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Autism Spectrum Conditions (ASC) are a group of neurodevelopmental disorders
characterized by deficits in social communication and interaction as well as repetitive
behaviors and restricted range of interests. ASC are complex genetic disorders with
moderate to high heritability, and associated with atypical patterns of neural connectivity.
Many of the genes implicated in ASC are involved in dendritic spine pruning and spine
development, both of which can be mediated by the mammalian target of rapamycin
(mTOR) signaling pathway. Consistent with this idea, human postmortem studies have
shown increased spine density in ASC compared to controls suggesting that the balance
between autophagy and spinogenesis is altered in ASC. However, murine models of ASC
have shown inconsistent results for spine morphology, which may underlie functional
connectivity. This review seeks to establish the relevance of changes in dendritic spines
in ASC using data gathered from rodent models. Using a literature survey, we identify
20 genes that are linked to dendritic spine pruning or development in rodents that are
also strongly implicated in ASC in humans. Furthermore, we show that all 20 genes
are linked to the mTOR pathway and propose that the mTOR pathway regulating spine
dynamics is a potential mechanism underlying the ASC signaling pathway in ASC. We
show here that the direction of change in spine density was mostly correlated to the
upstream positive or negative regulation of the mTOR pathway and most rodent models
of mutant mTOR regulators show increases in immature spines, based on morphological
analyses. We further explore the idea that these mutations in these genes result in
aberrant social behavior in rodent models that is due to these altered spine dynamics.
This review should therefore pave the way for further research on the specific genes
outlined, their effect on spine morphology or density with an emphasis on understanding
the functional role of these changes in ASC.

Keywords: autism spectrum conditions, social behaviors, rodent models, spine density, synaptic transmission,
neurocircuitry, mTORC1, autophagy

INTRODUCTION

Autism Spectrum Conditions (ASC) or Autism Spectrum Disorders (ASD) are a group of
neurodevelopmental disorders defined by the DSM-VI by the presence of two core symptoms:
persistent deficits in social communication, social interaction, socio-emotional reciprocity, and
restricted repetitive patterns of behavior, interests, or activities (Baron-Cohen, 2009; Mandy et al.,
2012). Commonly diagnosed at ages 2–3, ASC affects around 1% of the population, with ASC traits
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recently understood to be continuous within the general
population albeit those diagnosed with ASC being at the extreme
end of this spectrum (Lenroot and Yeung, 2013; Ruzich et al.,
2015). The elevation of these continuously distributed ASC traits
in first degree relatives of those with ASC suggests a genetic
basis for ASC (Piven et al., 1997; Eyuboglu et al., 2018). This
genetic basis for ASC is useful to identify critical molecular and
cellular drivers that may underlie the behavioral deficits in ASC.
This review seeks to: (a) identify mTOR (mammalian target of
rapamycin) and specifically the mTORC1 complex as a central
convergent pathway for a group of select high risk ASC genes;
(b) summarize how these genes can regulate a cellular phenotype,
i.e., spine dynamics via mTORC1 mediated pathways; and (c)
how spine dynamics may in turn result in the behavioral and
synaptic physiology phenotypes that are seen in ASC. We do so
by delineating supporting correlative evidence in human subjects
in Section ‘‘Functional Connectivity in ASC Is Linked to Spine
Dynamics’’ and ‘‘Many Genes Linked to ASC Are Regulators of
mTORC1 or Targets of mTORC1’’ and use data from rodent
models of ASC in further sections in order to explore genetic
causality for both spine dynamics and behavior.

FUNCTIONAL CONNECTIVITY IN ASC IS
LINKED TO SPINE DYNAMICS

Functional Connectivity Within the DMN
Underlies the ASC Phenotype
ASC is understood to be a whole brain disorder, whose
neural correlates range from alterations in synapses and
neural transmission to brain volume and structure. Alterations
in functional connectivity have long been implicated in
the pathophysiology of ASC since differences in functional
connectivity have been found in an estimated 90% of studies
(Lau et al., 2013; Chen et al., 2015; Mohammad-Rezazadeh et al.,
2016) although the direction of this difference, implicated brain
areas, brain state, and age are disputed (Müller et al., 2011; King
et al., 2019). A dominant but challenged theory (Picci et al.,
2016) is the ‘‘Cortical Underconnectivity Theory’’ which states
that there is long range underconnectivity particularly between
hemispheres and frontal-posterior brain areas in ASC individuals
which may explain symptomatology (Just et al., 2012). In
support of this theory is the finding that many ASC individuals
have decreased Corpus Callosum (CC) volume (Frazier and
Hardan, 2009), and that both adults and children with congenital
agenesis of the CC (AgCC) show deficits in social and
emotional intelligence and score highly on the Autism Quotient
(Lombardo et al., 2012; Lau et al., 2013) without intellectual
disability (Lábadi and Beke, 2017). Furthermore, fMRI studies
of individuals with AgCC show decreased long range functional
connectivity, suggesting that decreased long range connectivity
between hemispheres is what contributes to ASC symptomology
(Owen et al., 2013).

Apart from underconnectivity driven by the corpus collosum,
underconnectivity could also be seen by activity in the nodes
of the Default Mode Network (DMN), a set of nuclei that are
preferentially activated, as visualized by rsfMRI (resting state

magnetic resonance imaging) scanning, while individuals are not
focused on the external environment (i.e., ‘‘mind wandering’’
or ‘‘resting state’’). While DMN activation ceases once cognitive
effortful tasks commence (Anderson et al., 2011; Li et al., 2014;
Padmanabhan et al., 2017), mind wandering involves internally
generated thoughts about others, one’s self and remembering
past or envisioning future events, as elucidated by designed
self-report questionnaires and interviews (Andrews-Hanna et al.,
2013; Smallwood and Schooler, 2015). The DMN identified in
this manner consists of the medial prefrontal cortex (mPFC),
the posterior cingulate cortex, precuneus, medial temporal lobe
(which includes the hippocampus), and inferior parietal cortices
(Li et al., 2014; Alves et al., 2019) which together incorporate
memories (hippocampus) and emotions (mPFC) in order to
create ‘‘mind wandering’’ (Poerio et al., 2017). Hence, adults
with bilateral ventromedial prefrontal cortex (vmPFC) lesions
show a reduction in self-reported mind wandering (Bertossi and
Ciaramelli, 2016).

Decreased connectivity is often detected by fMRI in ASC
individuals within the DMN, with underconnectivity having
been found positively correlated to ASC social deficits, increased
repetitive stereotyped behaviors measured by Autism Diagnostic
Observational Score (ADOS; Yerys et al., 2015) as well the Autism
Diagnostic Interview-Revised (ADI-R; Chen et al., 2021b).
Though this data is necessarily correlative in nature, long range
underconnectivity in DMN areas could be a neuroanatomical
signature for ASC individuals who could then be tested for
social deficits (Nair et al., 2020) using the Theory of Mind
(ToM) tasks in which ASC individuals show marked deficits
(Frith and Happé, 1994). However, other studies have shown
short range, long range and overall brain connectivity to be
functionally overconnected in adults (Belmonte, 2004; Kleinhans
et al., 2016), though long range connections to and from
the frontal cortex appear to be consistently under-connected
(Courchesne and Pierce, 2005), with strength of connectivity
between the PFC and right parietal cortex negatively correlated
with autism symptom severity (Redcay et al., 2013). However,
long range hyperconnectivity between the thalamus and auditory
and somatosensory cortices as well as parietal regions has also
been found in fMRI studies of adults with ASC (Tomasi and
Volkow, 2019).

