to identify the most predictive
features of pain sensitivity. Furthermore, to examine whether
different MRI modalities and different feature types can provide
complementary information in predicting an individual’s pain
thresholds, we established a series of models to fuse various
types of MRI features at the decision level and compared
their performance.

MATERIALS AND METHODS

Participants
We recruited a total of 210 healthy participants (131 females;
age: 20.81 ± 2.93 years) through college and community
advertisements and paid for their participation. All the
participants were right-handed. Before the experiments,
participants were carefully screened to ensure that they had no
history of chronic pain, neurological diseases, cerebrovascular
diseases, coronary heart disease, and mental disorders, and they
had no contraindications to MRI examination. The study was
proved by the local ethics committee and all participants gave
their written informed consent before participating in the study.

Measurement of Pain Threshold
Pain sensitivity of all the participants was measured as the
laser pain threshold in a behavioral experiment before the MRI
scan. The laser pain threshold was measured manually using
quantitative sensory testing. A series of infrared neodymium
yttrium aluminum perovskite (Nd: YAP) laser stimuli were
delivered to the back area between the thumb and index finger
of a participant’s left hand. The measurement started from an
energy level at 1 J with a 0.25 J increase at each stimulus. After
each stimulus, a participant was asked to report the pain rating
from 0 (no pain) to 10 (the worst pain). When a rating of 4 was
reported, the corresponding energy level was recorded as the laser
pain threshold. For each participant, the laser pain threshold was
averaged from two independent measurements conducted in 1 h.

Magnetic Resonance Imaging
Acquisition
Multimodal MRI data were acquired using a GE 3.0 T scanner.
Resting-state fMRI were collected using the following

parameters: 43 oblique slices, thickness/gap = 3/0 mm,
acquisition matrix = 64×64, TR = 2,000 ms, TE = 30 ms,
flip angle = 90◦, field of view = 22×22 mm2, total volume = 300,
acquisition time = 10 min. For the DTI data, the following
acquisition parameters were used: 70 axial slices, TR = 8,500 ms,
TE = 80.8 ms, 64 optimal non-linear diffusion-weighted
directions with b = 1,000 s/mm2 and one additional image
without diffusion weighting (i.e., b = 0 s/mm2), 2.0-mm slice
thickness, acquisition matrix = 128×128; 2×2 mm in-plane
resolution, acquisition time = 10:50 min.

Data Analysis
Functional Magnetic Resonance Imaging
Preprocessing
Resting-state fMRI preprocessing was performed with DPABI1

(Yan et al., 2016) and SPM12 (Statistical Parametric Mapping;
Wellcome Department of Imaging Neuroscience, University
College London, United Kingdom)2 running under Matlab
R2017b (Mathworks, Sherborn, MA). For each subject, the first
10 volumes of rs-fMRI data were discarded, leaving 290 images
pre-processed. The middle slice was used as the reference slice
for slice timing correction. Then, fMRI data were realigned to
correct the head motion and obtained the 6 rigid body motion
parameters. T1 images were co-registered to functional images
and segmented into gray matter, white matter, and cerebrospinal
fluid. In order to decrease the effects of head motion, the Friston
24-parameter model, 6 head motion parameters, 6 head motion
parameters one time point before, and the 12 corresponding
squared items (Friston et al., 1996), were used to regress out
the head motion parameters. Time points with the head motion
parameters larger than 0.2 were scrubbed, and they were modeled
as a separate covariable for regression to decrease their influence
on the continuity of time. The functional images were then
normalized into standard Montreal Neurological Institute (MNI)
space, resampled to a 3 × 3 × 3 mm3 voxel. Finally, a bandpass
filter with a frequency window of 0.01–0.1 Hz was used to
improve the signal-to-noise ratio of fMRI signals.

Diffusion Tensor Imaging Preprocessing
The DTI data were preprocessed by the PANDA toolbox (Cui
et al., 2013)3 in the FSL diffusion toolkit and MRIcron. The
preprocessing steps were performed as follows. Briefly, (a) covert
the DICOM files of all subjects into NIfTI images using the
MRIcron; (b) estimate the brain mask by extracting the brain
tissue and structure; (c) correct for the eddy-current effect; (d)
average acquisitions and calculate DTI metrics. In order to get
the voxel-based diffusion metrics for the subsequent analysis,
the individual diffusion metric images were transformed from
the native space into a standard Montreal Neurological Institute
(MNI) space (voxel size 1 mm × 1 mm × 1 mm3) via spatial
normalization and smoothed with a 6 mm full width at half-
maximum (FWHM) Gaussian kernel.

