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Glutamatergic synapses harbor abundant amounts of the multifunctional
Ca2+/calmodulin-dependent protein kinase type II (CaMKII). Both in the postsynaptic
density as well as in the cytosolic compartment of postsynaptic terminals, CaMKII plays
major roles. In addition to its Ca2+-stimulated kinase activity, it can also bind to a variety
of membrane proteins at the synapse and thus exert spatially restricted activity. The
abundance of CaMKII in glutamatergic synapse is akin to scaffolding proteins although
its prominent function still appears to be that of a kinase. The multimeric structure of
CaMKII also confers several functional capabilities on the enzyme. The versatility of the
enzyme has prompted hypotheses proposing several roles for the enzyme such as
Ca2+ signal transduction, memory molecule function and scaffolding. The article will
review the multiple roles played by CaMKII in glutamatergic synapses and how they are
affected in disease conditions.

Keywords: Ca2+/calmodulin-dependent protein kinase type II (CaMKII), glutamatergic synapse, LTP, LTD,
synaptic plasticity, CaMKII genetic models, CaMKII mutations

INTRODUCTION

Glutamatergic synapses are the main excitatory synapses in the brain particularly in the cerebral
cortex and hippocampus. More than 80% of synapses in the cortex are glutamatergic (Micheva
et al., 2010). Glutamatergic transmission plays a major role in neuronal functions in the brain.
Imbalances in glutamatergic signaling can lead to several neurodegenerative and psychiatric
conditions (Moretto et al., 2018).

Calcium (Ca2+) signaling is an essential component in signal transduction at glutamatergic
synapses. Calcium signals are tightly regulated since sustained elevation in Ca2+ levels can lead
to toxicity. In glutamatergic synapses, the spike patterns of Ca2+ signals are thought to encode
information. Decoding these signals requires the participation of efficient protein machineries that
convert them into long-lasting biochemical and cellular changes representing memories. Calcium
(Ca2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) at synapses plays a significant
role in decoding Ca2+ spike patterns and in converting them to corresponding biochemical
states. Thus, CaMKII has gained the status of a “memory molecule” by being the initiator of
biochemical memory in the brain. However, the multiple isoforms and splice variants of CaMKII
that assemble in varying combinations to give rise to several holoenzyme subtypes, makes it so

Frontiers in Molecular Neuroscience | www.frontiersin.org 1 June 2022 | Volume 15 | Article 855752

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/journals/molecular-neuroscience#editorial-board
https://www.frontiersin.org/journals/molecular-neuroscience#editorial-board
https://doi.org/10.3389/fnmol.2022.855752
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnmol.2022.855752
http://crossmark.crossref.org/dialog/?doi=10.3389/fnmol.2022.855752&domain=pdf&date_stamp=2022-06-20
https://www.frontiersin.org/articles/10.3389/fnmol.2022.855752/full
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-neuroscience#articles


fnmol-15-855752 June 20, 2022 Time: 11:4 # 2

Mohanan et al. CaMKII in Glutamatergic Synapses

versatile that it is involved in several other functions both in the
brain and in other tissues. The phylogenetic relations of CaMKII
with other kinases, its structure, its different isoforms and splice
variants, biochemical and physiological functions, especially in
long-term potentiation (LTP) and long-term depression (LTD),
and its role in various diseases have been reviewed recently
(Bayer and Schulman, 2019; Giese, 2021; Sloutsky and Stratton,
2021). Its functions specifically in the glutamatergic postsynaptic
compartment have also been previously described (Hell, 2014).
This article covers the basics on CaMKII including the recent
advances in structure, isoforms, activation mechanisms, role
in LTP and LTD, regulation of its translation, role in synapse
morphology regulation, role in presynaptic mechanisms and
role in various pathological conditions with emphasis on
its functioning at glutamatergic synapses. In vivo models of
CaMKII mutants with the associated behavioral phenotypes and
CaMKII mutations reported in neurodevelopmental disorders
and learning disabilities in humans have also been included in
the present review.

Ca2+/CALMODULIN-DEPENDENT
PROTEIN KINASE TYPE II ISOFORMS
AND THEIR FUNCTION IN
GLUTAMATERGIC SYNAPSES

Even though CaMKII has four distinct isoforms (α, β, γ, and δ)
encoded by four different genes with molecular weight ranging
from 52 to 83 kDa, α and β are the predominant ones in neurons.
CaMKIIα has distinct roles in neuronal plasticity and memory. It
is predominant in the hippocampal and in the neocortical areas
of the brain. CaMKIIβ is enriched in cerebellum and is involved
in neuronal development. While both CaMKIIα and CaMKIIβ
are expressed in excitatory pyramidal neurons in the cortex and
hippocampus, only CaMKIIβ is found in inhibitory interneurons
in these regions (Nicole and Pacary, 2020). CaMKIIδ isoform
participates in long-lasting memory storage in the hippocampus
(Zalcman et al., 2018, 2019). CaMKIIγ isoform is attributed
with the main function of synapse-to-nucleus communication,
conveying Ca2+ signals to the nucleus and regulating gene
expression that is essential for neural plasticity involved in
memory (Ma et al., 2014; Cohen et al., 2018).

Ca2+/CALMODULIN-DEPENDENT
PROTEIN KINASE TYPE II STRUCTURE
IN RELATION TO ITS FUNCTION

CaMKII forms large homo or hetero oligomeric assemblies of
either single or multiple isoforms (Hoelz et al., 2003; Bayer
and Schulman, 2019). The core sequence for the CaMKII
isoforms includes an N-terminal catalytic domain, followed by a
CaM binding autoregulatory domain containing Thr286/Thr287,
a variable domain that is subject to alternative splicing and a
C-terminal self-association domain. A linear representation of a
CaMKII subunit is shown in Figure 1A.

Under basal state, the enzyme is present in an autoinhibited
state with the regulatory segment bound to the substrate-docking
groove on each kinase domain. It can be activated by the
binding of Ca2+/CaM to the autoregulatory domain which
releases the regulatory segment off the kinase domain. Activation
of adjacent subunits can result in trans-autophosphorylation
at Thr286 site (Rich and Schulman, 1998) in the regulatory
segment which generates ‘autonomous’ kinase activity even
after the initial Ca2+-stimulus subsides (Miller and Kennedy,
1986) by preventing the regulatory segment binding on
the kinase domain. This inter-subunit autophosphorylation
mechanism enables Ca2+-spike frequency-detection by CaMKII
(De Koninck and Schulman, 1998). The autophosphorylation at
Thr286 can also increase the affinity of the enzyme for CaM by
about 1000-fold, a process termed as CaM trapping. A single
autophosphorylated subunit can also rapidly phosphorylate its
neighbors. Thus, a brief Ca2+ stimulus in the synapse can lead
to the persistence of Thr286-autophosphorylated CaMKII that
represents molecular memory (Figure 2). Autophosphorylation
at Thr286 is an essential event in the induction of LTP that
underlies memory formation.

Once Ca2+/CaM dissociates from the kinase, cis-
autophosphorylation occurs at the CaM binding domain of
CaMKII at the Thr305/306 position. Phosphorylation at these
sites, termed as “inhibitory” or “burst” autophosphorylation,
prevents the binding of Ca2+/CaM and hence kinase
cannot be further stimulated. Autophosphorylation at
Thr305 and Thr306 before phosphorylation of Thr286

makes the kinase non-responsive to Ca2+/CaM stimulus
and such a kinase cannot be activated. On the other
hand, if Thr286 gets autophosphorylated first, it leads
to a holoenzyme in which Thr305 and Thr306 are
protected by Ca2+/CaM and cannot be phosphorylated
(Bhattacharyya et al., 2020). It is also reported that CaMKII
phosphorylation at Thr305/306 is selectively promoted
by LTD inducing stimuli and not by LTP inducing
stimuli, and phosphorylation at Thr305/306 directs CaMKII
movement during LTD from excitatory to inhibitory
synapses. This phosphorylation can also reduce the activity
of phospho-Thr286 CaMKII in the absence of Ca2+

(Cook et al., 2021).
The first snapshot of the 3D structure of this enzyme

was an electron microscopy (EM) image of CaMKII purified
from rabbit skeletal muscle (Woodgett et al., 1983) that
revealed a symmetrical hexagonal structure, composed of two
stacked 6-membered rings. Since then, several hypotheses
have been proposed about its structure in relation to its
function. The catalytic/autoregulatory domains of each
subunit are attached to the hexameric ring by a stalk-
like appendage that presumably allows subunits to behave
independently of one another for activity and Ca2+/CaM
binding, but in concert with one another for the intra-
holoenzyme autophosphorylation reaction (Figure 1B). Most
of the crystallographic studies provided structures at atomic
resolution of truncated forms having single or multiple domains
(Hoelz et al., 2003; Rosenberg et al., 2006) giving insights on
the mechanism of catalytic activity and atomic level details
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FIGURE 1 | (A) Linear representation of CaMKII structure showing catalytic, autoregulatory, variable and association domains. (B) CaMKII holoenzyme structure in
three different forms-CaMKII can exist predominantly in the activatable state with an extended conformation along with some non-activatable states, which are
represented as both compact form and kinase domain paired form. The different subunits of a single CaMKII holoenzyme can exist in any combination of the three
forms. Purple color indicates kinase domain, peach color denotes association domain, and red color indicates regulatory domain (Myers et al., 2017).

FIGURE 2 | Basic activation mechanism of CaMKII that leads to autonomy resulting from Thr286 autophosphorylation. Under basal conditions, the enzyme is present
in an autoinhibited state with the regulatory segment bound to the catalytic domain. This can be activated by the binding of Ca2+/CaM to the regulatory domain
which releases the regulatory segment from the catalytic domain. The activated enzyme can autophosphorylate at Thr286 or any other substrates. The autonomous
CaMKII thus generated can be catalytically active even in the absence of Ca2+/CaM.
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of the interactions holding the 3D structure and interactions
between domains.

The recent studies based on single-particle EM (Myers
et al., 2017; Bhattacharyya et al., 2020) in combination with
biochemical and live-cell imaging experiments (Buonarati et al.,
2021) further substantiated the multimeric structure of CaMKII
holoenzyme having a rigid central hub complex formed by the
association domains. The kinase domains are linked to the hub
by the intrinsically disordered and highly flexible linker regions
(residues 301–344) so that they can readily perform inter-subunit
autophosphorylation. The holoenzymes range from 15–35 nm in
diameter. This model also predicts that CaMKII holoenzymes
can exist in three different conformations. Among these three
conformations, <3% of the holoenzymes are in the compact
conformation, ∼20% appears to form kinase dimers and most
of the kinase domains are ordered independently both in vitro
and inside the cells. CaMKII holoenzymes which appear as either
compact or kinase dimers are inactive, whereas the fraction
with fully extended kinase domains is in the activatable state
(Figure 1B; Myers et al., 2017; Bayer and Schulman, 2019).

The formation of extended intra-holoenzyme kinase dimers
could enable cooperative activation by CaM in both α and β

isoforms (Myers et al., 2017; Bhattacharyya et al., 2020; Buonarati
et al., 2021) but there could be distinct steric positioning of
kinase domains in the CaMKIIα versus β holoenzyme due to
differences in the linker length. This explains the differences in
the autophosphorylation states of both the isoforms; CaMKIIα
acquires Thr286 phosphorylation more readily than Thr305/306

phosphorylation whereas inhibitory autophosphorylation at
Thr306/307 in CaMKIIβ occurs more readily. Inter-holoenzyme
kinase dimer formation is thought to involve a high order
clustering among CaMKII holoenzymes and is present in
minimal quantities under normal physiological conditions for
both the isoforms. But it is enhanced in both excitotoxic and
ischemic conditions and the high-order CaMKII clustering
formed by inter-holoenzyme kinase domain dimerization is
reduced for the β isoform for both basal and excitotoxicity-
induced clusters, both in vitro and in neurons (Buonarati et al.,
2021). Much of the studies on holoenzyme structure have
been carried out using homomers of either α or β isoforms.
However, heteromultimeric CaMKII formed by α and β is
known to play key functions in the brain. Structural insights
into heteromultimeric forms of CaMKII would help in further
advancing the understanding of the physiological functioning
of this enzyme. It has been also noted that a small percentage
(<4%) of holoenzymes of CaMKIIα were found as 14-mers even
with full-length kinase domains (Myers et al., 2017) whereas
CaMKIIβ can even exist in 16-mers (Buonarati et al., 2021). The
existence of a full-length 14-mer is thought to be an intermediate
state in which the exchange of subunits is possible (Myers et al.,
2017) and it entails the exchange of activated subunits between
two activated, or an activated and a non-activated holoenzyme
(Bhattacharyya et al., 2020). This hypothesis was supported by
the finding that proteolytic cleavage of the kinase domains from
a 12-meric holoenzyme preparation results in the subsequent
formation of 14-meric hub domain assemblies (Rosenberg et al.,
2006). The function of this kind of subunit exchange is currently

unknown, but it is speculated that it can be a part of repair
mechanisms of individual subunits and/or synaptic plasticity
mechanisms (Bayer and Schulman, 2019).