Varying long range connectivity in studies could occur due
to the polygenetic nature of ASC with different genetic rodent
models showing different functional connectivity patterns.
Therefore, it may be possible to use varying patterns of
connectivity as an endophenotype for identifying different
forms of ASC (Zerbi et al., 2021). For example, homozygous
knockout male mouse models of Fragile X Syndrome (FXS)
show long range cortico-striatal connections to be functionally
underconnected (Zerbi et al., 2018), whereas heterozygous
knockout male TSC models mouse models show the same
connections to be functionally hyperconnected (Pagani et al.,
2021). This long range hyperconnectivity found within the TSC
mouse model was also found to be associated with increased
repetitive behaviors in the mice. Increased repetitive behaviors
and increased long range hyperconnectivity are both reversed
by the administration of the mTOR inhibitor rapamycin, which
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functionally reverses the effects of the loss of one of the two Tsc2
genes (Pagani et al., 2021).

Conversely, individuals with depression present increased
rumination and self-referential mind wandering (Nejad et al.,
2013; Nayda and Takarangi, 2021) that is correlated with
hyperconnectivity between the long distance DMN nodes mPFC
and the posterior cingulate cortex, suggesting that the DMN
nuclei must maintain optimal connectivity for healthy cognition
and perception of self (Wise et al., 2017). In humans the
use of ketamine, a compound that is primarily an NMDA
receptor antagonist (Sleigh et al., 2014) has been shown to
alleviate symptoms of depression, as well as reduce functional
connectivity within the DMN of healthy individuals (Scheidegger
et al., 2012) and those with Major Depressive Disorder (MDD;
Evans et al., 2018), suggesting that many behaviors are strongly
correlated with functional connectivity. These studies show
that functional connectivity in the DMN may be a marker of
behaviors that denote increased or decreased self-reference.

Synaptic Physiology Underlies the
Differences in Connectivity in ASC
Individuals
What underlies differences in DMN connectivity in ASC
individuals? Within discrete brain areas, this may be attributed
to an Excitation Inhibition (E/I) imbalance and reduction
in signal-to-noise ratio in neural circuitry that is implicated
in ASC (Rubenstein and Merzenich, 2003; Testa-Silva et al.,
2012). Indeed, the high incidence of epilepsy within the ASC
population (Viscidi et al., 2013) as well a postmortem study
showing upregulation of excitatory AMPA receptors (Purcell
et al., 2001), may indicate that there is an increased excitation
within the brain of ASC individuals. How increased excitation
within the brain of ASC individuals causes local or long
distance hyperconnectivity or hypoconnectivity is not fully
understood though changing E/I ratios in local circuits to
understand this question is now underway in a number of
rodent models of ASC (See Section ‘‘Molecular Mechanisms
That Link Dysfunctions in Neuromorphology to Behavior’’).
Interestingly, hyperconnectivity between various modes of the
DMN, including that detected in a Tsc2+/− mouse model of
ASC using rsFMRI is linked to an excess of mTOR signaling
and increased spine density in the insular cortex. Using
in silico modeling, these increases in synapse density were
linked to hyperconnectivity and use of a mTORC1 inhibitor,
rapamycin, reversed both the increases in spine density and
the hyperconnectivity in this model (Pagani et al., 2021).
This strongly suggests that connectivity in the DMN is
positively correlated to spine density which is in turn driven
by mTORC1.

A recent study using living humans showed that synaptic
density (which may be indicative of spine density), as
measured by PET scanning of synaptic glycoprotein 2A, is
negatively correlated with symptom severity in adults with
MDD, within the dorsolateral prefrontal cortex (Holmes
et al., 2019). Such local hypoconnectivity is inversely
related while long range hyperconnectivity between the

dorsolateral prefrontal cortex and the posterior cingulate
cortex is positively correlated with depression symptoms of
clinically depressed individuals, suggesting that the underlying
measurements at the synapse, i.e., spine density/morphology
may have predictive value. In support of this idea, multiple
rat models of depression also show a decrease in dendritic
arbor within the hippocampal CA3 (Watanabe et al., 1992)
and mPFC pyramidal cells (Goldwater et al., 2009), both
key nodes involved in the DMN. Furthermore, ketamine
inhibited dendritic spine loss in chronically stressed rats that
displayed symptoms of depression via protection of mushroom
shaped spines, and through the induction of spine formation
(Ng et al., 2018).

Spine Dynamics Contributes to the E/I
Ratio Within Neural Circuits
Clearly, DMN connectivity and the underlying E/I ratio could
be dependent on neuronal architecture including dendritic spine
dynamics reflected by spine density and spine morphology
(Gao and Penzes, 2015). Dendritic spines are typically around
0.5–2 microns long, dendritic protrusions that receive signals
from axonal boutons of other neurons to form synapses
allowing neurons to transmit signals to one another (Horner
and Arbuthnott, 1991). Human postmortem studies reveal that
synapse formation increases throughout childhood from birth in
both ASC and Typically Developing (TD) children, but is slightly
elevated in ASC (Penzes et al., 2011). Synapses are then pruned
from adolescence into adulthood, with pruning being more
efficient in TD over ASC subjects, leaving ASC individuals with a
greater number of synapses. In adulthood, this is followed by an
equilibrium in synapse formation and elimination to maintain a
stable number of synapses in TD individuals (Rakic et al., 1986;
Masliah et al., 1993; Peters et al., 1998; Penzes et al., 2011); there is
increased synapse maintenance during adulthood in ASC, often
leading to a greater number of spines and synapses compared
to TD individuals (Penzes et al., 2011). The typical development
of cortical dendritic spines in rodents follows a similar pattern
to humans, with an initial increase in dendritic spine density
during the first two postnatal weeks, followed by an increase
in spine pruning over spine formation during adolescence, with
spine density then stabilizing in adulthood (Bhatt et al., 2009).
Apart from spine number, the shape of spines is also important
(Table 1). New immature spines have a small surface area and
postsynaptic density (PSD), with decreased number of receptors;
this could reflect an increased ‘‘neuroplasticity’’ of neural circuits,
with a greater potential for strengthening, thus making them
‘‘learning’’ spines (Bourne and Harris, 2007). It should be noted
that the classification of filipodia spines as being a defined and
individual spine type or just the precursor to dendritic spines is
disputed (Takahashi et al., 2003; Kanjhan et al., 2016); this is due
to the dynamic nature of filipodia-type spines which give rise to
all other spine types. However, since many studies investigating
dendritic spine dynamics in rodent models of ASC report
filipodia-type spines as part of the immature dendritic spine
classification, and report changes in the quantity of filopodia
type spines in various rodent ASC models, we have also decided
to report filipodia type spines as a distinct spine classification
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TABLE 1 | Characteristics of dendritic spines.