1http://rfmri.org/dpabi/
2http://www.fil.ion.ucl.ac.uk/spm
3http://www.nitrc.org/projects/panda
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Brain Parcellation
In order to better compare the results of different imaging
modalities, we used the Automated Anatomical Labeling
(AAL) (Tzourio-Mazoyer et al., 2002) atlas, which was
commonly adopted in multimodality researches to achieve
the whole-brain parcellation on both functional data and
structural data (Wee et al., 2012; Ahmed et al., 2017).
Cerebellar regions were excluded for incomplete coverage
of the cerebellum of several participants. In total 90 regions
of interest (ROIs) were defined by the AAL atlas and used in
subsequent analyses.

Feature Extraction
We extracted both regional and connectivity metrics from
pre-processed fMRI and DTI for the prediction of the
laser pain threshold.

fMRI ReHo: For fMRI, individual ReHo maps were generated
by calculating Kendall’s coefficient concordance of the time series
of a given voxel with those of its surrounding 27 voxels (Zang
et al., 2004). Then, the data were smoothed with a Gaussian
filter of 6 mm FWHM to reduce noise and residual differences
in gyral anatomy. These individual maps underwent whole-brain
equalization for further analysis. Finally, 55017 ReHo features
were extracted for each participant.

fMRI FC: For fMRI FC matrices, Pearson’s correlation
coefficients (PCC) between BOLD time courses of each pair of
ROIs were calculated for each subject. The obtained correlation
matrix for each subject was then normalized using Fisher’s
z-transformation to improve normality. The FC matrix for each
individual was a 90×90 symmetric matrix. Only the lower
triangular matrix, which has 4005 FC features, was taken for
subsequent analysis.

DTI FA: For DTI, the FA matrix, which measures the degree
of anisotropy of water diffusion, was calculated in the MNI
space for each individual. FA is calculated from the eigenvalues
of the diffusion tensor, and its value varies between 0 and 1.
FA = 0 means that the diffusion ellipsoid is a sphere (perfect
isotropic diffusion). When the eigenvalues become more unequal
with progressive diffusion anisotropy, the FA → 1. Finally,
for each participant, 55017 FA features were extracted for the
following analysis.

DTI SC: After the pre-processing of DTI data, probabilistic
tractography was used to construct the SC network (Behrens
et al., 2007). Briefly, for each defined brain region/node,
probabilistic tractography was performed by seeding from all
voxels of this region. For each voxel, 5000 fibers were sampled.
The connectivity probability from the seed region i to another
region j was defined by the number of fibers passing through
region j divided by the total number of fibers sampled from
region i. The connectivity probability of each node to the other
nodes within the brain network can be calculated by repeating the
tractography procedure for all nodes. This leads to an individual-
specific weighted matrix, whose rows and columns represent
the brain nodes and whose elements represent the connectivity
probability between nodes. The SC matrix for each participant
was a 90× 90 matrix.

Prediction of Pain Threshold
After regional features (i.e., ReHo and FA) and connectivity
features (i.e., FC and SC) were extracted from fMRI and DTI data,
we used feature selection and machine learning techniques to
establish models for predicting individual laser pain thresholds.
As shown in Figure 1, the whole procedure of pain threshold
prediction is detailed as follows.

Cross-validation: We selected the features, trained and tested
the prediction models based on the leave-one-individual-out
cross-validation. At each run, we randomly used one participant’s
data for testing and the remaining participants’ data for training.
Because we had a total of 210 participants, the procedure was
repeated 210 times to make sure that each participant’s data were
used as test samples once.

Feature selection: To improve the model accuracy and increase
the model interpretability, it is necessary to identify a subset
of most predictive features from a high-dimensional feature.
We adopt the correlation-based feature selection method for
each type of feature (ReHo, FA, FC, or SC) separately. In each
run of the cross-validation in regression, PCC between each
type of feature and the laser pain thresholds were computed
within the training data to make sure the test data were not
involved in the step of feature selection. The features with
correlation significance beyond a threshold (P = 0.05; P = 0.01;
P = 0.001, tested separately for comparison, see Supplementary
Tables 1, 2 for details) were selected and used for the prediction
of pain thresholds.