Ca2+/CALMODULIN-DEPENDENT
PROTEIN KINASE TYPE II ACTIVATION
IN RESPONSE TO Ca2+ INFLUX
THROUGH N-METHYL-D-ASPARTATE
RECEPTOR

N-Methyl-D-aspartate receptor (NMDAR) is an ionotropic
glutamate receptor with high Ca2+ permeability that plays
an important role in excitatory neurotransmission in the
central nervous system (CNS). Glutamate binding to α-amino-
3-hydroxy-5-methyl-4-isoxazole propionic acid receptors
(AMPARs) can induce depolarization in the postsynaptic
membrane of glutamatergic synapses. The binding of glutamate
and glycine and the depolarization-induced removal of Mg2+

block causes NMDAR to open and conduct Ca2+ and Na+ into
the cell. This Ca2+ influx activates several important signaling
pathways involving different protein kinases including CaMKII
and phosphatases. Activated CaMKII can bind to various
membrane proteins as listed in Table 1. The enzyme can interact
with each of these proteins either in the Ca2+/CaM activated
form or in the autophosphorylated form. It can bind with high
affinity at the GluN2B subunit of NMDAR and phosphorylate
GluN2B-Ser1303 (Omkumar et al., 1996). GluN2B-binding can
also happen at the T-site of CaMKII (site where Thr286 is bound
in the inactive state) making the enzyme permanently active even
after the Ca2+ stimulus subsides (Bayer et al., 2001). In addition,
the kinetic parameters of CaMKII activity and its affinity for
ATP are altered in an allosteric manner upon binding to GluN2B
(Pradeep et al., 2009; Cheriyan et al., 2011; Madhavan et al.,
2020) and this regulation is limited only to the subunit of the
enzyme that binds GluN2B (Cheriyan et al., 2012). CaMKII
activated in the cytosol can translocate to the postsynaptic
membrane where the NMDAR complex is embedded in the
postsynaptic density (PSD). CaMKII reversibly translocates to
synaptic sites in response to brief stimuli, but its resident time
at the synapse increases after longer stimulation (Bayer et al.,
2006). It is also reported that the phosphorylation status of
GluN2B at Ser1303 also regulates GluN2B-CaMKII interaction
(Raveendran et al., 2009), whereas the phosphorylation status
of Ser1303, in turn, is regulated by the action of kinases and
phosphatases (Ramya et al., 2012). In the GluN2B-bound state,
the enzyme becomes resistant to the action of phosphatases
(Cheriyan et al., 2011) indicating GluN2B-induced structural
changes which can be abolished by specific mutations in CaMKII
(Mayadevi et al., 2016). This could be a possible reason for
the resistance of phospho-Thr286-CaMKIIα to phosphatases in
the PSD (Mullasseril et al., 2007). Autonomy of CaMKII due
to GluN2B-binding can be terminated only by dissociation of
CaMKII from GluN2B. Repeated Ca2+ influx through NMDAR
promotes the persistent binding of CaMKII to GluN2B which
occurs during LTP (Bayer et al., 2006).
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TABLE 1 | Protein ligands of CaMKII in the postsynaptic compartment of
glutamatergic synapses.

Sl.
No.

Protein ligand
to which
CaMKII binds

Region of binding Functional
implications of
this binding

Reference(s)

1 NMDAR
subunit GluN2B

839–1120 The binding
requires auto
phosphorylated
CaMKII; tethering
at the synaptic
membrane; LTP

Lisman et al.,
2012

2 NMDAR
subunit GluN2B

1289–1310 Activated CaMKII
can bind;
tethering at the
synaptic
membrane; LTP

Lisman et al.,
2012

3 NMDAR
subunit GluN2A

1349–1464 Synaptic
targeting

Gardoni et al.,
1999

4 NMDAR
subunit GluN1

845–863 Synaptic
targeting

Leonard et al.,
2002

5 Cav1.2 1589–1690 Tethering at the
synaptic
membrane

Hudmon et al.,
2005

6 Densin-180 1247–1495 Membrane
localization

Strack et al.,
2000b; Robison
et al., 2005

7 Tiam 1 1540–1560 Constitutive
CaMKII
activation; LTP

Saneyoshi et al.,
2019

8 Ether-a-go-go
(Eag)

731–803 Constitutive
CaMKII
activation; LTP

Sun et al., 2004

Long Term Potentiation Induction by the
Activation of N-Methyl-D-Aspartate
Receptors-Role of
Ca2+/Calmodulin-Dependent Protein
Kinase Type II in N-Methyl-D-Aspartate
Receptor-Dependent Long Term
Potentiation
LTP is a process in which brief periods of synaptic activity
produces long-lasting increase in the strength of a synapse, as
shown by an increase in the size of the excitatory postsynaptic
current (EPSC) (Lisman et al., 2012; Bliss and Collingridge,
2019). Several studies have shown that LTP has the essential
characteristics of a cellular mechanism that could underlie
memory and can serve as an excellent cellular model of memory.
Impairment in LTP formation predicts memory impairment in
human subjects (Di Lorenzo et al., 2020). LTP occurring at
CA3-CA1 synapses (between Schaffer collateral (SC) terminals
and CA1 pyramidal neurons) of the hippocampal region is
mainly mediated through NMDARs and occurs predominantly
by postsynaptic modifications (MacDonald et al., 2006). This
model of LTP is a suitable model for associative learning
(Baltaci et al., 2019).

LTP has an early phase which is independent of protein
synthesis, called early-LTP (E-LTP), and a late phase (L-LTP)
which involves the activation of transcription factors and is

dependent on protein synthesis, during which structural changes
are observed. Single brief tetanus leads to E-LTP that lasts
up to 1–3 h and intermittent and repetitive stimulations (or
single stronger tetanus) produce L-LTP that lasts at least
24 h (Baltaci et al., 2019). During the induction of LTP,
Ca2+ influx through NMDARs activates signaling pathways
that lead to synaptic modifications (Malenka et al., 1989).
NMDAR-dependent LTP requires one or more trains of 100 Hz
stimulations (Baltaci et al., 2019).

Over three decades of study suggests that CaMKII is one
of the key players in LTP (Zalcman et al., 2018). Inhibition of
CaMKII activity blocks the induction as well as maintenance
of LTP (Malenka et al., 1989; Malinow et al., 1989; Tao
et al., 2021). In response to sufficient influx of Ca2+ into the
postsynaptic neuron, CaMKII gets activated by the binding
of Ca2+/CaM and autophosphorylated at Thr286. Both these
forms of CaMKII can translocate to PSD and bind to GluN2B.
Autonomously active nature of Thr286 phosphorylated CaMKII
as well as GluN2B-bound CaMKII is proposed to contribute
toward molecular memory. But Thr286 autophosphorylation
does not have an essential role in NMDAR dependent synaptic
potentiation in early postnatal development and in adult dentate
gyrus, where neurogenesis occurs (Giese, 2021). Persistent
nature of GluN2B-CaMKII interaction could also contribute
towards its role in maintaining synaptic strength (Sanhueza
et al., 2011). If this interaction is impaired by mutations
on the binding sites on CaMKII and/or GluN2B (Yang and
Schulman, 1999; Strack et al., 2000a; Mayadevi et al., 2002;
Pradeep et al., 2009), then LTP gets impaired (Barria and
Malinow, 2005). The binding of GluN2B locks CaMKII in
an active conformation and the enzyme can phosphorylate
its substrates present in the PSD. The protein substrates of
CaMKII in the PSD and the physiological consequences of
their phosphorylation status are listed out in Supplementary
Table 1 (McGlade-McCulloh et al., 1993; Inagaki et al., 1997;
Gardoni et al., 2003, 2006; Oh et al., 2004; Chen and Roche,
2007; Shin et al., 2012; Zhang et al., 2019; Zybura et al.,
2020). One of the main effectors of LTP is AMPAR. CaMKII
that is localized in PSD through interaction with GluN2B
can phosphorylate Ser831 residue of the GluA1 subunit of
AMPAR causing potentiation of the single channel conductance
of AMPAR (Figure 3; Barria et al., 1997a,b). As part of
LTP, more AMPARs are recruited to the synapses and this
process is called AMPAfication (Malenka and Nicoll, 1999).
The process of AMPAfication makes the transmission even
stronger (Zhu and Malinow, 2002). It is also reported that
the interaction of CaMKII with GluN2B effects a liquid-liquid
phase separation with co-segregation of AMPA receptors and
the synaptic adhesion molecule neuroligin into a phase-in-phase
assembly indicating the formation of functional nanodomains in
the synapse (Hosokawa et al., 2021).

Other than AMPAR, CaMKII has other downstream
targets such as transmembrane AMPAR-regulatory proteins
(TARPs). TARPs are auxiliary proteins that help in AMPAR
functions and trafficking (Jackson and Nicoll, 2011). They
have several phosphorylation sites for CaMKII which are
implicated in the positioning and trapping of AMPAR in
PSD (Supplementary Table 1). The C-tail of the TARP family
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FIGURE 3 | Schematic diagram shows the role of CaMKII in LTP. CaMKII activity at the PSD is essential for the induction and maintenance of LTP, either through (i)
enhancement of AMPAR conductance or through (ii) AMPAfication of the postsynaptic site. In either of these functions, activation of CaMKII along with its
translocation to its own adapters at the PSD, especially to the GluN2B subunit of NMDAR is essential. The translocated CaMKII can phosphorylate its substrates
involved in the induction and maintenance of LTP. (i) AMPAR potentiation-The phosphorylation at Ser831 of GluA1 of AMPAR by CaMKII enhances the single channel
conductance of AMPAR especially AMPAR formed by GluA1 homomers (Derkach et al., 1999). (ii) AMPAfication (conversion of silent synapses to active synapses)-
AMPARs are positioned in the PSD by interaction with many proteins, especially stargazin. Phosphorylation of stargazin by CaMKII results in its dissociation from lipid
rafts and binding to PSD95 to make more AMPAR slots on the membrane (slot hypothesis for AMPAfication). In addition to this, CaMKII can phosphorylate SynGAP
which results in its elimination from the synapse followed by the activation of Ras/ERK signaling which mediates AMPAfication or AMPAR recruitment to the PSD.
These signaling cascades finally lead to spine enlargement.

member, stargazin (TARPγ-2) can be phosphorylated by CaMKII
which disrupts the interaction of stargazin with phospholipids
in the membrane and eventually allows stargazin to bind with
PSD95, a major scaffolding protein in PSD to which many
other proteins can bind. In this way, stargazin can trap AMPAR
in the PSD (Opazo et al., 2010; Hafner et al., 2015). It is also
known that the hippocampally enriched TARPγ-8, but not
TARPγ-2/3/4, is a critical CaMKII substrate necessary for LTP
induction. The residues of TARPγ-8, Ser277 and Ser281 are major
phosphorylation sites for CaMKII, which sufficiently enhances

AMPAR transmission. Mutations of these residues impair
LTP, without affecting AMPAR-mediated basal transmission
and protein levels of AMPAR in PSD or extrasynaptic regions
(Park et al., 2016).

CaMKII can also trap AMPAR in the postsynaptic site
through other pathways such as Ras/ERK signaling. In the
postsynaptic site, SynGAP (synaptic Ras/Rap GTPase-activating
protein) is highly enriched and harbors phosphorylation sites
for CaMKII. SynGAP contains C-terminal PDZ binding domain
which interacts with PSD95 under basal conditions. During
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LTP induction, CaMKII can phosphorylate this protein. This
phosphorylation decreases the affinity of SynGAP toward PSD95,
which in turn dissociates away from the same. The massive
removal of SynGAP makes more PSD95 available for binding
of TARPs and thereby AMPAR trapping in the postsynaptic site
(Figure 3; Gamache et al., 2020).

The synaptic SynGAP dispersion also decreases its RasGAP
activity, leading to the activation of Ras/ERK signaling crucial
for AMPAR delivery (Walkup et al., 2016). The phosphorylation
of SynGAP by CaMKII leads to activation of Ras/ERK signaling
and inactivation of Rap. The activation of Ras/ERK signaling
drives AMPAR delivery to the postsynaptic site whereas Rap
mediates AMPAR removal upon its activation. Thus, SynGAP
phosphorylation by CaMKII can enhance AMPAR recruitment
during LTP (Zhu et al., 2002; Rumbaugh et al., 2006; Wang C.C.
et al., 2013; Araki et al., 2015; Walkup et al., 2015).

LTP is also accompanied by increase in spine volume mediated
by activation of CaMKII. Activated CaMKII can influence the
activity of Rho GTPase–regulatory proteins [e.g., RhoGEFs
(guanine nucleotide exchange factors that activate Rho GTPases)
and/or RhoGAPs (GTPase-activating proteins that inhibit Rho
GTPases)] to promote actin polymerization in the head and
neck region of dendritic spines (Herring and Nicoll, 2016). This
results in an increase in size of the spine head and diameter
of the neck. Increased actin polymerization also results in
the reorganization of PSD proteins in such a way that more
AMPARs can be incorporated. SynGAP dispersion from PSD
resulting from CaMKII phosphorylation is also related to spine
enlargement (Araki et al., 2015).

LTP induction is also associated with the rapid formation
of a positive feedback loop, formed by a reciprocally activating
kinase-effector complex (RAKEC) in dendritic spines, which
consist of CaMKII and Tiam1, a Rac1-specific guanine nucleotide
exchange factor (Rac-GEF). Activated CaMKII can persistently
interact with Tiam1, in stimulated spines enabling the persistence
and confinement of a molecular memory (Saneyoshi et al.,
2019). The constitutive activation of CaMKII by occupation of
its T-site would help to maintain Tiam1 phosphorylation even
after Ca2+ concentration subsides. This mechanism can therefore
convert transient Ca2+ signaling into a persistent activation of
Rac1 (protein required for spine formation and enlargement)
and its downstream actin regulators. This pathway helps in the
maintenance of the enlarged spine and thereby contributes to
structural LTP (Kojima et al., 2019).

NMDAR activation in pyramidal neurons causes CaMKII-
dependent phosphorylation of the guanine-nucleotide exchange
factor (GEF), kalirin-7 at residue Thr95, regulating its GEF
activity, leading to activation of Rac1 and rapid enlargement of
existing spines. Kalirin-7 also interacts with AMPA receptors and
controls their synaptic expression (Xie et al., 2007).

During LTP maintenance, the levels of protein kinase M
zeta (PKMζ), a constitutively active protein kinase C (PKC)
isoform, are elevated. PKMζ maintains synaptic potentiation
by preventing AMPAR endocytosis and promoting stabilization
of dendritic spine growth. Inhibition of PKMζ, with zeta-
inhibitory peptide (ZIP), can reverse LTP and impair established
long-term memories (LTMs). Activated CaMKII can release
the translational block on PKMζ mRNA, thereby helping in

long-term maintenance of LTP (Patel and Zamani, 2021). It
has been shown by direct evidence that CaMKII is essential for
memory storage (Rossetti et al., 2017) by using a kinase-dead
mutant (K42M) in the hippocampus where the mutant disrupted
CaMKII signaling in vivo.