Spine type Maturity Shape Prevalence Function References

Filipodia Immature, motile,
learning spines existing
for 4 days or less

Long, thin and no real
head neck
configuration

65% of total spines in
human adult cortex and
hippocampus and most
prevalant spine type in
rodent brains

Spines originate as
filipodia in order to find
synaptic partners on
nearby dendrites and
invoke spine formation.
They then shorten and
widen as they mature.
Smaller surface area,
so smaller postsynaptic
density, Associated
with Long Term
Depression, synaptic
plasticity and learning

Peters and Kaiserman-Abramof
(1970), Harris and Kater (1994),
Nimchinsky et al. (2002), Holtmaat
et al. (2005), Cooke and Bliss
(2006), Bourne and Harris (2007),
Bourne and Harris (2008), Dumitriu
et al. (2010), Berry and Nedivi
(2017), Jawaid et al. (2018), and
Parker et al., 2020)

Long Thin Long (not as long as
filipodia) and thin with
head neck
configuration

Thin Long (shorter than both
Filipodia and long thin)
with head neck
configuration

Stubby Mature, memory spines
existing for 8 days or
more

Wide (not as wide as
mushroom) and short

25% human adult
cortex and
hippocampus and 2nd
most prevalent type in
rodent brains

Associated with Long
Term Potentiation,
decreased
neuroplasticity, ageing

Mushroom Widest spine type and
short

Branched Two heads from one
base

Around 10% of spines
in human adult cortex
and hippocampus and
least prevalant spine
type in rodent brains

Unknown

Dendritic spines on neurons can be of many shapes, with stubby and mushroom-shaped spines typically thought of as mature and thin, filamentous spines thought of as immature
and more motile (Risher et al., 2014). Different spine shapes have been implicated in different functions.

TABLE 2 | Brains from human ASC individuals show increased spine density.

Reference Model Sex Age (years) Brain area Spine density Spine morphology

Weir et al. (2018) Postmortem human ASD Males (n = 10) Females (n = 10) 7–46 Amygdala Increased Not tested
Tang et al. (2014) Postmortem human ASD Males (n = 18) Females (n = 2) 3–19 Temporal lobe Increased Not tested
Hutsler and Zhang (2010) Postmortem human ASD Males (n = 10) 10–45 Cortex Increased Increased mature

type spines

Postmortem brains were obtained and stained by Golgi staining, with spines counted in the amygdala, cortex, and temporal lobe (Hutsler and Zhang, 2010; Tang et al., 2014; Weir
et al., 2018). Only one study investigated spine morphology and showed an increased proportion of mature mushroom-shaped spines (Hutsler and Zhang, 2010).

within the larger category of immature spines (Dictenberg et al.,
2008; Williams et al., 2008; Dunaevsky et al., 2014; Pyronneau
et al., 2017; Sceniak et al., 2019; Skelton et al., 2020). Wider
more mature ‘‘memory’’ spines have greater surface area and
PSD for receptors and form very strong synapses with very little
range for the synaptic strengthening/adaptation that is associated
with Long Term Potentiation (LTP), on increased stimulation
(Cooke and Bliss, 2006). Spine shape and consequently maturity
are characterized by their length and width measurement ratios
(Harris and Kater, 1994), with immature spines, i.e., filopodia,
thin, long thin spines tending to be longer and thinner in
size and mature spines, i.e., mushroom and stubby shorter and
wider (Table 1). An increase in mushroom type mature spines

and increase in overall spine width in the primate prefrontal
cortex is associated with cognitive decline during aging in rhesus
macaques (Dumitriu et al., 2010), suggesting inflexibility and loss
of neural plasticity (Bourne and Harris, 2007, 2008).

Human postmortem studies, using Golgi-Cox staining,
have shown an increase in spine density in ASC individuals
compared to controls, independent of sex, within the amygdala,
cortex, and temporal lobes (Hutsler and Zhang, 2010; Tang
et al., 2014; Weir et al., 2018; Table 2). This increased spine
density in ASC individuals (Weir et al., 2018) is correlated
with increased head circumference/macrocephaly, as well as
enlargement of specific brain areas including the amygdala
and hippocampus (Schumann et al., 2004; Tilot et al., 2015;
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Weir et al., 2018). Only one human postmortem study assessed
spine morphology via Golgi-cox staining in ASC vs. TD
controls and found that ASC individuals had more ‘‘compact’’
spines with decreased spine length within the cortex, which
indicates a more mature spine morphology (Hutsler and Zhang,
2010; Table 2). This along with the increased spine density
found in ASC individuals may reflect an increase in local
connectivity linking spine density to functional connectivity.
One thing to note is that increased head size (macrocephaly)
is a common finding in children and adults with ASC;
toddlers with ASC show accelerated brain growth compared
to TD controls to possibly result in an enlarged amygdala
and hippocampus during adolescence (Groen et al., 2010)
with the degree of amygdala enlargement being a predictor
for ASC symptom severity (Schumann et al., 2004). A mouse
ASC genetic model of Phosphatase and tensin homolog (Pten)
haploinsufficiency also reflects the macrocephaly found within
ASC individuals (Huang et al., 2016). Furthermore this model
shows increased brain enlargement and macrocephaly that is
correlated with hyperconnectivity and dendritic arborization
(Huang et al., 2016), suggesting that ASC individuals with
macrocephaly may also have similar hyperconnectivity with
increased spine densities. A conditional knockout of Pten in
a subset of auditory cortical neurons shows enhanced local
and global hyperconnectivity with the strength of synaptic
inputs from the thalamus and auditory neurons increased;
this was decreased by the mTOR inhibitor rapamycin (Xiong
et al., 2012). Together, these studies suggest that functional
connectivity is correlated with both spine density and mTOR
signaling and both these neural correlates may result in
macrocephaly.

MANY GENES LINKED TO ASC ARE
REGULATORS OF mTORC1 OR TARGETS
OF mTORC1

Though twin and genome studies have demonstrated that ASC
has a genetic component, the genetic basis could be syndromic
or non-syndromic. Though syndromic forms account only for
2%–4% of ASC cases, they implicate genes that can then be
used to understand underlying cellular processes (Sztainberg
and Zoghbi, 2016; Ziats et al., 2021) in manipulatable rodent
models. These genes tend to be very rare within the general
population but they have a large effect size in that they are very
penetrant (Geschwind, 2011). Therefore, syndromic forms of
ASC are highly comorbid with heritable, monogenic autosomal
dominant disorders caused by the dysfunction of one identified
gene or chromosome section with high penetrance; examples
include Fragile X syndrome (FXS), Tuberous Sclerosis Complex
(TSC), Phelan-McDermid syndrome (PMS), Rett Syndrome,
Smith Lemli Opitz syndrome, and Angelman/Prader-Willis
Syndrome (Fernandez and Scherer, 2017). For example, 61% of
TSC patients have ASC (Vignoli et al., 2015). Non-syndromic
forms of ASC could be due to the mutation of many
common genetic variants or Single Nucleotide Polymorphisms
(SNP’s) which along with epigenetic factors summate in

order for ASC symptoms to reach a threshold for diagnosis
(Rylaarsdam and Guemez-Gamboa, 2019; Satterstrom et al.,
2020). These genes being prevalent in the general population
means that they are present in many healthy individuals
and may contribute to normal variation of traits, that they
have a small effect size and individually do not often result
in the development of ASC in the individual. However, it
is the combination of different SNP’s along with various
epigenetic factors that may lead to ASC diagnosis (Geschwind,
2011). Despite several genes implicated in ASC, 75%–95%
of ASC cases are idiopathic having an unidentified genetic
basis (Caglayan, 2010; Richards et al., 2015; Garg and Green,
2018). The Simons Foundation Autism Research Initiative
(SFARI) database contains a repository of ASC-associated
genes which are categorized as either ‘‘Syndromic’’ (S), 1,
2 or 3 according to the strength of evidence (stronger →
weaker) linking the gene to ASC (for more information see
https://gene.sfari.org/about-gene-scoring/; Banerjee-Basu and
Packer, 2010).