Machine learning algorithms: After feature normalization,
four popular and effective ML regression algorithms
were used to model the relationship between these
MRI features and laser pain threshold, namely,
support vector machine regression with linear kernels
(SVR-Linear) or Gaussian kernels (SVR-RBF), partial
least squares regression (PLSR), and random forest
regression (RF). All these algorithms were implemented
with the open-source scikit-learn library for python
(Pedregosa et al., 2011).

Models with different feature types: We compared the
prediction performance of a series of models based on single-
modality and single-type features using different machine
learning algorithms and different thresholds of feature selection.
Supplementary Tables 1, 2 show the prediction performance
of these models. Four models using one type of feature,
namely ReHo (SVR-Linear, threshold < 0.001), FA (SVR-RBF,
threshold < 0.01), FC (SVR-Linear, threshold < 0.001), and SC
(SVR-RBF, threshold < 0.001) models, were determined first
because of their better performance than models with other ML
algorithms and parameters. Then, features were selected based
on above four models using the corresponding feature type. As
a result, the fusion process allowed information from multiple
modalities to integrate but did not interfere with the feature
selection and model selection in each model (ReHo, FA, FC, or SC
model). Next, we build five models using different combinations
of features: ReHo+ FA (regional features), FC+ SC (connectivity
features), ReHo + FC (fMRI features), FA + SC (DTI features),
and all four features. An average of the predicted values
of multiple single-type feature models was calculated as the
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FIGURE 1 | The whole procedure of the pain threshold prediction analysis based on multi-features of multi-modal MRI.

final predicted threshold of each multimodality models. More
precisely, we established and compared the following 9 models
with different types of features:

1. ReHo Model: using ReHo features;
2. FC Model: using FC features;
3. FA Model: using FA features;
4. SC Model: using SC features;
5. Regional Model: using ReHo (from rs-fMRI) and FA (from

DTI) features;
6. Connectivity Model: using FC (from rs-fMRI) and SC

(from DTI) features;
7. fMRI Model: using ReHo (regional) and FC (connectivity)

features from fMRI;
8. DTI Model: using FA (regional) and SC (connectivity)

features from DTI;
9. Fused Model: using all features (ReHo+ FA+ FC+ SC).

Performance evaluation: PCC between the predicted
thresholds and the true values across all participants was
calculated as the main metric of the performance of these
prediction models. Also, we calculated the mean absolute error
(MAE), which measured the overall distance between predicted
and true values. MAE is calculated as:

MAE =
1
N

N∑
n=1

∣∣ŷn − yn
∣∣ ,

where yn is the measured pain threshold of the n-th participant,
ŷn is the pain threshold estimated from the prediction model, and
N is the total number of participants. The prediction performance
in terms of MAE of nine models was compared using paired
t-test. The PCCs of any two models were compared using the
test for comparing elements of a correlation matrix, as suggested
in Steiger (1980). This correlation test was adopted here because

the true labels were used in the calculation of all PCCs so that
these PCCs were not independent and the conventional t-test
could not be used.

Identifying common predictive features: This part is aimed
at identifying the brain regions and brain connectivity that
are commonly selected across individuals. We calculated the
occurrence frequency of each feature across all folds in leave-one-
individual-out cross-validation involved in building the models
based on one type of feature. For better visualization and
interpretation of the features, we only showed those features
which were selected more than half of the time in the whole
leave-one-individual-out cross-validation procedure. ReHo and
FA results were mapped onto the AAL-90 atlas. Connectivity
results were visualized by using the Connectivity Visualization
Tool4.

RESULTS

Measurements of Pain Threshold
For all participants, the laser pain thresholds were 2.57 ± 0.53 J
(mean ± std). We calculated the PCC between age and pain
sensitivity but found no significant relationship (p = 0.98)
between age and laser pain threshold. A two-sample t-test
revealed that gender had no significant effect on the laser pain
threshold (p = 0.49).