Putative Mechanisms of Memory Storage by
Ca2+/Calmodulin-Dependent Protein Kinase Type II
While considerable insights have been obtained on the
mechanisms by which LTP-inducing tetanic stimuli are
converted to enhanced AMPAR activity at the postsynaptic side,
the mechanisms by which the potentiated state is maintained
has been intensively debated (Giese et al., 1998; Buard et al.,
2010; Coultrap et al., 2012; Chang et al., 2017; Giese, 2021; Tao
et al., 2021). Even long-lasting structural changes such as spine
enlargement are maintained by dynamic molecular mechanisms
(Gamache et al., 2020). Among the several molecular systems that
were proposed to sustain altered biochemical states, the bistable
switch model involving CaMKII (Lisman and Zhabotinsky,
2001) has attracted considerable attention, in which the
unphosphorylated and Thr286-phosphorylated states of CaMKII
represented the “OFF” and “ON” states respectively. The ability
of the CaMKII oligomer to sustain its autophosphorylated state
by autonomous activity has initially been proposed to convert
information encoded in Ca2+-spikes into stable biochemical
traces (Miller and Kennedy, 1986; Hudmon and Schulman,
2002). However, rigorous computational modeling studies
showed that successful functioning of the switch requires the
participation of protein phosphatase 1 (PP1) and GluN2B (Miller
et al., 2005; Michalski, 2013; Urakubo et al., 2014; Lisman and
Raghavachari, 2015). The switch was predicted to function in
an energy-efficient manner and remain active despite protein
turnover (Lisman and Zhabotinsky, 2001). In the unpotentiated
synapse, the switch will be in the “OFF” state with CaMKII
mostly unphosphorylated. Any phosphorylation supported by
resting Ca2+ concentration will be successfully annihilated by
PP1–mediated dephosphorylation thereby preventing a slow
drift to the autophosphorylated “ON” state thus providing
stability to the “OFF” state.

LTP-inducing stimulus causes extensive CaMKII
autophosphorylation at Thr286 due to high Ca2+ levels.
Autophosphorylated CaMKII that translocates to the PSD will
be more than sufficient to saturate the available PP1 activity.
Thus, autophosphorylated CaMKII would compete out PP1
activity and thus the high level of autophosphorylation and
autonomous activity will be maintained thereby giving stability
to the “ON” state. Continued phosphorylation required to negate
the effect of PP1 activity while maintaining the “ON” state,
leads to consumption of energy in the form of ATP. The model
predicted the switch to function in an energy-efficient manner
with minimal consumption of ATP and remain active despite
protein turnover (Lisman and Zhabotinsky, 2001). Evidence
obtained later was in accordance with these predictions on the
final functional outcome of the switch, although it involved
additional mechanisms than the predicted ones. Accordingly,
the revised model (Lisman and Raghavachari, 2015) predicts that
energy efficiency is achieved by the reduced dephosphorylation
rate of the GluN2B-bound CaMKII (Cheriyan et al., 2011;
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Mayadevi et al., 2016). Stability against protein turnover is
possible since protein turnover operates by subunit exchange
between holoenzymes. Thus, replacement of a phosphorylated
subunit with a new, unphosphorylated subunit will be followed
by phosphorylation of the newly recruited subunit by adjacent
autonomous subunits (Stratton et al., 2014; Lisman and
Raghavachari, 2015).

In its “ON” state, the switch can initiate and maintain long-
term strengthening of the synapse by the multiple mechanisms
described above (see section entitled “LTP Induction by the
Activation of NMDARs-Role of CaMKII in NMDAR-Dependent
LTP”). But later studies indicated that the autophosphorylation
of CaMKIIα was required only for rapid learning especially
induced by a single stimulus but was not essential for memory
formed by multiple trial learning (Irvine et al., 2005, 2011). This
was further supported by the evidence that autophosphorylation
at Thr286 lowers the stimulation frequency required to induce
synaptic plasticity and permits CaMKII to better integrate Ca2+

signals at physiologically relevant frequencies that would happen
only in LTP induction and not in maintenance (Chang et al.,
2017). These findings are not consistent with the bistable switch
model in which Thr286 autophosphorylation is an essential
element. These studies suggest that Thr286 autophosphorylation
might have a major role in the initial capture of information
encoded in the synaptic Ca2+ spikes with more efficiency.
However, inhibition of CaMKII activity can erase LTP showing
the involvement of CaMKII in LTP maintenance, further
suggesting that CaMKII acts as a molecular storage device
(Tao et al., 2021).

CaMKII activity necessary for LTP maintenance at resting
Ca2+ concentrations could be arising from the autonomous
forms of CaMKII, Thr286-phosphorylated or GluN2B-bound. If
Thr286 is dispensable (Irvine et al., 2005, 2011; Chang et al.,
2017) as mentioned above, the GluN2B-bound form of CaMKII
could provide the autonomous activity. However, in the PSD,
all the CaMKII subunits in a holoenzyme need not be bound
by GluN2B unlike the in vitro experiments (Bayer et al., 1999)
in which all CaMKII subunits could be bound by GluN2B.
Whether the autonomous activity of the GluN2B-bound subunits
of CaMKII in the PSD would be sufficient to maintain LTP
needs further investigation, since GluN2B-binding does not
spread to other subunits of a holoenzyme of CaMKII like Thr286

autophosphorylation.

REGULATION OF TRANSLATION OF
Ca2+/CALMODULIN-DEPENDENT
PROTEIN KINASE TYPE II IN SYNAPTIC
PLASTICITY

Gene expression needed for long-lasting synaptic plasticity is
tightly regulated. In particular, protein synthesis, regulation of
mRNA transport and mRNA stability contribute to the control
of gene expression. mRNA translation happens in synaptic
locations - dendrites and dendritic spines, which are filled with
polyribosomes, translation factors, and mRNAs (Steward and

Levy, 1982; Crino and Eberwine, 1996; Job and Eberwine, 2001;
Steward and Schuman, 2001).

Regulation of
Ca2+/Calmodulin-Dependent Protein
Kinase Type II by Cytoplasmic
Polyadenylation Element-Binding Protein
in Long Term Potentiation
Cytoplasmic polyadenylation element (CPE) present in the 3′
untranslated region (UTR) of mRNAs plays a major role in the
regulation of translation in response to cellular signals (Klann
and Dever, 2004). CPE sequence present in CaMKIIα mRNA
helps in its rapid translation during LTP (Ouyang et al., 1997;
Giovannini et al., 2001).

The neuronal CPE-binding protein (CPEB) protein from
Aplysia has an amino-terminal extension, which can be converted
into a prion-like molecule and this mechanism will aid in
sustained protein synthesis. Thus, this process would play crucial
roles during synaptic plasticity (Si et al., 2003). CPEB blocks
translation when it is bound to CPE. Upon phosphorylation,
CPEB can dissociate from CPE thereby triggering a series of
molecular events leading to initiation of translation. CPEB can
be phosphorylated by CaMKII (Wu et al., 1998). CPE-mediated
translation following membrane depolarization is also CaMKII-
dependent (Lisman et al., 2002). The 3′UTR of CaMKII and
other specific mRNAs bind CPEB and polyadenylation specificity
factor (CPSF) leading to translational arrest. With NMDAR
activation, aurora kinase and CaMKII get activated leading
to phosphorylation of CPEB. This is followed by CPEB-CPSF
interaction which allows poly(A) polymerase (PAP) recruitment
to this complex. PAP initiates the poly(A) tail elongation. This
in turn activates poly(A)-binding protein (PABP) which binds to
poly(A) tail and initiates interaction with elongation factor eIF4G
and thereby activates translation.

Hence, CaMKII activation after LTP activates the CPE-
dependent translation which in turn translates CaMKIIα
mRNA. This feedforward mechanism is very important for
maintaining sustained protein synthesis in LTP and memory
(Klann and Dever, 2004).

Regulation of
Ca2+/Calmodulin-Dependent Protein
Kinase Type II by Elongation Factors in
Long Term Potentiation
Translation can be regulated even at the elongation level via
phosphorylation of the eukaryotic elongation factor 2 (eEF2),
which is a GTP binding protein (Moldave, 1985). eEF2 kinase is
regulated by mammalian target of rapamycin (mTOR) activation,
which phosphorylates the eEF2 kinase near the CaM binding site,
resulting in decreased kinase activity (Browne and Proud, 2004).

In dendrites of cultured cortical neurons (Marin et al., 1997)
and tadpole tecta (Scheetz et al., 1997), NMDAR activation leads
to phosphorylation of the eEF2 factor thus leading to elongation
becoming a rate-limiting step in translation. This is correlated
with increased CaMKIIα synthesis but decrease in overall protein
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synthesis (Scheetz et al., 2000). Similarly, chemically-induced
LTP also leads to increased eEF2 phosphorylation with decreased
protein synthesis, but with increase in Arc and Fos protein
levels (Chotiner et al., 2003). So, phosphorylation of eEF2 leads
to overall decrease in protein synthesis but with exceptions of
increased translation like that of CaMKIIα (Scheetz et al., 2000).

REGULATION OF NEUROMODULATOR
RELEASE BY
Ca2+/CALMODULIN-DEPENDENT
PROTEIN KINASE TYPE II

The neurotrophins (NTs) are involved as major players in
synaptic development and synaptic plasticity (Poo, 2001). Among
the NTs – Neuregulin (NRG), BDNF, NT-3 and NT-4, extensive
research has been done on BDNF and its role in synaptic
plasticity. Postsynaptic NMDAR gating is regulated by BDNF
signaling (Levine et al., 1995, 1998). BDNF is important in
LTP, as seen by lack of proper establishment of LTP in BDNF
knockout (KO) mouse models (Korte et al., 1995; Patterson et al.,
1996). BDNF supports high-frequency transmitter release, which
is required for LTP induction (Figurov et al., 1996; Gottschalk
et al., 1998; Pozzo-Miller et al., 1999; Abidin et al., 2006).

Moro et al. (2020) reported reduced BDNF secretion in
mouse deficient in α and β CaMKII [αβCaMKII double-knockout
(DKO)] hippocampal neurons. These neurons had drastically
reduced levels of BDNF and fewer BDNF containing dense
core vesicles (DCV) targeted to the axon, leading to fewer
DCVs per synapse and thus reduced BDNF secretion upon
stimulation. CaMKIIβ is crucial for increasing the amount
of secreted BDNF by CaMKIV and phospho-cAMP-response
element binding protein (CREB) pathway. Interestingly, active
CaMKIIβ and not CaMKIIα or inactive CaMKIIβ/CaMKIIα
could restore the reduced levels of BDNF expression (Moro et al.,
2020). BDNF binds to TrkB and this activates CaMKIIβ further
leading to a series of downstream signaling events. Subsequently,
Ca2+/CaM enters into the nucleus and CaMKIV gets activated,
phosphorylating CREB at Ser133 position, along with nuclear-
localized neurogranin. Phosphorylated CREB promotes BDNF
transcription (Wheeler et al., 2008; Ma et al., 2014; Wang
et al., 2017). Thus, BDNF-mediated activation of CaMKIIβ acts
as a positive feedback loop to initiate the expression of the
neuromodulator (Moro et al., 2020).

Ca2+/CALMODULIN-DEPENDENT
PROTEIN KINASE TYPE II IN
AXONAL/DENDRITIC GROWTH
REGULATION PROMOTING SYNAPTIC
STRENGTH

Role of Ca2+/Calmodulin-Dependent
Protein Kinase Type II α
Alterations in synaptic strength are brought about
majorly through post-translational modifications such as

phosphorylation or dephosphorylation of synapse associated
proteins (Davis and Squire, 1984; Yan-You Huang et al., 1996).
Miller et al. showed that mutating the targeting signal at the
3′UTR of CaMKIIα mRNA caused significant reduction in
the level of CaMKIIα in PSDs and impairments in L-LTP and
LTM. The 3′UTR mutants in BL6 mice showed poor behavioral
performances in fear conditioning, water maze and object
recognition indicating cognitive alterations (Miller et al., 2002).

Wu et al. (1998) and Wells et al. (2001) demonstrated that
dendritic CaMKIIα is inducible by showing an increase in
CaMKIIα in synaptosomes prepared from the visual cortex of
dark-reared rat pups that were transferred to light. Tetanic
stimulation was found to increase CaMKIIα levels in stratum
radiatum of CA1 (Ouyang et al., 1999), which suggests that
CaMKIIα present in PSDs, might arise from the activity-
dependent translation of dendritic mRNAs. Assembly of CaMKII
holoenzymes occur after the translation of the subunits. The
β subunit facilitates the association of the holoenzyme with
actin cytoskeleton and thereby localization to the synapses (Shen
et al., 1998). Since the mRNA of β subunit is located only in
the soma (Burgin et al., 1990), some of the CaMKIIα might
be transported into dendrites as pre-assembled holoenzyme
(Miller et al., 2002).

Miller et al. (2002) also showed that disrupting the dendritic
localization of CaMKIIα mRNA disrupted LTM but not short-
term memory (STM) formation. Hence, dendritic CaMKIIα
might be a requirement for memory consolidation. Local
CaMKIIα synthesis might facilitate transmission by regulating
AMPAR phosphorylation (Barria et al., 1997b) or by inserting
additional AMPARs into the synapse (Hayashi et al., 2000).
CaMKIIα has also been reported to be stabilizing the dendritic
arbors and thus regulating synapse shape and density (Wu
and Cline, 1998; Koh et al., 1999; Rongo and Kaplan, 1999).
Filopodia-like extensions and movements in the dendritic arbors
play an important role for neurons in order to determine new
contact sites, which can then evolve into nascent synapses and
mature into functional synaptic connections (Vaughn, 1989;
Jontes and Smith, 2000; Wong and Wong, 2000; Ahmari and
Smith, 2002). For all these mechanisms, continued supply of
CaMKIIα is mandatory and this might be supported via the
dendritic translation of CaMKIIα.