Many ASC-linked genes have been implicated in synapse
development through regulating spinogenesis (Sztainberg and
Zoghbi, 2016; Satterstrom et al., 2020). Using integrated
transcriptomics analyses of microarray and RNA-seq data
from a number of rodent ASC models, proteins expressed
at glutamatergic synapses are preferentially identified as
altered in ASC (Duan et al., 2019). Both spine density and
dendritic arborization (Copf, 2016) have been identified as
molecular processes in neurons that are important for several
neurodevelopmental disorders, including ASC (Nishiyama,
2019). Together, these studies suggest that dysregulation of
spine density may be causal to autistic behaviors. Since in
rodents key genes and neuromorphological alterations associated
with ASC are conserved (Varghese et al., 2017) with humans,
and behavioral tasks such as the social discrimination and
social interaction tasks and the marble burying task that
mimic the ASC phenotype are well established (Crawley, 1999,
2007), focusing on genes that affect spine density or spine
morphology in rodents may lead to mechanistic insight (Lazaro
and Golshani, 2015) of how these can affect behavior. In order
to do so, we searched the available literature on PubMed to
identify 141 genes identified using the search terms ‘‘spine
density’’ or ‘‘spine morphology’’ AND ‘‘autism’’ or ‘‘ASC’’ in
animal models. Out of 80 genes that showed differences from
the wildtype (WT) genotype in mean spine density and/or
morphology, 20 have a score of 1 in the SFARI database. All
these 20 genes are either regulators of the mTORC1 complex
or are regulated by the mTORC1 pathway (Figure 1), a major
convergent pathway for syndromic and nonsyndromic genes
(Magdalon et al., 2017). Though other pathways, notably those
involved in cell adhesion may also be important, we concentrate
solely on the upstream regulators of mTORC1 signaling with
a focus on studies where spine dynamics is altered in this
review. We also discuss their effects on neuromorphology
and ASC-type behaviors in genetically altered rodent models
and infer mTORC1 dependent and independent molecular
processes driven by them that may cause the alterations in
neuromorphology and behavior.
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FIGURE 1 | Upstream regulators and downstream targets of mTORC1. Positive and negative regulators of mTORC1 signaling show alterations in spine density
when deleted in murine models. All identified genes with a SFARI score of 1 can regulate mTORC1 and all change spine density compared to wildtype (WT) animals.
If spine density is increased compared to WT, this is denoted by the gene in green while if spine density is decreased compared to the WT, this is denoted by the
gene in red. Note that positive regulators of mTORC1 (with the exception of Dip2A) all decrease spine density either when deleted or when duplicated (UBE3A and
MeCP2). Though we do not focus on downstream targets of mTORC1 in this review, these targets are involved in transcription, translation, and autophagy. Adnp,
Activity dependent neuroprotective protein; Tcsf4, Transcription factor 4; Upf3b, Regulator of nonsense transcripts 3B; Csde1, Cold shock domain-containing
protein E1; Pogz, Pogo transposable element with ZNF domain.

THE mTORC1 PATHWAY IN ASC IS A
CRITICAL HUB FOR BOTH
NEUROMORPHOLOGY AND BEHAVIOR

mTORC1 is a serine/threonine kinase within the PI3K-related
kinase (PIKK) family, made up of mTOR, Raptor, and mLST8
(mammalian lethal with Sec13 protein 8; Saxton and Sabatini,
2017) subunit and is sensitive to rapamycin inhibition. A major
upstream regulator is PI3K-phosphorylated Protein Kinase B
(PKB) which directly activates mTORC1 and indirectly does
so by inactivating an inhibitor, i.e., the Tuberous Sclerosis
1 and 2 (TSC1/2) proteins which in turn normally inhibit
Rheb GTPase from activating mTORC1 (Ersahin et al., 2015;
Figure 2). In cells, the mTORC1 pathway is a critical nexus
in cells linking external stimuli such as energy availability,
stressors, and abundance of growth factors as well as activation of
glutamate receptors (AMPA/NMDA) and associated proteins at
the synapse (SYNGAP/HOMER/SHANK/PTEN) to downstream
increases in protein translation and maintenance of autophagy
(Winden et al., 2018). Downstream signaling targets include S6K
which upregulates translation initiation and elongation via eIF4A
and eEF2 respectively, as well as increases cell growth and cell
survival (Ersahin et al., 2015). The mTORC1 pathway maintains
autophagy by inhibiting ULK-1, an activator of BECLIN which

is required for the formation of the autophagosome (Jhanwar-
Uniyal et al., 2019); hence overactivation of mTORC1 results in a
decrease in autophagy.

In several models of autism such as deletions or mutations
of PTEN, TSC, NF1 or FMRP proteins, mTORC1 activity is
increased (Magdalon et al., 2017 and references therein). For
example, tuberous sclerosis complex genes 1 and 2 (Tsc 1/2)
code for the protein hamartin and tuberin respectively which
heterodimerize to inhibit RheB, which normally directly activates
mTORC1 (Franz and Capal, 2017). Therefore deletion, mutation
or rearrangement of the Tsc genes leads to a loss of activity
of the complex and overactivation of the mTORC1 pathway
(Huang and Manning, 2008; Portocarrero et al., 2018). As
expected, proteomic analyses show increases of mTOR in both
the hippocampus and striatum of Tsc1+/− mice (Wesseling
et al., 2017) and increases of downstream targets such as
Ulk1 mRNA and phospho-S6K protein in the Tsc2+/− mouse
brain (Sato et al., 2012). This shows that mTOR overactivation
by the deletion of an ASC-associated gene can increase the
expression of downstream targets of mTORC1 (Figure 2). Since
mTORC1 overactivation in this manner causes increases in spine
density that is correlated with DMN hyperconnectivity (Pagani
et al., 2021), other upstream regulators of mTORC1 may also
alter behavior via spine density alterations.
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FIGURE 2 | Pathways by which upstream regulators affect mTORC1 signaling. Several regulators affect mTORC1 signaling via PI3K signaling or via Rheb signaling.
Green and red-labeled genes represent ASC related genes that are upstream regulators of mTORC1 in an either positive (dark green) or negative (dark red).
Downstream target genes linked to ASC that show changes in spine density are shown as light green (positively regulated by mTORC1); or pink (genes negatively
regulated by mTORC1). Downstream target genes of mTORC1 are not the focus of this review. Green arrows indicate activation and red lines represent inhibition.