Prediction Performance of Different
Models
Table 1 shows the prediction performance of nine laser
pain threshold prediction models: ReHo Model (PCC = 0.30,
p = 7.64×10−6), FC Model (PCC = 0.23, p = 8.73×10−4), FA

4https://bioimagesuiteweb.github.io/webapp/connviewer.html
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TABLE 1 | Prediction performance of different models using different feature sets.

Feature set MAE (mean ± std) PCC (R and p-values)

ReHo 0.42 ± 0.33 0.30 (7.64×10−6)

FC 0.43 ± 0.32 0.23 (8.73×10−4)

FA 0.39 ± 0.29 0.35 (1.61×10−7)

SC 0.41 ± 0.32 0.30 (1.36×10−5)

fMRI (ReHo + FC) 0.39 ± 0.31 0.35 (2.91×10−7)

DTI (FA + SC) 0.37 ± 0.30 0.43 (1.16×10−10)

Regional (ReHo + FA) 0.37 ± 0.30 0.42 (3.73×10−10)

Connectivity (FC + SC) 0.38 ± 0.30 0.38 (9.54×10−9)

Fused (ReHo + FC + FA + SC) 0.36 ± 0.29 0.51 (4.99×10−15)

Highlight the best performance of the prediction model.

Model (PCC = 0.35, p = 1.61×10−7), SC Model (PCC = 0.30,
p = 1.36×10−5), fMRI Model (PCC = 0.35, p = 2.91×10−7),
DTI Model (PCC = 0.43, p = 1.16×10−10), Regional Model
(PCC = 0.42, p = 3.73×10−10), Connectivity Model (PCC = 0.38,
p = 9.54×10−9), and Fused Model (PCC = 0.51, p = 4.99×10−15).
As shown in Figure 2, the correlation results of all prediction
models are significant. Figure 3 compares the PCC between
predicted and real laser pain thresholds of all the participants

among different prediction models. We have the following
two major observations from Table 1 and Figures 2, 3. First,
the prediction performances in terms of PCC of the models
based on two type features (i.e., Regional Model, Connectivity
Model, fMRI Model, and DTI Model) are higher than models
which only used one type of feature. Specifically, the correlation
result of fMRI Model is significantly better than FC Model
(p = 0.007), and PCC of DTI Model is significantly better than
SC model (p = 4.19×10−5). Also, PCC of Regional Model is
significantly better than ReHo model (p = 6.90×10−5), and PCC
of Connectivity Model is significantly better than FC model
(p = 0.002) and SC model (p = 0.05). Second, the correlation
result of Fused Model is significantly better than all models
based on one-type (Fused vs. ReHo, p = 2.08×10−5; Fused
vs. FC, p = 2.67×10−7; Fused vs. FA, p = 0.007; Fused vs.
FT, p = 4.49×10−4) or two type features (Fused vs. fMRI,
p = 3.43×10−6; Fused vs. DTI, p = 0.057; Fused vs. Regional,
p = 0.011, Fused vs. Connectivity, p = 9.29×10−4).

Predictive Multimodality Features
Table 2 and Figure 4 show the common predictive regional
feature sets (ReHo or FA, respectively), which were determined

FIGURE 2 | The linear correlation between predicted and real pain thresholds. Each blue dot denotes one participant. Red lines are linear fitting lines.
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FIGURE 3 | Comparison of PCC between predicted and real laser pain threshold among models using different features. ∗ indicates p < 0.05, ∗∗ indicates p < 0.01,
∗∗∗ indicates p < 0.001.

because they were selected for more than half of the time
in the leave-one-individual-out cross-validation for the laser
pain threshold prediction. Finally, ReHo features of 109
voxels were selected and they were mainly in Parietal_Inf_L,
SupraMarginal_L/R, Insula_R, Rolandic_Oper_R, Calcarine_R,
Temporal_Mid_R, Precuneus_R, Cingulum_Mid_R. FA
features of 668 voxels were selected and they were mainly in
Occipital_Inf_R, Temporal_Inf_R, Calcarine_R, Precuneus_R,
Insula_L/R, Frontal_Mid_R, Temporal_Pole_Mid_L,
Putamen_L/R, Lingual_R. The common regions of ReHo
and FA feature sets are Precuneus_R, Insula_R, and Calcarine_R.