Role of Ca2+/Calmodulin-Dependent
Protein Kinase Type II β
Motility and plasticity of axonal and dendritic arbors, leading
to alterations in synaptic contacts (Fischer et al., 1998; Zou
and Cline, 1999; Jontes et al., 2000; Colicos et al., 2001),
play significant roles in developing and mature neurons.
Shen et al. (1998) showed localization of CaMKIIβ to the
actin cytoskeleton, thus demonstrating its role in actin-related
morphology modifications. CaMKIIβ overexpression increased
the number of synapses whereas inhibiting CaMKIIβ caused
significant reduction in motility of filopodia as well as in
small dendritic branches with long-term decrease in the degree
of dendritic arborization (Fink et al., 2003). In developing
hippocampal neurons, CaMKIIβ promotes arborization of the
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dendritic tree whereas in mature neurons, it has a strong
morphogenic effect, leading to dendritic remodeling rather than
overall arborization. CaMKIIβ, and not CaMKIIα is expressed
in early development when the neurons build the dendritic
arbor (Bayer et al., 1999). Even in the hippocampal region
where CaMKIIα expression is exceedingly high, CaMKIIβ
dominates during the first postnatal week, thus implying
its direct role in morphogenic activity. A small insert in
CaMKIIβ is responsible for its F-actin localization and for
selective upregulation of dendritic motility. Wang Q. et al.
reported that CaMKIIβ that has a longer linker of 93 amino
acids (aa) binds more strongly and efficiently to F-actin
than does CaMKIIα which has only a 30 aa linker (Wang
Q. et al., 2019). They show that peptides derived from the
regulatory, linker and association domains of CaMKIIβ can
bind F-actin. Based on simulations, they calculated that about
20% of free energy of binding is contributed by the regulatory
domain. The remaining energy is derived from the linker and
association domains with nearly equal contribution. The linker
domain is flexible (Myers et al., 2017) and contributes to
the thermodynamics of binding unlike the association domain
which has higher rigidity and thus helps in maintaining strict
geometry between CaMKIIβ and the bound actin filaments.
Thus, the formation of the CaMKII/F-actin complex requires
the linker, regulatory and association domains of CaMKIIβ
(Wang Q. et al., 2019).

When a short sequence of the variable region of CaMKIIβ
was inserted in CaMKIIα, a partial colocalization and partial
effect on the dendritic morphology was observed. Thus,
neurons high in β isoform would have higher degree of
arborization with larger numbers of synapses, an example
being the cerebellar neurons having persistently high CaMKIIβ
levels than in neurons in the forebrain (Miller and Kennedy,
1985). This is reflected in the highly branched morphology
of cerebellar neurons when compared to neurons present
in the forebrain.

Another important question is how CaMKIIβ is activated.
One report suggested that actin and Ca2+/CaM involve in
competitive binding to CaMKIIβ (Shen and Meyer, 1999).
Fink et al. (2003) reported the involvement of Ca2+/CaM
binding to CaMKII for dendritic mobility. Ca2+/CaM levels
present in the unstimulated neurons were sufficient to induce
CaMKIIβ-dependent dendritic extension/motility. Hence,
Ca2+/CaM stimulus provided by basal neuronal activity in
cultures is sufficient for the morphogenic function of CaMKIIβ.
Since autophosphorylation at Thr287, which requires Ca2+/CaM
binding, was possible at basal conditions (25% of CaMKII
phosphorylation) (Molloy and Kennedy, 1991), sufficient
Ca2+/CaM should be present during basal neuronal activity
leading to partial CaMKIIβ activation. In contrast, CaMKIIα
requires stronger stimulation to activate AMPA receptors.
Thus, differential expression of the two CaMKII isoforms leads
to either strengthening of the synapse if CaMKIIα function
dominates or filopodia extension with synapse formation if
CaMKIIβ dominates.

The mRNA of CaMKIIα, and not β is present in the dendrites
and hence the protein translated in dendrites would have

CaMKIIα homomers which would not be actin localized. The
mixed population of both the isoforms, translated in the cell body
would create α/β hetero-oligomers that might bind to actin and
regulate filopodia extension and synapse formation (Mori et al.,
2000; Aakalu et al., 2001).

Protein kinase C-mediated phosphorylation of CaMKIIβ
is required for maintenance of spine morphology. PKC
phosphorylates CaMKIIβ at Ser315 during group I metabotropic
glutamate receptor (mGluR1) signaling which results in
CaMKIIβ/F-actin complex dissociation thereby repressing
formation and elongation of spines in mature Purkinje cells
(Sugawara et al., 2017).

Puram et al. (2011) found a centrosomal targeting sequence
(CTS) within the variable region of CaMKIIβ. The CTS mediates
the required CaMKII - pericentriolar material 1 (PCM1, a
centrosomal targeting protein) interaction which is required
for CaMKII localization to the centrosome. In the centrosome,
CaMKIIβ phosphorylates the E3 ubiquitin ligase Cdc20-APC
(cell division cycle 20–anaphase promoting complex) at Ser51,
thereby inducing Cdc20 dispersion from the centrosome and
thus inhibiting centrosomal Cdc20-APC activity. This triggers
the switch to retraction mode from growth of the dendrites.
This CaMKIIβ function at the centrosome is independent of
CaMKIIα.

Ca2+/Calmodulin-Dependent Protein
Kinase Type II Phosphorylation States in
Spine Size and Regulation
Spine size and synaptic strength were shown to covary in
experiments involving photolysis of caged glutamate, which is
present in individual spines (Matsuzaki et al., 2004; Zhang
et al., 2008). The spines present on dendrites can vary in
size (Lisman and Harris, 1993), which might correlate with
postsynaptic strength of the synapse at that particular spine
(Matsuzaki et al., 2001; Asrican et al., 2007). It is known
that by overexpressing autonomous (T286D)-CaMKIIα in CA1
hippocampal cells, there is enhancement in the synaptic strength
with Thr305/Thr306 sites not being phosphorylated. But there
is a decrease in synaptic strength when Thr305/Thr306 sites are
phosphorylated (Lisman et al., 2012). Interestingly, Pi et al.
(2010) showed that CaMKII and its various phosphorylation
states can regulate spine size. They found that all autonomous
forms of CaMKII can increase spine size. In other words,
CaMKII leads to spine enlargement irrespective of Thr305/Thr306

phosphorylation. Also, the T286D/T305D/T306D form can
increase spine size but at the same time decrease synaptic
strength. Thus, the mechanisms through which CaMKII regulates
spine structure and synaptic strength have different levels
of dependence on the phosphorylation state of the enzyme.
A T286D form with an additional mutation, K42R, that inhibits
enzymatic activity, could actually enhance spine size, with
no effect on synaptic strength, thus showing the importance
of the structural (non-enzymatic) role of CaMKIIα in this
postsynaptic process. Thus, the overall process might involve
two steps in which initial enzymatic activity is required for
initiating autophosphorylation at Thr286 followed by spine
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enlargement that does not require enzymatic activity. This
explains why the kinase-dead T286D mutant (K42R/T286D)
can support spine enlargement but not the T286A mutant
(Pi et al., 2010).

Role of Presynaptic
Ca2+/Calmodulin-Dependent Protein
Kinase Type II in Axon Terminal Growth
Extensive structural remodeling on the presynaptic and
postsynaptic sides of the synapse is important for synaptogenesis.
The axon growth cone is very dynamic as it responds to its
surrounding signals ultimately growing toward the target region
forming the synapse (Nesler et al., 2016). Alterations in axon
terminals occur very fast and also at distant sites from the cell
body. To enable these changes, the local machinery should be
active and working in the growth cone and presynaptic boutons.

Ca2+ is an important secondary messenger in axon growth
and guidance (Sutherland et al., 2014). Increased intracellular
Ca2+ levels can activate even enzymes such as protein kinase
A (PKA) through S100A1, a Ca2+-binding protein (Melville
et al., 2017). Ca2+ influx results in activating Ca2+/CaM-
dependent enzymes like calcineurin (CaN) and CaMKII (Faas
et al., 2011). Activation of CaMKII and PKA promotes
attraction of the growth cone toward external cues and dual
inhibition of both the enzymes leads to repulsion (Wen et al.,
2004). Synapsin is an important target for phosphorylation by
CaMKII in the presynaptic nerve terminals. The association of
synapsin with synaptic vesicles is reversible and it facilitates
vesicle clustering and presynaptic plasticity. This mechanism is
regulated by phosphorylation at specific sites by CaMKII and
PKA (Stefani et al., 1997; Hosaka et al., 1999). Synapsin gets
redistributed to sites of activity-dependent axon terminal growth
and thus regulates outgrowth via a PKA-dependent pathway
(Vasin et al., 2014).

CaMKII expression is post-transcriptionally regulated at
the level of translation by the microRNA (miRNA) containing
RNA-induced silencing complex (RISC) (Ashraf et al., 2006).
Nesler et al. (2013) observed that growth of new synaptic
boutons in response to spaced depolarization requires the
function of activity-regulated neuronal miRNAs including
miR-8, miR-289 and miR-958 in Drosophila larval ventral
ganglia. This suggests that mRNAs encoding synaptic proteins
might be regulated by these miRNAs. The fly CaMKII 3′UTR
has two putative binding sites for activity-regulated miR-289
(Ashraf et al., 2006). It is also reported that miR-148a/b can
target CaMKIIα through bioinformatics analysis and luciferase
assay (Liu et al., 2010). In animal models of schizophrenia
wherein the levels of miR-148b were significantly upregulated,
increased levels of CaMKIIα transcript did not lead to a
concomitant increase in protein levels (Gunasekaran et al.,
2022), implying miR-148b involvement in regulation of
CaMKIIα in vivo. Knockdown of CaMKII in the presynaptic
compartment using transgenic RNAi, disrupted activity-
dependent presynaptic growth as it prevented the formation of
new ghost boutons in response to spaced stimulus. Abundant
levels of phosphorylated CaMKII were found at the presynaptic

axon terminal. Spaced stimulation leads to accumulation of
a significant amount of total CaMKII protein in the axon
terminals. This increase was blocked by treatment with either
the translational inhibitor cycloheximide or presynaptic
overexpression of miR-289 suggesting a translation-dependent
mechanism. Similarly, presynaptic CaMKII has been implicated
in controlling both bouton number and morphology during
development of the larval neuromuscular junction (NMJ)
(Nesler et al., 2016). Presynaptic CaMKII has also been shown to
be involved in axon pathfinding in cultured neurons of Xenopus
(Wen et al., 2004).

ACTIVATION IN RESPONSE TO VOLTAGE
GATED CALCIUM CHANNELS

Voltage gated calcium channels (VGCCs) are present throughout
the neuronal membrane and are a major source of Ca2+.

especially in dendritic spines after a depolarization of the
membrane. Different subtypes of VGCCs are known with distinct
functions; mainly involved in Ca2+ influx into the cell as well as
in regulating gene transcription. Activation of dendritic VGCCs
can generate LTP, STP (short-term potentiation) or LTD. Perhaps
because of the distinct subcellular localization of VGCCs, LTP
induced due to their activation may use mechanisms distinct
from NMDAR-dependent LTP (Malenka and Nicoll, 1999). With
aging, LTP induction through NMDAR becomes lesser compared
to VGCC-dependent LTP, as shown by the limited sensitivity of
LTP generated in slices from older rats to NMDAR antagonists
and increased sensitivity to antagonists of L-type VGCC (Izumi
and Zorumski, 1998). Studies have also shown that repetitive
activation of VGCCs is involved in LTD (Pöschel and Manahan-
Vaughan, 2007) in a Ca2+-dependent manner. Among the
various categories of VGCCs, L-type VGCCs are mainly involved
in synaptic plasticity mechanisms.

In the CA1 area of hippocampus, an LTP component has
been found that is dependent only on the activation of VGCCs
without NMDAR (Grover and Teyler, 1990; Alkadhi, 2021) which
was later termed as VDCC LTP. Ca2+ entry through VGCCs
mediates LTP at thalamic input synapses to the lateral nucleus
of amygdala, which may be mechanistically different from the
NMDAR-dependent form of plasticity found in the hippocampus
but is still dependent on activated CaMKII (Weisskopf et al.,
1999). The conditional hippocampus/neocortex Cav1.2 (L-type
VGCCs) KO mouse demonstrates an essential role of Cav1.2
in CREB signaling during LTP and spatial learning (Moosmang
et al., 2005). In the cortical neurons, activation of T-type VGCCs
enhanced LTP and CaMKII autophosphorylation (Moriguchi
et al., 2012a). Even in the NMDAR-dependent mechanisms of
LTP and LTD (Di Biase et al., 2008), Cav channels are involved
(Zhao et al., 2021) by enhancing Ca2+ influx into the synaptic
site and through CREB mediated events.

Upon aging, the expression of NMDAR diminishes and its
subunit composition also changes (Zhao et al., 2009), whereas
VGCCs, especially the L-type channels, increase in expression
(Thibault and Landfield, 1996; Wang and Mattson, 2014) and
can majorly involve in LTP or LTD mechanisms. Activation of
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L-type VGCCs, especially Cav1.2 localized in the postsynaptic
membrane (Patriarchi et al., 2018) leads to Ca2+ influx into
the spine, which can activate CaMKII. Even if the expression
levels of GluN2B are lower, CaMKII can still tether to the
postsynaptic site by binding with the C-terminus of Cav1.2
(Hudmon et al., 2005). This binding, however, does not lead
to constitutively active CaMKII and hence, cannot support
molecular memory. The enzyme tethered at the membrane can
easily get activated with the trains of depolarization stimulus
and can facilitate further Ca2+ influx through these channels
(Ca2+-dependent facilitation).