Autophagy, Downstream of
mTORC1 Signaling, Is Required for
Optimal Spine Density and Social Behavior
If mTORC1 signaling is a critical nexus for upstream regulators
that are deleted or mutated in autism and if spine dynamics
are an underlying mechanism for autism, then it is plausible
that loss or mutation of upstream regulators may affect
spinogenesis and/or spine pruning via mTORC1 signaling,
just as it does social behavior (Section ‘‘Rapamycin, an
Inhibitor of mTORC1, Reverses Autistic-Like Behaviors’’). In
ASC individuals, postmortem studies show a decrease of LC-
III, an autophagosome marker, suggesting decreased pruning.
Decrease of this marker is correlated with increased spine
density and persistent PSD-95marker expression in the temporal
lobe throughout childhood and adolescence (Tang et al., 2014).
Supporting this, a neuronal deletion of atg7, a E1 ligase
required for phagosome formation in mice results in social
interaction deficits and spine density on basal dendrites that
stays elevated on cortical pyramidal neurons into adulthood.
A second murine model that shows the significance of spine
pruning is the Tsc2+/− haploinsufficient mouse where reduction
of this negative regulator of mTORC1 leads to increases in spine
density in cortical projection neurons (Tang et al., 2014). Though
rapamycin rescues both behavioral deficits and aberrant spine
density in the Tsc2+/− mouse, it does not do so in the Atg7

conditional knockout (cKO) mouse or in the double mutant
Tsc2+/−, Atg7cKO mouse, demonstrating an absolute need for
spine pruning in order to ameliorate social behavior deficits
(Tang et al., 2014). A second upstream negative regulator of
mTORC1 is the Fragile X mental retardation protein (FMRP;
Sharma et al., 2010; Hoeffer et al., 2012; Darnell and Klann,
2013; Casingal et al., 2020), the Fmr1 KO shows increased spine
density in the hippocampus which in turn is correlated with
higher long term depression (LTD) and a lack of discrimination
in the novel object recognition task. These phenotypes are
ameliorated with shRNA to Raptor, an unique component
of the mTORC1 complex, suggesting that overactivation of
mTORC1 specifically leads to the cognitive deficit (Yan et al.,
2018). This rectifying effect of decreasing Raptor levels could
be abrogated by decreasing ATG7, a protein required for
phagosome formation, suggesting that Raptor rescued spine and
cognitive deficits via the activation of autophagy in hippocampal
neurons (Yan et al., 2018). Consistent with the idea that rectifying
mTORC1 activity is central to rescuing spine density and
social behavior, ketamine, a mTORC1 activator because it also
secondarily increases AMPA signaling, rescued the lack of fear
memory and decreased spine density in the prefrontal cortex
seen in a heterozygote mouse deficient in the RELN (reelin)
protein. Since RELN is a positive activator of mTORC1, lack of
this protein leads to lower activation of this pathway which can
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be rescued by activation with ketamine. Conversely, rapamycin,
an inhibitor of mTORC1 can reverse the ketamine-mediated
rescue of spine density and fear memory in the Reln+/− mouse,
suggesting that both neuromorphology and cognitive and social
behaviors are highly sensitive to mTORC1 levels (Iafrati et al.,
2013; Section ‘‘Rapamycin, an Inhibitor of mTORC1, Reverses
Autistic-Like Behaviors’’ below).

Rapamycin, an Inhibitor of mTORC1,
Reverses Autistic-Like Behaviors
If mTORC1 is a critical nexus for ASC, we would also expect
that alteration of this pathway results in behaviors that denote
autism in rodent models. To give an example, haploinsufficiency
of Tsc2 or Tsc1 in the cerebellum using a conditional knockout
(KO) mouse model is sufficient for the manifestation of social
preference in the 3-chamber preference test and repetitive
behavior in the marble burying task and self-grooming with all
behavioral phenotypes ameliorated with rapamycin treatment
(Tsai et al., 2012; Reith et al., 2013). Similarly, a selective
deficit in social interaction but not in locomotor or food
exploration activity was noted in bothTsc1 andTsc2 heterozygote
mutant mice. This deficit is reversed in both genotypes by
rapamycin (Sato et al., 2012). Tsc2+/− mice also show decreased
memory in the Morris Water Maze and no discrimination
between novel and training contexts in the contextual fear
conditioning task, behaviors that could possibly be due to
unstable late-phase LTP at the Schaeffer collateral synapse in the
hippocampus; these were also reversed by rapamycin. This is a
specific effect since early phase LTP, basal synaptic transmission
and paired pulse facilitation are unaffected (Ehninger et al.,
2008). Rapamycin reversal of specific behavioral and synaptic
phenotypes demonstrates that mTORC1 signaling is specifically
critical in driving autism-like behaviors in rodents.

The consequence of overactivation of the mTORC1 pathway
would be an increase in translation and hence we would expect
to see similar behavioral deficits in mice that overexpress or
show greater activity of the downstream targets of mTORC1.
Mice that are deleted for the repressor e4B-BP1, mimic
mTORC1 overactivation since they have increased eIF4E activity
and show increased excitation-inhibition (E/I) ratio, suggesting
altered synaptic properties in the CA1 of the hippocampus.
They also show decreased vocalization and socialization and
no preference for conspecifics in the 3-chamber test as well as
increased anxiety and repetitive behaviors such as self-grooming
(Gkogkas et al., 2012). Interestingly, pharmacological inhibition
of eIF4E normalized both social and repetitive behaviors and the
E/I ratio. Similarly, a transgenic mouse that overexpressed eIF4E
mimicking ASC individuals with a SNP in the promoter of the
eIF4E gene that increases the level of this protein, also showed
increased repetitive behavior and anxiety, decreased contact with
conspecifics and higher mEPSCs from pyramidal neurons in the
prefrontal cortex. This could be due to an increased spine density
through an increase of smaller spines (Santini et al., 2012). Again,
intracerebroventricular infusion of the eIF4E inhibitor, 4EGI-1,
improved social behaviors and decreased anxiety (Santini et al.,
2012). In Fmr1 (Fragile-X mental retardation 1) KO mice, where
mTORC1 is overactive because of loss of inhibition of PI3K, S6K

is also overactivated; deletion of S6K increased dendritic spine
maturation with concomitant improvement in social interaction
behaviors and mGluR-mediated long term depression (LTD;
Bhattacharya et al., 2012). Taken together, all these studies
suggest that overactivation of mTORC1 and S6K signaling is
sufficient for the manifestation of autistic-type behaviors.