As shown in Table 3 and Figure 4, there were 35 common
FC features and 2 common SC features were visualized because
they were selected for more than half of the time in the
leave-one-individual-out cross-validation. These FC features are
predominately for the prefrontal-parietal and insula-cingulate
networks. For SC, the 2 features are Occipital_Inf_R-Lingual_R,
Fusiform_R-Occipital_Sup_R. The common hub of FC and SC is
Occipital_Sup_R.

DISCUSSION

In this study, we investigated the predictive capability of
multi-features of multi-modal MRI data in the prediction
of individual pain sensitivity, as measured by laser pain
threshold. The results on 210 healthy subjects demonstrated
that fMRI-DTI and regional-connectivity features are capable of
accurately predicting an individual’s pain threshold. Importantly,

TABLE 2 | List of common predictive regional features for the prediction of
laser pain threshold.

Feature set Regions or connectivity

ReHo Parietal_Inf_L, SupraMarginal_L/R, Insula_R,
Rolandic_Oper_R, Calcarine_R, Temporal_Mid_R,
Precuneus_R, Cingulum_Mid_R

FA Occipital_Inf_R, Temporal_Inf_R, Calcarine_R,
Precuneus_R, Insula_L/R, Frontal_Mid_R,
Temporal_Pole_Mid_L, Putamen_L/R, Lingual_R

Common regions Insula_R, Calcarine_R, Precuneus_R

the predictive capability of fusing fMRI-DTI and regional-
connectivity features is significantly higher than that of using
one type of feature from one imaging modality (i.e., ReHo,
FA, FC, or SC). These results revealed rich information about
individual pain sensitivity from the brain’s both structural
and functional perspectives as well as from both regional and
connectivity brain patterns.

Fused Model Achieves Higher
Performance
The fused model that uses fMRI-based ReHo and FC features
and DTI-based FA and SC features has the best prediction
performance because (1) it uses both regional and connectivity
features, and (2) it uses two imaging modalities.

First, the prediction models (i.e., fMRI Model, DTI Model,
or Fused Model) which fused the regional features (i.e., ReHo
and FA) and brain connectivity features (i.e., FC and SC)
outperformed the prediction models which only used one type
feature, suggesting that multi-type imaging features embrace
richer information than single-type features in the prediction of
pain sensitivity. The regional functional feature, ReHo, which
reflects the spontaneous brain activity observed in specific
regions, serves an important functional role in the efficacy of
neural systems. Also, regional structural characteristics like FA
reflect the changes in microstructure (Basser and Pierpaoli,
2011). Actually, several previous studies (Erpelding et al., 2012;
Emerson et al., 2014; Rogachov et al., 2016; Geisler et al.,
2021) have demonstrated the relationship between regional
functional signal or structural characteristics and individual pain
sensitivity. However, as pain is a complex experience related
to a wide network of brain regions, it is also important to
explore the relationship between individual pain sensitivity and
brain connectivity which reflect the communication between
distinct regions. Combining the information of both regional
measurement and brain connectivity gives us a more complete
understanding of the brain mechanisms underlying pain
sensitivity, which may also be the reason for the improvement
of the prediction performance after fusion. We will further
discuss these predictive regional and connectivity features later
in this section.
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FIGURE 4 | Common predictive regional features and connectivity features for the prediction of laser pain threshold.

Second, we found that models based on both fMRI and DTI
features are more predictive than those used single modality
only, which implies these two MRI modalities contribute to the
determination of pain sensitivity from different perspectives. But
the predictive power of fused models is not simply equal to the
sum of the power of the related prediction models which only
used one MRI modality. This is expected because a wealth of
research (Gu et al., 2015; Tang and Bassett, 2018) has shown
that white matter microstructure links discreet brain areas and
thus regulates brain function. In another word, DTI and fMRI
features are correlated because of the brain’s structure-function
coupling. Therefore, the information provided by fMRI and DTI,
on the one hand, complements to each other, while on the other
hand, overlaps to some extent. Although little effort has been
made on utilizing the multimodal neuroimaging data (fMRI and
DTI) for predicting individual pain sensitivity, several studies
demonstrated the advantage of integrating DTI and fMRI in
the field of cognitive neuroscience and psychiatry (Goble et al.,
2012; Sugranyes et al., 2012). For example, Xiao et al. (2021)
combined regional features extracted from the whole brain in
three modalities (fMRI data, T1-weighted data, and DWI data),

achieving a good performance in predicting individual visual
working memory capacity.