ROLE OF
Ca2+/CALMODULIN-DEPENDENT
PROTEIN KINASE TYPE II IN LONG
TERM DEPRESSION

LTD is an activity-dependent reduction in the efficacy of neuronal
synapses (Malenka and Nicoll, 1999) and is thought to be
involved in learning and memory. It brings about a long-lasting
decrease in synaptic strength or a reversal of LTP mechanisms.
LTD is triggered by synaptic activation of either NMDARs or
metabotropic glutamate receptors (mGluRs). A low frequency
stimulation (LFS) of NMDARs (700–900 pulses at 1 Hz) can
activate LTD mechanisms (Figure 4). If the Ca2+ influx is
low in intensity (if the activation is only for a postsynaptic
compartment), it will majorly activate phosphatases and result
in LTD (Baltaci et al., 2019). Initially it was thought that protein
kinases are required for LTP and phosphatases are involved in
LTD. But recent findings suggest that kinases are involved in LTD
mechanisms also. It has been noted that the bath application of
CaMKII inhibitor KN-62 could block LTD during low-frequency
SC collateral stimulation (1 Hz/15 min) (Stanton and Gage,
1996). Experiments with CaMKIIα KO mice also pointed to the
role of CaMKII in LTD (Stevens et al., 1994). Even though these
initial experiments indicated the role of CaMKII in LTD, the
exact mechanism by which CaMKII participates in the process
is unknown. In contrast to the previously accepted dogma, it
has also been shown by using T286A mutant mouse that Thr286

autophosphorylation is a requisite for LTD (Coultrap et al.,
2014). The most recent studies on CaMKII autophosphorylation
indicates that the autophosphorylation at Thr305/306 is selectively
induced by LTD stimuli and the mutation of these residues
impairs LFS-induced LTD but not HFS-induced LTP (Cook
et al., 2021). Both the autophosphorylations are necessary for
LTD but the exact role of Thr286 with respect to Thr305/306 in
LTD remains controversial. The death-associated protein kinase
1 (DAPK1) can regulate CaMKII-GluN2B interaction to facilitate
LTD. DAPK1 is a CaM kinase family member and is enriched
in excitatory synapses. They can bind to GluN2B at a site
overlapping the CaMKII binding site. The enzyme gets activated
by CaN, a Ca2+-activated protein phosphatase. LTD-stimuli
can activate DAPK1 in hippocampal slices in a CaN-dependent
manner. Inhibition of DAPK1 or CaN allowed the accumulation
of CaMKII at excitatory synapses after LTD-stimuli (Goodell

et al., 2017). This indicates that during LTD, DAPKI activated
by phosphatases will compete for GluN2B binding and would
reduce the binding of activated CaMKII generated by the low
frequency stimuli.

CaMKII can phosphorylate Ser567 residue of GluA1 subunit
of AMPAR, a unique phosphorylation site for CaMKII in the
C-terminal loop of GluA1. The C-terminal tail of GluA1 is
involved in AMPAR trafficking from extra-synaptic pool to
the synapses. Phosphorylation of GluA1 at Ser567 by CaMKII
inhibits AMPAR trafficking to the synapses (Lu et al., 2010). It
has been noted that LTD-inducing stimulation of hippocampal
slices produced a robust phosphorylation of Ser567 whereas LTP-
inducing stimulus could yield only Ser831 phosphorylation. The
differential phosphorylation of GluA1 by CaMKII under the two
synaptic plasticity conditions underlies the role of CaMKII in
LTD (Coultrap et al., 2014).

In contrast to spine enlargement in LTP, LTD is associated
with spine shrinkage aided by the removal of the AMPA
receptor regulatory scaffold protein, A-kinase anchoring protein
(AKAP) 79/150. The synaptic removal of AKAP79/150 is brought
about by the phosphorylation of the substrate sites within
the AKAP79/150 N-terminal polybasic membrane-cytoskeletal
targeting domain (residues 1–153) by CaMKII. Phosphorylation
by CaMKII inhibits AKAP79/150 association with F-actin, thus
facilitating AKAP79/150 removal from spines (Figure 4). In
addition to the direct phosphorylation of AKAP79/150, CaMKII
is also responsible for its depalmitoylation on two Cys residues
within the N-terminal targeting domain. Depalmitoylation also
promotes synaptic elimination of AKAP79/150. Since the protein
harbors PKA and protein phosphatase 2B (PP2B) at the PSD, it
can regulate both synaptic insertion and elimination of AMPARs.
Under LTP stimulation, PKA can phosphorylate Ser845 of GluA1
of AMPAR and thereby more AMPAR trafficking to the synapse
occurs, whereas in LTD conditions due to the elimination of
AKAP79/150 along with activation of phosphatases, AMPAR
dephosphorylation at Ser845 and its endocytosis is promoted
which eventually leads to spine shrinkage (Woolfrey et al., 2018).

The stimulation pattern-dependent activation of NMDAR that
yields either LTP or LTD, causes activation of CaMKII in either
case. With the differing stimuli the enzyme targets different
substrates and thereby activates specific signaling mechanisms to
yield either form of synaptic plasticity.

Ca2+/CALMODULIN-DEPENDENT
PROTEIN KINASE TYPE II IN SIGNALING
COMPLEXES IN GLUTAMATERGIC
SYNAPSES

CaMKII plays an important role in several physiological
pathways including synaptic plasticity and hence its localization
in the cytosol and PSD are crucial determinants of its function.
Immunoelectron microscopy studies show that CaMKIIα is
significantly higher in dendritic shafts when compared to
dendritic spines. When it gets any proper stimulus, it will
abundantly translocate to the spines (Shen and Meyer, 1999;
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FIGURE 4 | The schematic representation showing the role of CaMKII in LTD. The low tetanic stimulation leading to LTD activates more phosphatases than kinases.
Calcineurin thus activated can activate DAPK1 and it can translocate to GluN2B where CaMKII binds. The activation of DAPK1 can even displace activated CaMKII
generated under minimal Ca2+ stimulus from its binding with GluN2B. The role of CaMKII in LTD involves inhibition of AMPAfication and facilitation of spine
shrinkage. Phosphorylation of GluA1 of AMPAR at Ser567 obstructs AMPAfication of synapses; CaMKII mediated phosphorylation and depalmitoylation of
AKAP79/150 results in its synaptic elimination. Since AKAP79/150 is a major adapter for many proteins required for LTP, its elimination due to dissociation from
F-actin can result in AMPAR endocytosis and spine shrinkage.

Shen et al., 2000; Ding et al., 2013). In the basal condition,
more CaMKII will be available in the dendritic shaft than in
spines. Whenever activation happens the activated CaMKII can
translocate to the spines.

Translocated CaMKII can bind with various protein ligands
in the PSD as indicated in Table 1. One such protein is densin-
180, which is a core protein in the PSD that does not span

the membrane. Though densin-180 is the only documented
interaction partner for the association domain of CaMKII, it will
not bind with CaMKII holoenzymes which contain β isoform
(Penny and Gold, 2018). The PDZ domain of densin-180
contributes to its binding to α-actinin. A distinct domain of
α-actinin interacts with the kinase domains of both α and β

subunits of CaMKII. Thus, these three proteins can form a

Frontiers in Molecular Neuroscience | www.frontiersin.org 13 June 2022 | Volume 15 | Article 855752

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-neuroscience#articles


fnmol-15-855752 June 20, 2022 Time: 11:4 # 14

Mohanan et al. CaMKII in Glutamatergic Synapses

ternary complex in the PSD stabilized by multiple interactions
(Walikonis et al., 2001). This ternary complex within the PSD is
an additional mode of localization of CaMKII to PSD apart from
its binding to GluN2B.

SAP97, a member of membrane-associated guanylate kinase
protein family, has been implicated in the processes of targeting
ionotropic glutamate receptors such as NMDARs and AMPARs
at postsynaptic sites and is enriched in PSD. SAP97 shares its
interaction with AKAP79/150 in addition to the C-terminal
region of GluA1. AKAP79/150 in turn harbors PKC, PKA
and PP2B. This molecular arrangement inside the PSD works
in accordance with the stimuli received. The most important
function of this complex is the regulation of AMPARs in
synapses including both potentiation and trafficking. CaMKIIα
displays a high degree of co-localization with SAP97. CaMKII
phosphorylation of Ser39 in the N-terminus of SAP97 modulates
trafficking of SAP97 (Mauceri et al., 2004) and the associated
proteins; in contrast, CaMKII phosphorylation of Ser232 in the
first PDZ domain of SAP97 may modulate binding of other
proteins, such as NMDAR and AMPAR subunits (Nikandrova
et al., 2010), especially GluA1 of AMPAR. SAP97 is in close
association with AKAP 79/150, but the phosphorylation of
SAP97 at Ser39 by CaMKII disengages AKAP79/150 from
regulating GluA1-AMPARs.

Another complex associated with CaMKII in the PSD is the
complex formed by SynGAP, MUPP1 and CaMKII. SynGAP and
CaMKII are brought together by direct physical interaction with
the PDZ domains of MUPP1, a multi-PDZ domain-containing
protein (Krapivinsky et al., 2004). In this complex, SynGAP
is phosphorylated by CaMKII which enhances its Ras GTPase
activity which in turn promotes AMPAR trafficking as shown in
Figure 3.

CaMKII has an important role in dendritic spine remodeling
upon synaptic stimulation. Electron micrographic studies
showed that at physiological molar ratios, single CaMKII
holoenzymes cross-linked multiple F-actin filaments at random,
whereas at higher CaMKII/F-actin ratios, filaments bundled.
From this bundled state CaMKII is released upon Ca2+/CaM
activation, triggering network disassembly and expansion leading
to spine enlargement. Upon subsequent disappearance of Ca2+,
compaction will occur (Khan et al., 2019).

ROLE OF
Ca2+/CALMODULIN-DEPENDENT
PROTEIN KINASE TYPE II IN CALCIUM
OVERLOAD-INDUCED EXCITOTOXICITY

Excitotoxicity is a pathological condition triggered by excessive
stimulation of receptors by excitatory neurotransmitters,
primarily glutamate, causing Ca2+ overload in the cytosol
and thereby resulting in neuronal dysfunction and cell death.
Increased Ca2+ influx and high intracellular Ca2+ ([Ca2+]i)
rise trigger gene expression (Ortuño-Sahagún et al., 2012) and
long-lasting activation of CaMKIIα in hippocampal neurons
(Otmakhov et al., 2015). Autophosphorylation of CaMKII at

Thr253, Thr286 (Vest et al., 2010; Otmakhov et al., 2015; Rostas
et al., 2017) and simultaneous S-nitrosylation at Cys280/Cys289

by nitric oxide (NO) (Coultrap and Bayer, 2014) generates
autonomous activity of the kinase during excitotoxic cell death.
Activated CaMKII redistributes to the spines (Otmakhov et al.,
2015), promotes its interaction with synaptic GluN2B (Wang
N. et al., 2014; Buonarati et al., 2020) and mediates the NMDA-
induced caspase-3-dependent cell death pathway (Goebel, 2009).
During a glutamate-induced excitotoxic event, CaMKII can
also modulate the activity of neuronal nitric oxide synthase
(nNOS) (Araki et al., 2020), can cause axonal degeneration via
necroptosis (Hou et al., 2009; Arrazola and Court, 2019) and
also contribute to the regulated necrosis (RN) pathway (Wang S.
et al., 2019).

Contrastingly both overexpression (Vest et al., 2010) and
sustained CaMKII inhibition during excitotoxicity can exacerbate
cell death of cultured neurons (Ashpole and Hudmon, 2011;
Ashpole et al., 2012). Loss of CaMKII activity in astrocytes
results in dysregulated Ca2+ homeostasis and reduced glutamate
uptake (Ashpole et al., 2013) by excitatory amino acid
transporter 1 (EAAT1) (Chawla et al., 2017). On the whole,
dysregulated CaMKII function upon excitotoxic insult shifts
the tight homeostatic balance maintained between kinases
and phosphatases in the cell, resulting in dysfunction of
excitatory synaptic transmission (Farinelli et al., 2012). The
following section reviews the role of CaMKII at glutamatergic
synapses in a few diseases in which excitotoxicity is one
of the causes.

Alzheimer’s Disease
Alzheimer’s disease (AD) is a progressive neurodegenerative
condition characterized by loss of memory and cognitive
function. The presence of amyloid β (Aβ) plaques and
neurofibrillary tangles (NFTs) composed of hyperphosphorylated
tau protein, is the distinctive feature in AD neuropathology.
CaMKII catalyzes the hyperphosphorylation of tau protein at
multiple Ser/Thr sites in the AD brain (Yoshimura et al., 2003).
Loss of synapses and cognitive decline associated with AD
positively correlate to the accumulation of soluble Aβ (Lue et al.,
1999; Näslund et al., 2000; Almeida et al., 2005), which leads to
reduced CaMKII activation (Zeng et al., 2010; Ly and Song, 2011;
Ghosh and Giese, 2015) and inhibition of LTP-induced CaMKII
trafficking to excitatory synapses (Cook et al., 2019). A significant
reduction in the density and number of synapses (Terry et al.,
1991; Scheff and Price, 1993, 1998; Scheff et al., 2006) and altered
expression of synaptic proteins (Masliah et al., 2001; Almeida
et al., 2005) contributes to synaptic dysfunction and cognitive
decline in the AD brain.

In amyloid precursor protein (APP) transgenic mice,
Aβ-induced change in CaMKII subcellular distribution aids in
the removal of AMPARs from the synaptic membrane (Gu et al.,
2009). Opazo et al. (2018) showed that oligomeric forms of Aβ

peptide engage in synaptic metaplasticity via aberrant activation
of CaMKII, mediated through GluN2B-containing NMDARs,
which leads to LTP deficits and destabilization of AMPARs in the
early stages of AD.
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Epilepsy
Epilepsy is a neurological disorder characterized by
recurrent seizures, caused by abnormal brain activity.
A strong epileptic stimulus can induce alterations in
the composition of PSD proteins (Wyneken et al., 2001)
and loss of CA3 cells in a kainic acid (KA)-induced
seizure model, wherein hippocampal injury correlates with
increased CaMKII activity (Lee et al., 2001). Activation
of CaMKIIα is concomitant with a reduction in density
of hippocampal dendritic spines and spine PSDs during
epileptiform activity (Zha et al., 2009). Also, CaMKII activation
via L-type VGCCs and NMDARs are essential for the
development and maintenance of an in vitro kindling-like
state and EPSP-spike potentiation in CA1 pyramidal cells
(Semyanov and Godukhin, 2001).

However, a few studies have reported an NMDAR-dependent
reduction in CaMKII activity with increased neuronal excitability
(Kochan et al., 1999; Churn et al., 2000). Regulation of CaMKII
activity during seizures either by the reversible formation of
inactivated CaMKII (Yamagata and Obata, 2004; Yamagata et al.,
2006) or by modulating different CaMKII isoforms (Murray
et al., 2003; Savina et al., 2013), can prevent excessive CaMKII
activation due to Ca2+ overload (Yamagata et al., 2006). Recently,
Vieira et al. (2020) functionally characterized the epilepsy-
associated de novo variant of GluN2A, S1459G. This mutation
disrupts CaMKIIα phosphorylation of GluN2A resulting in
defects in NMDAR trafficking and reduced synaptic function
(Vieira et al., 2020).