MANY UPSTREAM REGULATORS OF
mTORC1 ARE EXPRESSED AT THE
DENDRITE OR AT THE POST-SYNAPTIC
DENSITY (PSD)

Of the upstream regulators of mTORC1 identified (Tables 3
and 4), 75% are expressed either at the membrane of neurons
in the PSD or at the dendrite. These are RELN, SHANK3
(SH3 and ankyrin repeat domain protein), DIP2A, CDKL5,
FMRP, SHANK2, PTEN, SYNGAP (Synaptic Ras GTPase-
activating protein), GRIN2B (Glutamate ionotropic receptor
NMDA type subunit 2B) proteins and include both positive
and negative regulators of mTORC1 function. One percent
of all ASC cases show mutations in the SHANK family of
proteins which are scaffolding proteins at the PSD that link
to PSD-95, Homer, Arc2/3, the WAVE regulatory complex,
SHARPIN, and glutamate receptors (AMPA and NMDA) via
intermediate molecules or directly via their several conserved
domains (Naisbitt et al., 1999; Delling and Boeckers, 2021). The
presence ofmostmTORC1 regulators at the synapse as well as the
data in Section ‘‘The mTORC1 Pathway in ASC Is a Critical Hub
for Both Neuromorphology and Behavior’’ using mutant mTOR
regulator rodent models suggests that synaptic parameters such
as spine density, spine morphology, dendritic arbor, and the
functional correlate, i.e., synaptic physiology play an important
and possibly causal role in autistic-like behaviors in the rodent
models.

Positive and Negative Regulators of
mTORC1 Have Opposing Effects on Spine
Density and Synaptic Plasticity
Several reviews stress the role of mTOR signaling in autism
(Magdalon et al., 2017; Winden et al., 2018) while others
explore the role of spine dynamics in autism, focusing on a few
genetic models (Copf, 2016; Lin et al., 2016; Martínez-Cerdeño,
2017). In these sections, we specifically focus on the effects
of upstream positive and negative regulators of mTORC1 on
spine density and/or spine morphology in rodent models and
possible correlations with synaptic physiology [Section ‘‘Many
Upstream Regulators of mTORC1 Are Expressed at the Dendrite
or at the Post-Synaptic Density (PSD)’’] and social behaviors
(Section ‘‘Alterations of mTORC1 Activity by Alterations in
the Expression of Upstream Regulators Result in Autistic
Behaviors’’).

Positive Regulators of mTORC1 at the PSD/Dendrite
Positive regulators of mTORC1 (Table 3) that are at
the PSD/dendrite include SHANK3, DIP2A, RELN, and
CDKL5. Two genes cyclin-dependent kinase-like 5 (CDKL5)
encoded by the Cdlk5 gene located on the X chromosome
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(Montini et al., 1998) and Dip2A (Disco-interacting protein
2 homolog A), located on Chromosome 21 respectively have an
important role in neuronal development and migration (Chen
et al., 2010) as well as synaptogenesis and spine maturation
(Della Sala and Pizzorusso, 2014). CDKL5 is localized with
RAC1 in the spine of postmitotic neurons (Chen et al., 2010)
whereas DIP2A is at the cell membrane and PSD (Ouchi
et al., 2010). CDKL5 stimulates mTORC1 signaling through
positive regulation of MeCP2, another ASC-related gene
(Tsujimura et al., 2015; Section ‘‘Effects of the Loss of ‘global’
Positive Regulators of mTORC1 on Spine Density and Synaptic
Physiology’’) while DIP2A is a binding partner of FSTL1, which
mediates Akt/PKB phosphorylation (Ouchi et al., 2010; Liang
et al., 2014) and therefore increases mTORC1 activity. Unusually,
RELN is an extracellular ligand that binds to the ApoER2 and
VLDLR to direct cortical neuronal migration (Jossin, 2020).

Effects of the Loss of Synaptic Positive Regulators of
mTORC1 in the PSD on Spine Density and Synaptic
Physiology
Heterozygote CDKL5 knockout mice show lower spine density
on both apical and basal dendrites of pyramidal cells in the
CA1 and dentate gyrus as well as decreased arborization as shown
in lower number of branches and lower dendrite lengths (Trazzi
et al., 2018). Despite a small increase in immature spines, this
lower spine density is driven by a larger decrease in mature
spines. Juvenile haploinsufficient reeler mice also show lower
spine density, most of which is attributable to lower numbers of
spines with smaller head widths, accompanied by a near absence
of NMDA-dependent LTP (Iafrati et al., 2013). Unlike the
other positive regulators, Dip2A KO mice show increased spine
density but this is confined to basal dendrites with no change in
spine density on apical dendrites in cortical pyramidal neurons.
However, this increased spine density is due to an increase
in stubby spines albeit and a decrease in mushroom spines,
flattening the PSD and possibly decreasing mEPSC amplitude
due to a smaller number of NMDA and GluR subunits at the PSD
(Ma et al., 2019).

Several homozygous and heterozygous rodent models use
deletion or missense mutations of the scaffolding protein,
SHANK, that mimic those found in human ASC individuals and
that result in truncation of the protein. These are widely studied
for their behavioral and neuromorphological phenotypes; for a
detailed summary and a tabular synopsis of these, the reader is
directed to Delling and Boeckers (2021) and Monteiro and Feng
(2017) respectively. The best studied Shank isoform, SHANK 3 is
uniquely expressed as part of the corticostriatal circuit in the
striatum (Peça et al., 2011) and both a complete gene Shank3 KO
(Shank3−/−; Wang et al., 2016) and PDZ-domain deletions (Peça
et al., 2011; Demir et al., 2016) show reduced spine density in the
striatum. Mice with deletions of the ankyrin repeat domain of
Shank3 show reduced spine density in the hippocampus (Wang
et al., 2011) and those with deletions in the Pro-rich (Zhou
et al., 2016) domain also show reduced spine densities in the
prefrontal cortex. In the hippocampus, LTP was also decreased
in a Shank3mutant with a deletion of the ankyrin repeat domain
(Jaramillo et al., 2016). Though some studies show no difference
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in spine density, the weight of evidence tends towards a decrease
in spine density (Figure 3) with some studies reporting a decrease
in mature mushroom shaped spines or spine width and length
in a fairly domain-independent fashion (Wang et al., 2014).
Local removal of Shank3 in the nucleus accumbens reduces the
firing rate in medium spiny neurons (MSN) of this region and
whole Shank3 KO displayed reduced sEPSC and LTD that is
consistent with a reduced number of glutamatergic synapses on
MSN in the striatum (Verpelli et al., 2011; Wang et al., 2016).
However, the intrinsic striatal excitability was higher most likely
due to increased glutamatergic drive from cortical afferents since
hyperactivity is seen in the cortex of Shank3−/− mice during a
critical postnatal developmental period (PND14; Peixoto et al.,
2016). These studies suggest that in general lower LTP or LTD
along with lower spine density or less mature spines occur in
mice that deleted for positive regulators of mTORC1.