Functional Magnetic Resonance Imaging
Features Predictive of Pain Sensitivity
Our results indicated some relations between the common
predictive fMRI regional features and FC features. We found
that the selected fMRI regional features are mainly located in the
precuneus, insula, and calcarine. As identified in the previous
studies, precuneus plays an important role in pain processing
(Zhang et al., 2020), possibly with different mechanisms.
Precuneus is engaged in continuous information gathering and
representation of the self and the external world (co-perception),
as well as in the assessment of self-relevant sensations (Johnson
et al., 2006), both of which are important aspects of the pain
experience. Also, the precuneus is a core constituent of the
default-mode network (DMN) (Utevsky et al., 2014), of which
the alterations have been well documented to be related to pain
progression. In addition, Goffaux et al. (2014) found that pain
sensitivity in healthy adults was closely tied to pain-evoked
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TABLE 3 | List of common predictive connectivity features for the prediction of
laser pain threshold.

Feature set Regions or connectivity

FC Frontal_Sup_R- Caudate_R
Frontal_Sup_Orb_L—Parietal_Sup_R
Frontal_Mid_Orb_L—Parietal_Sup_R
Frontal_Mid_Orb_R—Occipital_Sup_R
Frontal_Inf_Oper_L—Frontal_Inf_Tri_R
Frontal_Inf_Oper_L—Cingulum_Mid_R
Frontal_Inf_Oper_L—Parietal_Inf_R
Frontal_Inf_Oper_L—Precuneus_R
Frontal_Inf_Oper_R—Parietal_Sup_R
Frontal_Inf_Tri_L—Parietal_Inf_R
Frontal_Inf_Tri_R—Parietal_Inf_R
Rolandic_Oper_L—Cingulum_Mid_R
Rolandic_Oper_R—Cingulum_Mid_R
Olfactory_L—Lingual_R
Frontal_Sup_Medial_R—Caudate_R
Rectus_R—Calcarine_L
Insula_L—Cingulum_Mid_R
Insula_L—Cuneus_L
Insula_L—Occipital_Inf_R
Insula_R—Cingulum_Mid_L
Insula_R—Cingulum_Mid_R
Cingulum_Ant_R—Occipital_Sup_R
Cingulum_Mid_R—Occipital_Sup_L
Cingulum_Mid_R—Occipital_Sup_R
Cingulum_Mid_R—Parietal_Sup_L
Cingulum_Mid_R—Parietal_Sup_R
Hippocampus_R—Lingual_L
Hippocampus_R—Fusiform_L
ParaHippocampal_L—Fusiform_L
ParaHippocampal_R—Fusiform_L
Calcarine_L—Postcentral_L
Calcarine_L—Temporal_Pole_Mid_R
Occipital_Mid_R—Caudate_L
Occipital_Inf_L—Pallidum_R
Frontal_Mid_R—Frontal_Inf_Oper_L

SC Occipital_Inf_R—Lingual_R
Fusiform_R—Occipital_Sup_R

responses in the contra-lateral precuneus, which was similar to
our study. Insula is a part of cortical regions that are related to
the affective/motivational aspect of pain (Greenspan et al., 1999;
Duerden and Albanese, 2013), and it is also important in the
prediction of pain sensitivity.

As for common predictive FC features, a large number
of prefrontal-parietal and insula-cingulate connectivity features
were identified. Among these connections, we can easily find that
some hubs, such as mid-cingulate cortex and insula, were also
identified as common predictive regional results, which further
showed the important roles of mid-cingulate cortex and insula
in the determination of pain sensitivity. A study (Hsiao et al.,
2020) has mentioned that pain sensitivity in healthy individuals is
associated with the FC in pain-related cortical regions such as the
insula. Beyond that, connections between prefrontal cortex and
parietal lobe were also found to be the most important predictive
connections. This finding is similar to previous studies (Tu et al.,
2019), which found the frontal-parietal networks are useful in
predicting an individual’s pain threshold at both with-session and
between-session levels.