Huntington’s Disease
Huntington’s disease (HD) is an autosomal, dominantly inherited
disorder caused by the expansion of a polyglutamine repeat
in the N-terminus of the huntingtin (htt) protein. Progressive
and selective degeneration of the striatal medium spiny
neurons (MSNs) in HD results in abnormalities of movement,
cognition, personality and mood. Being an abundant protein
in striatal MSNs (Erondu and Kennedy, 1985), reduced levels
of both CaMKII and CaMKII-Thr286 phosphorylation have
been reported in various mouse models of HD (Deckel et al.,
2001, 2002a,b; Brito et al., 2014; Blum et al., 2015; Gratuze
et al., 2015). Altered expression levels of CaMKII in the
hippocampus can disrupt GluA1-Ser831 phosphorylation (Brito
et al., 2014) and disturb AMPAR surface diffusion (Zhang et al.,
2018). CaMKII inhibition in striatal MSNs causes a reduction
in functional glutamatergic synapses and an enhancement
in intrinsic excitability (Klug et al., 2012). Although the
role of altered CaMKII function in HD is not extensively
studied, it is evident that it could contribute to cognitive
dysfunction observed in HD (Giralt et al., 2012; Zhang et al.,
2018).

Parkinson’s Disease (PD)
Parkinson’s disease (PD) is a progressive neurodegenerative
movement disorder caused by degeneration of dopaminergic
neurons in the substantia nigra, that project to the striatum. At
the molecular level, dopamine (DA) can modulate or gate the

cortical glutamatergic inputs onto striatal MSNs (Freund et al.,
1984; Gardoni and Bellone, 2015). Striatal DA depletion causes
selective loss of dendritic spines and glutamatergic synapses
on striatopallidal MSNs (Day et al., 2006) and differentially
affects the expression and phosphorylation of glutamate receptor
subunits and CaMKIIα (Brown et al., 2005; Gardoni et al., 2010;
Koutsokera et al., 2014).

Dopamine denervation in vivo induces an increase in
CaMKIIα-Thr286 phosphorylation in the striatum (Brown et al.,
2005; Koutsokera et al., 2014), concurrent with increased
recruitment of activated CaMKIIα to GluN2A-GluN2B
subunits (Picconi et al., 2004). On the other hand, reduced
levels of CaMKIIα autophosphorylation and GluA1-Ser831

phosphorylation in the hippocampus correlates with impaired
CA1 LTP in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP)-treated mice (Moriguchi et al., 2012b). Overall,
DA deficiency can induce deficits in synaptic plasticity and
motor behavior by altering striatal glutamatergic signaling
and CaMKII activity (Picconi et al., 2004; Brown et al., 2005;
Deutch, 2006; Paillé et al., 2010; Moriguchi et al., 2012b;
Koutsokera et al., 2014).

Cerebral Ischemia
Cerebral ischemia is a condition in which restricted blood
supply to the brain causes tissue damage and cell death.
Excess glutamate release and high [Ca2+]i trigger a range
of downstream neurotoxic cascades leading to apoptosis or
necrosis (Szydlowska and Tymianski, 2010). Ca2+ influx ensuing
an ischemic insult significantly increases NMDAR-mediated
activation of CaMKII (Meng et al., 2003) followed by its
phosphorylation at Thr253 (Gurd et al., 2008) and Thr286

(Shamloo et al., 2000; Matsumoto et al., 2002). CaMKII-Thr253

autophosphorylation enhances its association with PSD (Migues
et al., 2006) and induces the persistent activation of the enzyme
(Rostas et al., 2017). Oxidation of Met281/282 (Cys281/Met282

in CaMKIIα) in the auto-regulatory domain of the enzyme,
by reactive oxygen species (ROS) generated during glutamate
excitotoxicity and oxidative stress, can also lead to autonomous
activity of the kinase (Anderson, 2015), which in turn augments
reperfusion injury in acute ischemic stroke (Gu et al., 2016;
Qu et al., 2019; Zhang et al., 2021). Autophosphorylated
CaMKII translocates to the synaptic membrane (Matsumoto
et al., 2004), binds to synaptic GluN2B (Buonarati et al.,
2020) and phosphorylates serine residue(s) of the GluN2B
subunit (Meng and Zhang, 2002; Meng et al., 2003) to mediate
ischemic cell death. However, a recent study by Tullis et al.
(2021), reported that neuronal death in global cerebral ischemia
in vivo is promoted by the binding of CaMKII to GluN2B
and not by CaMKII-mediated GluN2B-Ser1303 phosphorylation
(Kumar et al., 2019; Buonarati et al., 2020; Tullis et al., 2021).
CaMKII activation dependent on NMDARs or L-type VGCCs
can also phosphorylate serine residues of GluR6 subunit of
kainate receptors via the assembly of GluR6-PSD95-CaMKII
signaling module in cerebral ischemia injury (Hao et al., 2005;
Xu et al., 2010).

The changes observed in expression levels and activity of
CaMKII are dependent on the duration of ischemic insult
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(Gurd et al., 2008), which in turn can regulate NMDAR-
mediated field excitatory postsynaptic potentials (fEPSPs)
(Wang N. et al., 2014). Likewise, 10 min oxygen-glucose
deprivation (OGD) treatment in vitro can induce NMDAR-
mediated postischemic LTP, mediated by CaMKII-NMDAR
interaction and NMDAR trafficking to the membrane
(Wang N. et al., 2014).

Traumatic Brain Injury
Traumatic brain injury (TBI) is a disruption in the normal
function of the brain caused by an external mechanical
force. It is associated with the release of excitatory amino
acids, particularly glutamate, in the extracellular space
(Faden et al., 1989; Chamoun et al., 2010). Overactivation
of glutamate receptors (Faden et al., 1989; Liu et al., 2017)
and elevated levels of [Ca2+]i (Deshpande et al., 2008; Sun
et al., 2008) transiently activates CaMKIIα (Atkins et al., 2006;
Folkerts et al., 2007; Liu et al., 2017) and CaMKIIδ (Zhang
et al., 2012). Alterations in NMDAR function, CaMKIIα
expression and dendritic spine anatomy in the hippocampus
prevent LTP induction after lateral fluid percussion injury
(Schwarzbach et al., 2006), thereby causing cognitive impairment
often associated with CNS trauma (Atkins et al., 2006;
Schwarzbach et al., 2006; Folkerts et al., 2007; Deshpande
et al., 2008). Long-term alterations in Ca2+ homeostasis
mechanisms (Sun et al., 2008) contributes to morbidity and
mortality following TBI.

FUNCTIONAL IMPLICATIONS OF
Ca2+/CALMODULIN-DEPENDENT
PROTEIN KINASE TYPE II MUTATIONS
IN SYNAPTIC PLASTICITY

CaMKII plays a versatile role in different regulatory processes
involved in synaptic plasticity. This section reviews the
different CaMKII mutant animal models generated to study
the physiological role of the kinase in synaptic plasticity and
its associated behavioral phenotype. Targeted disruption of
CaMKIIα/β/γ function in vivo dysregulates different types of
synaptic plasticity (Silva et al., 1992a; Stevens et al., 1994;
Mayford et al., 1995; Giese et al., 1998; Elgersma et al., 2002;
Miller et al., 2002; Cho et al., 2007; van Woerden et al.,
2009; Yamagata et al., 2009; Yin et al., 2017; Cohen et al.,
2018; Kool et al., 2019) and impairs learning (Silva et al.,
1992b, 1996; Bach et al., 1995; Giese et al., 1998; Elgersma
et al., 2002; Irvine et al., 2005; Yamagata et al., 2009; Borgesius
et al., 2011; Achterberg et al., 2014; Cohen et al., 2018),
memory (Miller et al., 2002; von Hertzen and Giese, 2005;
Cho et al., 2007) and the emotional state (Chen et al., 1994;
Yamasaki et al., 2008; Hasegawa et al., 2009; Bachstetter et al.,
2014). Although the behavior exhibited varies slightly with the
genetic background of the mouse strain used (Gordon et al.,
1996; Silva et al., 1996; Hinds et al., 1998; Need and Giese,
2003), the molecular and electrophysiological alterations remain
largely unchanged.

Ca2+/Calmodulin-Dependent Protein
Kinase Type II α
Ca2+/Calmodulin-Dependent Protein Kinase Type II α

Global Knockout Mice
Silva et al. (1992a) reported the production of the first genetically
altered mice lacking the α subunit of CaMKII. LTP, STP and
LTD were either absent or significantly attenuated in the sensory
neocortex and hippocampal slices from young homozygous
CaMKIIα−/− KO mice (Silva et al., 1992a; Stevens et al., 1994;
Kirkwood et al., 1997; Hinds et al., 1998; Elgersma et al., 2002).
Long-term plasticity and reversal of LTP were normal in the
CA1 hippocampal region of heterozygous CaMKIIα+/− mice
(Silva et al., 1996; Elgersma et al., 2002); however, they exhibited
impaired short-lived plasticity (SLP) and paired-pulse facilitation
(PPF) and an enhanced post-tetanic potentiation (PTP) response
expressed within seconds of stimulation (Silva et al., 1992a, 1996;
Chapman et al., 1995; Hojjati et al., 2007).

Plasticity deficits due to either partial or complete loss of
CaMKIIα activity manifest as abnormalities in various behavioral
paradigms. CaMKIIα null mutant mice have been reported
to exhibit pronounced deficits in spatial learning (Silva et al.,
1992b; Elgersma et al., 2002; Achterberg et al., 2014), working
memory (Yamasaki et al., 2008) and Pavlovian fear conditioning
(Chen et al., 1994; Silva et al., 1996; Elgersma et al., 2002;
Achterberg et al., 2014). Dysregulated emotional states like
increased aggression, decreased anxiety and depression-like
behavior and an exaggerated infradian rhythm have also been
observed in CaMKIIα+/− mice (Silva et al., 1992b; Chen et al.,
1994; Yamasaki et al., 2008).

Dysfunction of the dentate gyrus (DG) due to the immaturity
of DG neurons (Yamasaki et al., 2008; Matsuo et al., 2009) and
ectopic projection of mossy fibers (Nakahara et al., 2015), causes
suppressed induction of activity-dependent genes like c-fos and
arc, resulting in altered behavior exhibited by CaMKIIα KO mice
(Yamasaki et al., 2008; Matsuo et al., 2009). Disrupted regulation
of Zif268 gene expression and growth associated protein 43
(GAP43), a synaptogenesis marker, by CaMKIIα+/− mutation
can also impair the maturation of cortical circuits necessary for
remote memory (Frankland et al., 2004).

Ca2+/Calmodulin-Dependent Protein Kinase Type II
α-Thr286 Mutant Mice (T286A/T286D)
The Ca2+/CaM-independent, autonomous state of CaMKIIα,
induced by autophosphorylation of Thr286, is required for
NMDAR-dependent LTP and LTD at CA1 pyramidal cells
(Giese et al., 1998), spatial learning (Giese et al., 1998; Need
and Giese, 2003), fear learning (Irvine et al., 2005, 2011)
and regulation of synapse development in vivo (Gustin et al.,
2011). During induction of synaptic plasticity, CaMKIIα-Thr286

phosphorylation is essential for optimal integration of Ca2+

signals; however, it is dispensable for LTP maintenance and
memory (Irvine et al., 2005; Chang et al., 2017). High-frequency
synaptic stimulation can rescue impaired LTP induction in CA1
neurons from Camk2aT286A mice (Chang et al., 2017). Although
L-LTP could not be induced at CA1 synapses of T286A mutants
(Irvine et al., 2011), mTOR-mediated upregulation of PSD95
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expression and a persistent generation of multi-innervated
spines (MIS) can contribute to LTM formation in these mutant
animals where functional strengthening of synapses is impaired
(Radwanska et al., 2011).

The deficit in spatial learning of CaMKIIα-T286A mutant
mice is due to decreased spatial selectivity, stability and
experience-dependent tuning of CA1 hippocampal place cells
(Cho et al., 1998; Cacucci et al., 2007) and an impaired precision
of spatial memory (Śliwińska et al., 2020). Pre-adolescent KI mice
had disruption in synaptic targeting of CaMKII and enhanced
activity of GluN2B-containing-NMDARs at CA3-CA1 synapses
along with impaired cognition and anxiety phenotypes (Gustin
et al., 2011). The T286A knockin (KI) mutants have normal
neurogenesis in their DG (Kee et al., 2007). Therefore, alternate
signaling mechanisms involving either PKA or CaMKIIβ are
activated in the absence of CaMKIIα autophosphorylation at
excitatory synapses in the neonatal rodent hippocampus (Yasuda
et al., 2003), hippocampal inhibitory interneurons (Lamsa et al.,
2007) and the medial perforant path-granule cell synapses in
adult mice (Cooke et al., 2006) to induce LTP.

Constitutive expression of the Ca2+-independent,
autonomously active form of CaMKIIα (CaMKIIα-T286D)
in vivo favors LTD at LTP-inducing θ frequencies (5–10 Hz) and
consequently influences spatial learning and fear conditioning
(Bach et al., 1995; Mayford et al., 1995, 1996; Wiedenmayer
et al., 2000; Bejar et al., 2002; Yasuda and Mayford, 2006). The
use of the tetracycline transactivator (tTA) system to limit the
expression of CaMKIIα-T286D regionally and temporally, has
shed light on the role of CaMKIIα signaling in synaptic plasticity
during development, memory encoding and memory storage
(Mayford et al., 1996; Glazewski et al., 2001; Bejar et al., 2002;
Yasuda and Mayford, 2006). CA1 hippocampal place cells in these
mutant animals are less common, less precise and less stable,
thereby affecting spatial memory storage (Rotenberg et al., 1996).

Ca2+/Calmodulin-Dependent Protein Kinase Type II
α-Thr305/Thr306 Mutant Mice
Inhibitory phosphorylation of CaMKIIα at Thr305/Thr306 is
essential to modulate the association of the kinase with PSD,
the threshold for induction of NMDAR-dependent LTP at SC-
CA1 synapses, hippocampal-dependent spatial learning and
fear conditioning, reversal learning and to induce LTP at
inhibitory synapses (iLTP) (Elgersma et al., 2002; Cook et al.,
2021). Phosphorylation of CaMKIIα-Thr305/Thr306 during an
excitatory LTD stimulus blocks the translocation of CaMKIIα
to glutamatergic excitatory synapses and directs CaMKIIα to
GABAergic inhibitory synapses to induce iLTP. In this way,
Thr305/Thr306 phosphorylation governs the fundamental LTP vs.
LTD decision at excitatory synapses (Cook et al., 2021). Similar
to CaMKIIα-T286D mutant, CaMKIIα-T305D favors LTD over
LTP at weak tetanic stimulations (Elgersma et al., 2002).