Effects of the Loss of “Global” Positive Regulators of
mTORC1 on Spine Density and Synaptic Physiology
Two other positive regulators of mTORC1 are MeCP2 (Methyl
CpG binding protein 2), a transcriptional repressor and UBE3A
(Ubiquitin-protein ligase E3A), a transcriptional coactivator and
E3 ubiquitin ligase that targets proteins for degradation (Vatsa
and Jana, 2018; Figure 2). In both cases, individuals presenting
with increased dosage of these genes show symptoms of autism
and hence overexpression and not deletion models of mice of
these genes recapitulate features of autism. For example, the
2xTg-MeCP2 mouse which is a model for both Rett syndrome
and ASC shows increased spine densities with a greater number
of mushroom shaped spines, increased dendritic branching
at younger ages that are normalized at around 40 weeks,
possibly due to increased levels of S6K (Jiang et al., 2013).
A PKA-phosphorylation site in UBE3A that is mutated in an
ASC proband, T485A, also shows higher spine densities in
cortical neurons transfected with the mutant, suggesting that
overexpression of these positive regulators of mTORC1 increases
spine density (Yi et al., 2015).

However, in some mouse models, overexpression of these
genes leads to lower spine densities. For example, MeCP2
overexpression in mouse cortical neuronal cultures interferes
with the formation of the DiGeorge syndrome critical region
8 (DGCR8) complex with Drosha and lowers miRNA globally.
This includes lowering the miRNA for CREB and LIM kinase
(LIMK), whose levels rise; however, dendritic spine density
decreases for reasons that are not clear (Cheng et al., 2014).
Similarly, a study using inducible overexpression of UBE3A
shows lower dendritic arbor, lower spine density with a lower
proportion of mushroom shaped spines possibly due to an
increased atypical pruning mechanism involving caspase (Khatri
et al., 2018; Section ‘‘Upstream Regulators of mTORC1 Regulate
Pruning by Several Pathways’’).

Hence, though the loss of synaptically-localized positive
regulators of mTORC1 typically leads to lower spine densities,
smaller PSD and/or decreased sEPSCs/LTP, there is a lack of a
clear pattern with more global positive regulators such as UBE3A
and MeCP2 where overexpression rather than loss of the protein
is present. This suggests that for global regulators, there are

multiple targets which are critical rather than just overactivation
of the mTORC1 pathway. This is exemplified by the MeCP2-
mediated transcriptional repression of Reelin, where the decrease
of Reelin in a MeCP2-overexpression ASC model may mimic
the heterozygyous reeler mice and result in lower spine densities
(Zhubi et al., 2014).

Negative Regulators of mTORC1 at the PSD/Dendrite
and Their Effects on Spine Density and Physiology
Negative regulators include FMRP, SHANK2, PTEN, SYNGAP,
GRIN2B, and TSC (Figure 2); many of the well-studied genes
in this category when mutated or deleted in the mouse show
increased spine density (Table 4) due to a combination
of mTORC1-mediated lack of pruning and/or increase
in spinogenesis pathways (Section ‘‘Upstream Regulators
of mTORC1 Regulate Pruning by Several Pathways’’ and
‘‘Upstream Regulators of mTORC1 Regulate Spinogenesis by
Several Pathways’’).

The loss of PTEN, a negative regulator of the PI3K pathway,
in hippocampal granule cells and cerebral cortex using a NSE-
cre model leads to dendritic hypertrophy and macroencephaly
in mice (Kwon et al., 2006). Consistent with this, a KO of
Pten in granule cells at postnatal day (PND) 14 and PND
21 in a Brainbow mouse model results in longer apical dendrite
lengths, greater distal arborization and increased soma size
(Arafa et al., 2019). In support, E157G PTEN mutations found
in ASC individuals when incorporated into iPSC-differentiated
neurons also show an increase in dendritic arbor (Wong et al.,
2020). This has functional implications—as expected, there is
increased excitability in the postsynaptic dentate gyrus granule
cell revealed by increased sEPSC, burst frequencies and reduced
sIPSC in both male and females (Santos et al., 2017). This could
also be due to excessive ‘‘wiring’’—where competition by Pten
KO cells is more efficient for the available pool of presynaptic
partners resulting in increased glutamatergic excitatory afferents
(Skelton et al., 2019). Similarly, truncation mutations of GRIN2B
abrogated NMDA-dependent calcium influx and led to more
filopodial spines in cortical neurons (Sceniak et al., 2019)
even on a wildtype background, possibly due to a dominant
negative effect. A third negative regulator is SynGAP which
inhibits an activator of LTP, i.e., Ras-ERK signaling that in
turns activates Rheb and mTOR, increasing translation of
AMPA receptors (Groc et al., 2013). SynGAP+/− mice show
increased glutamatergic transmission when the perforant path
is stimulated during an early postnatal period of hippocampal
synaptic development (PND10-PND20) possibly due to an
increased proportion of mushroom spines in dentate gyrus
granule cells despite similar spine densities as wildtypemice. This
accelerated development of glutamatergic synapses can also be
seen with persistent propagation of signal in the hippocampal
tri-synaptic circuit using photolysis of caged glutamate paired
with fast voltage-sensitive dye imaging, demonstrating an
increased E/I ratio (Clement et al., 2012). Similar stronger
excitatory synapses and stronger basal transmission were seen
in neurons derived from human iPSC cells where SYNGAP
expression was reduced (Llamosas et al., 2020). A fourth
model of a negative mTORC1 regulator is the mouse model
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TABLE 4 | Upstream regulators of mTORC1 implicated in ASC that act as negative regulators of mTORC1 signaling.

Gene No. of
articles

Average spine
density

Spine morphology Murine
social beh.

Ultrasonic
vocalizations

Repetitive beh. Human syndrome Microcephaly

TSC 9 D Increased immature Decreased social
recongnition
memory

Decreased Increased grooming
and marble burying

Tuberous sclerosis
complex

-

Fmr1 1 I Increased immature and
decreased mature

Decreased social
recongnition
memory

Decreased Increased grooming
and marble burying

Fragile X syndrome yes

PTEN 5 I Increased immature and mature Decreased social
recongnition
memory

Drecreased Increased grooming
and marble burying

PTEN harmato ma
tumour

yes

SHANK2 3 D Increased immature and mature Decreased social
recongnition
memory

Altered Increased grooming - yes

Nf1 4 D Increased immature and mature - - - Coffin-siris
syndrome (CSS)

Microcephaly and
macrocephaly

SYNGAP1 2 ND Increased immature Decreased
preference for
mouse over object

- - - Microcephaly and
macrocephaly

GRIN2B/Glun2B 2 I Increased immature No difference No difference Increased self grooming grin2b-related
neurodevelopmental
disorder