Diffusion Tensor Imaging Features
Predictive of Pain Sensitivity
For FA, the feature analysis demonstrated the FA features in
Occipital_Inf_R, Temporal_Inf_R, Calcarine_R, Precuneus_R,
Insula, and Lingual_R are useful for the prediction of laser pain

threshold. Importantly, we could find that insula, precuneus, and
calcarine are the common predictive regions identified from both
fMRI regional features and DTI structural features. Therefore,
these results do not only reflect the consistency of structure and
function of the brain, but also confirm the key roles of these
regions in the determination of pain sensitivity. For SC, occipital-
occipital and occipital-temporal connections are predictive for
the prediction of pain sensitivity. Actually, till now, only a few
studies focused on the relationship between individual pain
sensitivity and structural properties of white matter and the
findings in these studies are inconsistent. Previous studies suggest
that white matter properties are distinct between pain conditions
(Mansour et al., 2013; Michels et al., 2017). For example, a DTI
study found a negative correlation between FA and migraine
duration in the mid-insula and a positive correlation between
left mid-insula FA and pain catastrophizing (Mathur et al.,
2016). Also, studies have provided evidence that white matter
integrity within and between regions of the descending pain
modulatory network is critically linked with the individual ability
for endogenous pain control (Stein et al., 2012). Our study did
not find many predictive DTI SC features in healthy individuals,
which may imply that the white matter connectivity is mainly
related to pain conditions of chronic patients but not closely
related to healthy individuals’ pain sensitivity.

Limitations and Future Work
Some limitations of the present study are mentioned here. First,
the cerebellum was not included in the feature analysis because
a proportion of participants had incomplete coverage of the
cerebellum. Previous studies have suggested that the cerebellum
has a role in pain and nociceptive processing (Moulton et al.,
2010; Tu et al., 2019), so connectivity between the cerebellum
and other regions may also be predictive of pain thresholds.
Second, AAL atlas was used in our study to extract features
in both the fMRI and DTI data. In fact, for each modality,
there are more elaborate atlas options. To better compare the
features between two modalities’ data, we finally chose commonly
used AAL atlas to unify the atlas. Third, to some extent, the
regional results showed lateralization to the right, which may be
influenced by the location of the stimulus. To better validate the
hypothesis, the measurement of pain sensitivity can be carried out
on both left and right hands/legs. Moreover, pain sensitivity can
be measured in many ways. In addition to the pain threshold used
in our study, pain tolerance threshold and pain intensity can also
be used to assess pain sensitivity. Meanwhile, different painful
stimulus could also be used in pain measurement. To better
describe subjects’ pain sensitivity, different pain measurements
should be considered in the future studies. Fourth, the subjects
recruited in this study were all young adults, but pain sensitivity
and brain structure/function may vary across different ages.
Several studies (Cole et al., 2010; El Tumi et al., 2017) have
demonstrated that pain sensitivity varies with age. To better study
the stability of pain sensitivity and understand the mechanism
of pain sensitivity, it will be better to recruit a cohort with a
more widely spectrum of ages in further studies. Finally, our
finding would be helpful in understanding pain sensitivity in both
structural and functional perspectives. However, the correlation
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between fMRI and DTI features and the underlying mechanism
about how these multimodality features contribute together to
affect the individual pain sensitivity remain unclear. Previous
studies (Warbrick et al., 2017) have revealed that there is a
relationship between fMRI features and DTI features and the
relationship is task- and region-dependent. In our study, the
relationship between the brain’s function and structure in these
overlapping regions and how they work together to decide
one’s pain sensitivity need to be confirmed by further studies.
One possibility is that, a brain region’s function is (at least
partially) determined by its structural characteristics and the
brain function reflects complex multisynaptic interactions in
structural networks (Suárez et al., 2020).

CONCLUSION

In summary, we combined multi-features from multi-modal
MRI data of healthy participants to investigate individual pain
sensitivity and found that fusing functional and structural
features as well as fusing regional and connectivity features
can predict the individual pain threshold more accurately.
Moreover, we identified several predictive features to individual
pain sensitivity from both functional and structural perspectives
as well as regional and connectivity perspectives. This study
provides valuable information regarding how the brain’s
structure, function, and connectivity interact and synergize in the
determination of an individual’s pain sensitivity.
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