Ca2+/Calmodulin-Dependent Protein Kinase Type II
α-K42R Mutant Mice
Similar to the CaMKIIα mutant models reviewed above,
the kinase-dead CaMKIIα (CaMKIIα-K42R) KI mouse also

exhibited deficits in NMDAR-dependent LTP and hippocampus-
dependent learning and memory (Yamagata et al., 2009, 2018).
Although the levels of PSD associated CaMKIIα and activity-
dependent postsynaptic translocation of CaMKIIα were intact in
the mutants, the stimulus-induced increase in spine volume was
severely impaired compared to WT mice (Yamagata et al., 2009).
Amygdala-dependent fear memory is only partially affected by
the loss of kinase activity (Yamagata et al., 2018). Stronger
conditioning or multi-trial training could achieve slight or no
improvement in the memory deficits of CaMKIIα-K42R mutant
mice (Yamagata et al., 2009, 2018).

Conditional Mutant Models
Apart from the models described above, there are a few
other transgenic (Tg) mouse models generated to study
specific functions of CaMKII in synaptic plasticity. The
CaMKIIα-3′UTR mutant has reduced expression of the
kinase in the dendrites and its association to PSD (Miller
et al., 2002), with no substantial alteration in other protein
constituents of the synaptic membrane (Li et al., 2007).
Disruption in the local translation of the protein causes
a reduction in L-LTP, memory consolidation and LTM
storage, with no change in E-LTP and STM formation
(Miller et al., 2002).

Using an inducible and forebrain specific CaMKIIα-F89G
Tg mouse model, Joe Z. Tsien and group have shown that
the levels of CaMKIIα protein can affect the degree and
direction of synaptic plasticity (Wang et al., 2003, 2008).
A switch between the normal and higher activity state
of CaMKIIα during the memory consolidation phase can
severely disrupt LTM formation. The synaptic consolidation
of LTMs requires the reactivation of CaMKIIα, during
the first week after training, to the level present at the
time of initial learning (Wang et al., 2003); on the other
hand, a shift in CaMKIIα activation status within the
immediate post-learning 10 min can alter STM formation
(Wang et al., 2008).

In the study reported by Achterberg et al. (2014),
conditional Camk2a mutant mice models were employed
to achieve regional and temporal specific deletion of
CaMKIIα. Telencephalon-specific deletion of the Camk2a
gene (Camk2aflox/Emx−Cre) resulted in severe deficits in
spatial and contextual learning and hippocampal LTP in
adult mice, whereas mice with deletion specific to Purkinje
cells in the cerebellum (Camk2aflox/L7−cre) learned normally
(Achterberg et al., 2014).

At hippocampal synapses, CaMKIIα functions non-
enzymatically by limiting the size of docked vesicles (Hojjati
et al., 2007) and by regulating neurotransmitter release at
glutamatergic synapses (Chapman et al., 1995; Hinds et al.,
2003), thereby modulating short-term presynaptic plasticity.
A few of the CaMKIIα Tg mice also exhibited seizures (Butler
et al., 1995; Mayford et al., 1995; Elgersma et al., 2002; Yamagata
et al., 2009). With a potential role for CaMKIIα in controlling
the state of emotion, these models can also be exploited in
the study of neuropsychiatric diseases (Yamasaki et al., 2008;
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Hasegawa et al., 2009; Matsuo et al., 2009; Nakahara et al., 2015;
Yamagata et al., 2018).

Ca2+/Calmodulin-Dependent Protein
Kinase Type II β
The first Tg mouse model of CaMKIIβ was generated by Cho et al.
(2007), by selectively overexpressing CaMKIIβ-F90G in the DG.
Elevated CaMKIIβ activity does not affect baseline glutamatergic
neurotransmission but causes deficits in LTP (Cho et al., 2007)
and in NMDAR-dependent LTD (Yin et al., 2017). The Tg mice
displayed normal acquisition, retention and recall of 1-day-old
LTM, but showed severe impairments in 10-day-old contextual
fear memory (Cho et al., 2007) and behavioral flexibility
(Yin et al., 2017). Overexpression of CaMKIIβ decreases the
activity of PP1/protein phosphatase 2A (PP2A) and glycogen
synthase kinase 3β (GSK3β), which can shift the direction of
synaptic plasticity toward potentiation during LTD induction.
This disrupts the regulation of synaptic stargazin and interrupts
the internalization of AMPAR and dephosphorylation of Ser831

and Ser845 of GluA1 during NMDAR-LTD (Yin et al., 2017).
Global KO models of CaMKIIβ (Camk2b−/−) have been

generated by deletion of exon sequences of the Camk2b
gene (van Woerden et al., 2009; Bachstetter et al., 2014;
Kool et al., 2016). Camk2b−/− mice exhibited cerebellar
ataxia and severe deficits in locomotion (Kool et al., 2016),
motor coordination (van Woerden et al., 2009), balance
and cognition (Bachstetter et al., 2014). Interestingly, they
showed reduced anxiety in a gene dose-dependent manner
(Bachstetter et al., 2014).

Loss of CaMKIIβ, in Camk2b−/−mice, results in bidirectional
inversion of postsynaptic plasticity at the parallel fiber (PF)-
Purkinje cell (PC) synapse (van Woerden et al., 2009; Pinto
et al., 2020). Failure of proper targeting of CaMKIIα to
dendritic spines in the absence of CaMKIIβ in the Camk2b−/−

mice results in impaired hippocampal NMDAR-dependent LTP
and fear learning (Borgesius et al., 2011). This disrupted
phenotype was absent in the Camk2bA303R/A303R KI model
in which Ca2+/CaM-dependent kinase activation of CaMKIIβ
is disabled but F-actin binding and bundling functions are
preserved (Borgesius et al., 2011). During LTP induction, a
transient detachment of CaMKIIβ from F-actin, triggered by
Ca2+ influx through glutamate receptors and the associated
autophosphorylation of the F-actin binding region, is necessary
for spine enlargement and LTP maintenance (Kim et al., 2015).
Persistent binding of CaMKIIβ to F-actin in the amygdala
could be causing deficits in LTP (Kim et al., 2015, 2019).
To study the regulation of CaMKIIβ-F-actin interaction by
autophosphorylation, a KI mouse model was generated by
substituting Thr and Ser residues with Ala at exon 13 of
Camk2b (CaMKIIβexon13:TS/A). This KI mouse exhibited reduced
freezing in fear conditioning tests (Kim et al., 2019). The
absence of impairment in fear learning in the CaM-binding
deficient mutant reported by Borgesius et al. (2011) might
be due to phosphorylation of the F-actin binding domain
in the non-activable CaMKIIβ-A303R mutant by neighboring
α-subunits of the same oligomer (Kim et al., 2019).

Regardless of normal hippocampal plasticity,
Camk2bA303R/A303R mice exhibited severe deficits in motor
behavior. However, the autophosphorylation deficient Camk2b
mice, Camk2bT287A/T287A, showed no significant change in
locomotion compared to WT littermates, indicating a crucial
role for Ca2+/CaM-dependent activity, but not autonomous
activity in normal mouse locomotion (Kool et al., 2016).
Among the different Camk2b conditional mutants generated
(Kool et al., 2016), Camk2bf /f ;L7-cre mice with specific loss of
CaMKIIβ in cerebellar Purkinje cells showed impaired motor
learning when tested for five consecutive days, indicating
that cerebellar CaMKIIβ is essential for motor function
(Kool et al., 2016).

Camk2a-Camk2b Double Mutants
The use of single mutants of Camk2a or Camk2b to study
their function during development and in the mature brain
can be inadequate when crucial functions are masked by
compensation by the non-deleted form. For this purpose,
double mutants of both isoforms (Camk2a−/−;Camk2b−/−)
were generated (Kool et al., 2019). Germline or adult deletion
of both CaMKIIα and CaMKIIβ in mice is lethal. Similarly,
the Ca2+-dependent and -independent activities of CaMKIIα
and CaMKIIβ are also essential for survival. Acute deletion of
both CaMKII isoforms does not overtly affect the biochemical
composition of PSD. Adult loss of CaMKIIα and CaMKIIβ
also abolished LTP in the hippocampal CA3-CA1 SC pathway.
This deficit was absent in mice containing a specific deletion
of CaMKII isoforms in the CA3 region of the hippocampus
(Camk2af /f ;Camk2bf /f ;CA3-Cre), indicating that presynaptic
CaMKIIα and CaMKIIβ are dispensable for LTP at the
CA3-CA1 synapses. However, deletion of CaMKII in the
CA3 region resulted in significant reduction in LTP at
the associational/commissural pathway (CA3-CA3 synapse)
(Kool et al., 2019).

Ca2+/Calmodulin-Dependent Protein
Kinase Type II γ
Similar to CaMKIIα and CaMKIIβ, global CaMKIIγ KO
mice (CaMKIIγ−/−) displayed pronounced impairments in
hippocampal-dependent memory tasks and avoidance behavior
(Cohen et al., 2018). Training-induced increase in the expression
of plasticity genes – BDNF, c-Fos and Arc – was prevented in
CaMKIIγ−/− mice. While E-LTP was intact, L-LTP was strongly
affected at SC-CA1 synapses of CaMKIIγ−/− mice, indicating
deficits in LTM, but not STM. KO mice harboring a selective
deletion of CaMKIIγ in excitatory neurons (CaMKIIγ-exc-
KO), also exhibited impaired spatial learning and a decrease
in training-induced nuclear translocation of CaM and c-Fos
expression, suggesting a role for NMDAR activation upstream
to CaMKIIγ-mediated cytonuclear signaling in CaMKIIγ−/−

mice (Cohen et al., 2018). In vivo deletion of CaMKIIγ in
parvalbumin (PV)-expressing inhibitory interneurons (CaMKIIγ
PV-KO) eliminates NMDAR-induced synaptic potentiation
of excitatory synapses onto inhibitory neurons (LTPE→I)
and impairs experience-dependent neural oscillations, thereby
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disrupting memory consolidation and hippocampus-dependent
LTM (He et al., 2021).

FUNCTIONAL IMPLICATIONS OF
Ca2+/CALMODULIN-DEPENDENT
PROTEIN KINASE TYPE II MUTATIONS
IN DISEASES

In humans, de novo mutations in CaMKII have been identified
and reported majorly in cases of neurodevelopmental disorders
(NDDs) (Study, 2017; Akita et al., 2018) and intellectual
disability (ID) (Küry et al., 2017). The role of CaMKII and
glutamatergic signaling in neuropsychiatric diseases has been
reviewed by Robison (Robison, 2014; see also Nicole and
Pacary, 2020). Supplementary Table 2 summarizes the different
CaMKII variants reported with their functional implications
and clinical manifestations if any. The type of mutation
(synonymous, missense, splice region, frameshift, deletion), the
specific CaMKII isoform (α, β and γ) that is mutated and
the protein domain (catalytic, auto-regulatory or association)
affected determine the disease phenotype. The zygosity of
inheritance (heterozygous/homozygous) can also influence the
pathogenicity of the variant (Chia et al., 2018); however,
intrafamilial variations in the expression of disease symptoms by
subjects carrying the same heterozygous variant, have also been
reported (Heiman et al., 2021).

Clinical manifestations of the identified mutations range from
global neurodevelopmental delay, seizures, mild to severe ID,
hypotonia, delayed development of motor and speech/language
skills, abnormal emotional behavior, cerebellar atrophy, facial
dysmorphism, visual impairment and gastrointestinal issues.
Dysfunction of CaMKIIα can cause seizure-associated activity in
the forebrain (Akita et al., 2018) and pronounced motor delay
(Küry et al., 2017), while individuals with CaMKIIβ variants
exhibit severe ID accompanied with hypotonia (Küry et al., 2017)
and cerebellar atrophy (Akita et al., 2018). Facial dysmorphisms
along with severe ID and severe hypotonia has been reported in
patients carrying a CAMK2G variant (Proietti Onori et al., 2018).
The vast majority of the variants identified, affect amino acids
conserved across species (Küry et al., 2017; Stephenson et al.,
2017; Akita et al., 2018; Chia et al., 2018; Proietti Onori et al.,
2018), which may explain the degree of severity of pathogenicity.

Stephenson et al. (2017) reported the first characterization of a
de novo missense mutation in the CAMK2A gene, encoding
for CaMKIIα, that was found in a patient with autism
spectrum disorder (ASD) (Iossifov et al., 2014). Replacement
of Glu with Val at 183rd position in the catalytic domain
of CaMKIIα (CaMKIIαGlu183Val) disrupts the interaction
of CaMKII with ASD-associated proteins, such as Shank3
(SH3 and multiple ankyrin repeat domains 3) (Jiang and
Ehlers, 2013), GluN2B (Pan et al., 2015) and the metabotropic
glutamate receptor mGlu5 (Chana et al., 2015), which can
reduce targeting of CaMKIIα to spines (Stephenson et al.,
2017). Neuronal expression of CaMKIIαGlu183Val disrupts
AMPAR-mediated synaptic transmission, interferes with

CaMKII autophosphorylation and reduces dendritic spine
density. Heterozygous (Camk2aWT/E183V) and homozygous
(Camk2aE183V/E183V) KI mice displayed enhanced repetitive
behaviors and deficits in social interactions, which mimic
symptoms of ASD (Stephenson et al., 2017). Decreased
autoinhibition and increased Thr286 autophosphorylation of
the CaMKIIαPro212Gln mutant, identified in an individual with
NDD, affects the efficiency of excitatory synaptic transmission by
enhancing K+ currents in dendrites in vitro (Akita et al., 2018).

A biallelic, germline, loss-of-function CAMK2A missense
mutation, CAMK2Ap.(His477Tyr) in the association domain of
CaMKIIα, was reported in two siblings displaying psychomotor
retardation, frequent seizures and severe ID (Chia et al., 2018).
Compared to the WT enzyme, the mutant form disrupts
CaMKIIα self-oligomerization and holoenzyme assembly which
in turn affects its subcellular localization in neurons and
ability to support synaptic function in vivo (Chia et al., 2018).
Recently, Brown et al. (2021) characterized six heterozygous
variants of CAMK2A found in patients with schizophrenia.
The p.(Arg396∗) mutation in the association domain of
CaMKIIα ablates holoenzyme formation, impairs GluN2B
binding and consequently fails to accumulate at excitatory
synapses in response to a LTP stimulus. While both p.(Arg396∗)
and p.(Arg8His) variants of CAMK2A exhibited impaired
autophosphorylation at Thr286, only the p.(Arg8His) mutation
in the kinase domain significantly affected the Ca2+/CaM-
stimulated kinase activity (Brown et al., 2021). The absence of
impaired function or expression for the remaining four mutants
studied indicates that the mere occurrence of a mutation in a
patient does not imply that the disease is caused by the mutation
(Brown et al., 2021).

In addition to NDDs and ID, CAMK2A variants/single
nucleotide polymorphisms (SNPs)/single nucleotide variants
(SNVs) have been reported to be associated with risk for bipolar
disorder (BD) in cohorts of European descent (Ament et al.,
2015), in sporadic AD patients belonging to the Han Chinese
population (Fang et al., 2019) and mild cognitive impairment
(MCI) subjects in a Spanish population (Bufill et al., 2015).
Deletion of the chromosome at 5q32, covering CAMK2A,
might be responsible for mild ID observed in two patients
diagnosed with mandibulofacial dysostosis (Vincent et al., 2014).
Interestingly, CAMK2A genetic variants have been reported to
be nominally associated with non-verbal communication in
ASD cohorts (Chiocchetti et al., 2018) and logical memory
performance in the elderly people (Rhein et al., 2020). CAMK2A
polymorphisms can also influence spatial working memory
in Caucasian adolescents (Easton et al., 2013) and cognitive
ability in Taiwanese senior high school students (Lee et al.,
2021). Recruitment of higher number of subjects from distinct
populations is warranted to further validate the association
of CAMK2A SNPs in genotype-phenotype association studies
(Chiocchetti et al., 2018; Rhein et al., 2020).

Apart from mutations in CAMK2A, de novo mutations in
CAMK2B have also been reported in 10 unrelated individuals
exhibiting mild to severe ID (Küry et al., 2017). There are 19
rare variants of CAMK2A and CAMK2B that are heterozygous
nonsense, missense or splice-site mutations affecting the catalytic
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or auto-regulatory domain of CaMKII. The identified variants
could affect protein expression and autophosphorylation at
Thr286/Thr287 when expressed in vitro, and cause deficits in
neuronal migration in vivo (Küry et al., 2017). De novo
mutations in CAMK2A and CAMK2B can also result in
varying neurodevelopmental phenotypes (Akita et al., 2018). The
missense variants disrupted the interaction between the catalytic
domain and the regulatory segment, leading to increased Ca2+-
independent activity (Akita et al., 2018).

A heterozygous c.85C>T, p.(Arg29∗) mutation in CAMK2B
was found in a patient with mild ID, delayed speech development
and seizures (Küry et al., 2017). This mutation was also
reported in a 3-year-old European girl with complex focal
seizures and global neurodevelopmental delay (Heiman et al.,
2021). This maternally inherited pathogenic variant of the
CAMK2B gene only mildly affected the patient’s sibling, with
the same variant, while the mother was phenotypically healthy
and intellectually normal (Heiman et al., 2021). Similarly, a
heterozygous c.416C>T, p.(Pro139Leu) variant of CAMK2B
found in four Caucasian patients presented with severe ID,
global developmental delay, hypotonia and microcephaly (Küry
et al., 2017), was also reported in a 22-year-old South Asian
woman (Rizzi et al., 2020) as well as in a MECP-2 (methyl-CpG
binding protein 2) negative proband of Japanese origin (Iwama
et al., 2019). The recurrence of a few pathogenic variants of
CAMK2A and CAMK2B (Küry et al., 2017) calls for elaborate
functional studies of the mutant proteins both in vitro and in vivo
(Onori and van Woerden, 2021).

De novo mutations in CAMK2G have also been identified
and reported in cases of NDDs and severe ID (De Ligt et al.,
2012; Study, 2017; Proietti Onori et al., 2018). Whole-exome
sequencing performed on two patients revealed c.875G>C,
p.(Arg292Pro) mutation in the auto-regulatory domain of
CaMKIIγ, which is a putative CaM trapping region. One research
group showed that CAMK2Gp.(Arg292Pro) affects protein stability
in vitro and functions as a pathogenic gain-of-function mutation
by rendering it constitutively active and by blocking neuronal
migration during development in vivo (Proietti Onori et al.,
2018). The pathogenicity of the mutant is dependent on its
catalytic activity (Proietti Onori et al., 2018). Cohen et al.
(2018) reported that the ID observed in these patients might
be due to the inability of CaMKIIγArg292Pro to effectively trap
CaM and shuttle Ca2+/CaM complex to the nucleus, thereby
disrupting a major link connecting activation of NMDARs
and Cav1 channels to nuclear transcription of BDNF, c-Fos
and Arc. This in turn adversely affects synaptic strengthening
and LTM in vivo. Similar to CAMK2A SNPs reported, a
genetic cluster containing CAMK2G polymorphisms has been
identified to be associated with episodic memory performance
(Dominique and Papassotiropoulos, 2006).

Although the CAMK2 variants reported so far shed light on
the probable role of the kinase in mediating disease symptoms,
the number of human subjects identified with the mutation
is insufficient, compared to the samples tested, to correlate
the variant to the disease with good statistical power. Neither
is it mandatory for the identified variant(s) to be a causal
factor in the diseased phenotype (Brown et al., 2021), nor can

an indirect role by the mutant protein be overlooked. More
detailed functional characterization of the identified and reported
CaMKII mutations than what is already reported, both in vitro
(Küry et al., 2017; Stephenson et al., 2017; Akita et al., 2018; Chia
et al., 2018; Cohen et al., 2018; Proietti Onori et al., 2018; Brown
et al., 2021) and in vivo (Stephenson et al., 2017; Chia et al., 2018),
can further substantiate the critical role of CaMKII mutants in
disease conditions. Nonetheless, screening for either sporadic
or inherited CAMK2 variants in disorders majorly affecting
cognition, can help in unraveling the theragnostic potential
of CaMKII, if any.

Ca2+/CALMODULIN-DEPENDENT
PROTEIN KINASE TYPE II AS A
DRUGGABLE TARGET FOR TREATING
GLUTAMATERGIC DYSFUNCTION

Antagonists against glutamate receptors, majorly NMDARs, have
been designed, synthesized and evaluated for their efficacy in
preventing excitotoxicity in CNS diseases (Liu et al., 2020;
Chandran et al., 2021). Signaling molecules downstream to
NMDARs, like CaMKII, can also be targeted to restore
Ca2+ and glutamate homeostasis at synapses (Vest et al.,
2010). Likewise, CaMKII has been exploited as a potential
drug target in neuropsychiatric and neurodegenerative diseases
(Sałaciak et al., 2021).

Based on the differential regulation of CaMKII function
during neurotoxicity, the modulators either enhance (Yamamoto
et al., 2009; Zeng et al., 2010; Wang D.M. et al., 2013; Wei et al.,
2013; Wang S.Q. et al., 2014) or inhibit CaMKII activity (Wang
D. et al., 2013; Jiang et al., 2019). Their modus operandi includes
binding to Ca2+/CaM binding site of CaMKII (Brooks and
Tavalin, 2011; Wong et al., 2019), targeting autonomous CaMKII
activity (Coultrap et al., 2011; Wang D.M. et al., 2013; Wang et al.,
2016; Deng et al., 2017), interacting with CaMKII hub domain
(Leurs et al., 2021), preventing CaMKII translocation to the
synaptic membrane (Matsumoto et al., 2008), inhibiting GluN2B-
CaMKII binding (Tullis et al., 2021) or by modulating CaMKII-
mediated signaling pathways (Liu et al., 2012; Matsumoto et al.,
2013; Wei et al., 2013; Zhang et al., 2017; Islam et al., 2019;
Wu et al., 2019; Izumi et al., 2020; Chen et al., 2021). The
different CaMKII modulators reported from studies involving
glutamatergic synapses in neurons are listed below:

1. Synthetic small molecule inhibitors like KN-62 and KN-93
(Tokumitsu et al., 1990; Sumi et al., 1991; Vest et al., 2010;
Ashpole and Hudmon, 2011; Brooks and Tavalin, 2011).

2. Synthetic peptide inhibitors like AIP (autocamtide-2-
related inhibitory peptide) (Fan et al., 2006; Goebel,
2009; Zha et al., 2009; Ashpole and Hudmon, 2011)
and AC3-I (autocamtide-3 derived inhibitory peptide)
(Leonard et al., 1999).

3. The natural CaMKII inhibitor protein CaM-KIIN
(CN) and its peptide derivatives, CaM-KIINtide
(CN27) (Chang et al., 1998; Saha et al., 2006;
Mayadevi et al., 2016), CN21 (Vest et al., 2007, 2010;
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Ashpole and Hudmon, 2011; Ahmed et al., 2017), CN19
(Coultrap and Bayer, 2011; Chalmers et al., 2020) and
CN17β (Gomez-Monterrey et al., 2013).

4. CaMKII antisense oligodeoxynucleotides (Liu et al., 2012).
5. Long non-coding RNA CAMK2D-associated transcript 1

(C2dat1) (Xu et al., 2016).
6. Analogs of γ-hydroxybutyrate (GHB) (Leurs et al., 2021).
7. Volatile anesthetics like isoflurane

(Matsumoto et al., 2008).
8. Compounds isolated from natural sources like nobiletin

(Yamamoto et al., 2009), curcumin (Mayadevi et al., 2012),
β-asarone (Wei et al., 2013), paeoniflorin (Wang D. et al.,
2013; Zhang et al., 2017), naringin (Wang D.M. et al.,
2013), Ganoderma lucidum polysaccharides (GLP) (Wang
S.Q. et al., 2014), baicalin (Wang et al., 2016), theobromine
(Islam et al., 2019), tilianin (Jiang et al., 2019) and gastrodin
(Chen et al., 2021).

9. The histone deacetylase (HDAC) inhibitor, vorinostat
(Matsumoto et al., 2013).

10. SAK3, a T-type calcium channel enhancer (Izumi et al.,
2020).

Although a majority of the modulators have been widely
employed to combat neuronal glutamatergic dysfunction in vitro
and in vivo, their clinical use will require extensive studies
on possible side effects and toxicity to cardiac health too
(Nassal et al., 2020).

FUTURE PERSPECTIVES

Majority of the biochemical and structural studies on CaMKII
have been performed on homomeric holoenzymes of one of
the isoforms. However, under physiological conditions the
enzyme can form hetero-multimers with different subunit
stoichiometries. The relative abundance of different heteromeric
subtypes under different developmental stages and in different
regions would be an important determinant in the physiological
functioning of CaMKII. Detailed studies on the functional
variation among heteromers and their participation in specific
cellular functions would be essential in making further progress
in understanding the physiological functions of CaMKII.
Further refinement of molecular genetic techniques for ectopic
expression of isoforms and mutants of CaMKII with better
control on heteromer formation would be essential for progress
toward this goal.

The binding of CaMKII to GluN2B modulates the kinetic
parameters of CaMKII enzyme activity and attenuates
dephosphorylation of CaMKII (Pradeep et al., 2009; Cheriyan
et al., 2011). These regulatory events strongly support the
bistable switch model of molecular memory involving
CaMKII and PP1. However, the physiological relevance of
these regulatory events and the existence of the bistable
switch in vivo needs to be demonstrated. Elucidation of the
structure of the CaMKII-GluN2B complex could contribute
significantly toward understanding the physiological functions
of this complex.

CaMKII activation is a prerequisite for both LTP and LTD
and recently it has been shown (Woolfrey et al., 2018) that two
types of substrates (high autonomy, low autonomy) are preferred
under each condition. If so, what are the exact signaling events
with respect to the amount of Ca2+ entry into the postsynaptic
site responsible for each of these events?

The recurrence of a few pathogenic variants of CAMK2A and
CAMK2B (Küry et al., 2017) calls for elaborate functional studies
of the mutant proteins both in vitro and in vivo (Onori and van
Woerden, 2021). It also encourages more extensive screening for
genetic variants of CaMKII in human populations.

CONCLUSION

CaMKII is an enzyme highly enriched in the brain. It has
important roles to play in the functioning of glutamatergic
synapses. Significant advances have been made in understanding
the structure, function and physiological role of CaMKII. Its
contribution to learning and memory has been investigated
extensively with the help of most modern techniques. This
has unequivocally established the integral part played by this
enzyme in learning and memory. However, there is still
more to be understood about the exact manner in which
CaMKII participates in the underlying cellular mechanisms
such as synaptic plasticity. Novel features of the structure and
biochemical regulation of CaMKII are still being revealed by
biophysical and biochemical experiments. Since the molecular
properties of CaMKII holoenzyme are among the foundations
on which most of the models of synaptic plasticity, learning and
memory are built, progress in structural studies would continue
to necessitate revisions in these models. Powerful molecular
genetic techniques have permitted the controlled expression of
isoforms and mutants of CaMKII in specific cell types in the
brain of model organisms leading to important insights into
its role in the cellular and systemic mechanisms. However, it
has been difficult to dissect out all of its synaptic functions
from cellular functions due to technical hurdles. The occurrence
of heteromeric subtypes of CaMKII and the redundancy in
the function among the isozymes also poses challenges to
molecular genetic interrogation of its cellular functions. Progress
in the understanding of CaMKII has prompted attempts to
pursue it as a therapeutic target for pharmacological and
genetic interventions since it is part of impaired Ca2+ signaling
in many disease conditions. A limited number of genetic
variants of CaMKII have been found associated with human
neurological disease conditions. The central role of CaMKII in
brain functions calls for large scale screening for CaMKII variants
in human populations.
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