Microcephaly and
macrocephaly

CASPR2 2 D Increased immature and mature - - - - -

Loss of these genes result in variable effects on spine density but all mouse models show abnormal social behaviors and increased repetitive behaviors. Spine density is recorded as an mean of the spine density values reported in the
hippocampus and/or cortex across several studies. Note that there is only one study for Brg1 and hence this is not analyzed in the review. References: Tavazoie et al. (2005), Hayashi et al. (2007), Meikle et al. (2008), Berkel et al. (2010),
Luikart et al. (2011), Wang et al. (2011), Anderson et al. (2012), Clement et al. (2012), Ginsberg et al. (2012), Henderson et al. (2012), Schmeisser et al. (2012), Bateup et al. (2013), Dolan et al. (2013), Haws et al. (2014), Oliveira and
Yasuda (2014), Pop et al. (2014), Tang et al. (2014), Yasuda et al. (2014), Barnes et al. (2015), Nie et al. (2015), Spinelli et al. (2015), Sugiura et al. (2015), Williams et al. (2015), Varea et al. (2015), Hodges et al. (2017), Liu et al. (2017),
Pyronneau et al. (2017), Cox et al. (2018), Jawaid et al. (2018), Yan et al. (2018), Arroyo et al. (2019), Booker et al. (2019), Gross et al. (2019), Sceniak et al. (2019), Skelton et al. (2019), Zhang et al. (2019), Banke and Barria (2020),
Kulinich et al. (2020), Shih et al. (2020), Bland et al. (2021), Schaefer et al. (2021), and Sugiura et al. (2022).
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FIGURE 3 | Rodent models show differences in spine density compared to controls. All spine density data from the TSC model are from Tsc1/2 heterozygotes and
KO animals (Panel A), for the FMRP model from Fmr1 knockdown (KD) and knockout (KO) animals (Panel B) and for the SHANK3 model from Shank3 knockdown
(KD) and knockout (KO) animals (Panel C). TSC1/2 and FMRP are upstream negative regulators of mTORC1 while SHANK3 is a positive regulator. Spine density
values from rodent studies was extracted using WebPlot Digitiser in a semi-quantitative fashion with the magnitude of the difference from the control plotted. The
average difference for all models combined across cortex and hippocampus is shown, with all studies weighted equally. References: Tavazoie et al. (2005), Hayashi
et al. (2007), Meikle et al. (2008), Verpelli et al. (2011), Wang et al. (2011, 2014), Durand et al. (2012), Ginsberg et al. (2012), Henderson et al. (2012), Bateup et al.
(2013), Dolan et al. (2013), Pop et al. (2014), Tang et al. (2014), Yasuda et al. (2014), Cochoy et al. (2015), Nie et al. (2015), Sugiura et al. (2015, 2022), Mei et al.
(2016), Hodges et al. (2017), Pyronneau et al. (2017), Cox et al. (2018), Jawaid et al. (2018), Yan et al. (2018), Arroyo et al. (2019), Booker et al. (2019), Gross et al.
(2019), Banke and Barria (2020), Jacot-Descombes et al. (2020), Kulinich et al. (2020), Bland et al. (2021), and Schaefer et al. (2021).

of Fragile X syndrome (FXS) that also shows behaviors that
mirror those seen in autism. Loss of the FMRP protein, that
represses translation of other dendritic spine proteins, increases
spine density in the medial prefrontal cortex, basal lateral
amygdala, and hippocampus compared with wild type (Qin et al.,
2011) with a greater proportion of thin spines and a lower
proportion of mushroom spines (Jawaid et al., 2018) as well as
hyperexcitability in the somatosensory cortex and exaggerated
LTD in the hippocampus (Bhattacharya et al., 2012). This could
be due to the reduction in a FMRP target calsyntenin-1 in the
medial prefrontal cortex which in turn represses the synaptic
protein ICAM5; an increase in ICAM5 in the Fmr1 KO decreases
spine maturation; overexpression of calysyntenin rescues spine
maturation (Cheng et al., 2019).

Therefore overactivation of mTORC1 due to a loss of
upstream negative regulators typically leads to an increase in
spine density with a concomitant increase in excitability in local
circuits. An outlier in this group is mice with Shank2 PDZ
domain mutations which show either a decrease in spine density
(Won et al., 2012) or no effect (Schmeisser et al., 2012). This
could be due to compensation by the increased expression of
the SHANK3 isoform (Schmeisser et al., 2012) driving the spine
density effect. Another notable exception is the TSCmodel where
studies report variable effects (Figure 3) though ASC models of
TSC show increased spine density in the cortex but not in the
hippocampus (Figures 4A,D). This underscores that different
brain regions may show different variations in spine density.

ALTERATIONS OF mTORC1 ACTIVITY BY
ALTERATIONS IN THE EXPRESSION OF
UPSTREAM REGULATORS RESULT IN
AUTISTIC BEHAVIORS

Despite the fact that spine density may increase or decrease
as can be seen in Section ‘‘Many Upstream Regulators of

mTORC1 are Expressed at the Dendrite or at the Post-Synaptic
Density (PSD)’’, there are consistent social behavior deficits
reported in all rodent models of these upstream regulators
of mTORC1 (Tables 3, 4). Tests range from assays of social
interaction/motivation such as the 3-chamber test or ultrasonic
vocalization, social recognition tests such as social novelty,
anxiety measured by the open field or the elevated plus
maze testing to repetitive behaviors such as self-grooming and
perservatory behaviors such as longer latencies to extinguish
memories. Some tasks such as theMorrisWater Maze also have a
large cognitive component (Miyakawa et al., 2001; Holmes et al.,
2002, 2003; Tsai et al., 2012).

The Effects of Alterations of Positive
Regulators of mTORC1 on Behaviors That
Denote Autism
CDKL5 heterozygotes show reduced learning in the Barnes
Maze and repetitive jumping behavior (Trazzi et al., 2018) while
heterozygote reeler mice show decreased freezing to tone in
renewal trials during fear conditioning (Iafrati et al., 2013).
Similarly, the Dip2A KO shows lower social exploration time
of a conspecific, increased self-grooming in both novel and
home cage environments, decreased social novelty and increased
marble burying indicative of higher anxiety as well as social
recognition and interaction deficits (Ma et al., 2019).

Notably, rodent ASC models utilizing SHANK3 mutations
have good face validity, reflecting both repetitive and altered
social behavior phenotypes, including reliably increased
self-grooming behavior, lower levels of social interaction and
ultrasonic vocalization and increased anxiety in a domain-
deletion independent manner (Wang et al., 2011; Jaramillo
et al., 2016; Mei et al., 2016; Zhou et al., 2016). Most models
also show decreased social recognition memory (Peça et al.,
2011; Schmeisser et al., 2012; Kouser et al., 2013; Mei et al.,
2016) with males scoring worse in this task than females
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FIGURE 4 | Spine dynamics depends on the brain area. Semi-quantitative plots show that spine density depends on the area studied, i.e., hippocampus (A–C) or
cortex (D–F) for some commonly studied ASC-related genes that are either positive (Shank3) or negative regulators (Fmr1, Tsc1/2) of the mTORC1 pathway. All
spine density data from these models were extracted using WebPlot Digitiser in a semi-quantitative fashion with the magnitude of the difference from the control
plotted as percentage of control. The average difference from control WT animals for each model for each different brain area is shown, with all studies weighted
equally (References in Figure 3).

(Wang et al., 2011). Furthermore, ankyrin-repeat and proline
rich domain mutants show hypoactivity in the open field (Wang
et al., 2011; Zhou et al., 2016). For the global regulators, though
MeCP2 overexpression in mice recapitulates Rett syndrome, it
is harder to see autistic-type behaviors. However, a recent study
using MeCP2 overexpression in cynomolgus monkeys showed
that these monkeys display repetitive circling in their cages and
lower time with familiar or novel conspecifics, indicative of
ASC (Liu et al., 2016). Similarly, UBE3A overexpression results
in repetitive behaviors and social interaction deficits (Smith
et al., 2011). In general, for positive regulators of mTORC1, tests
of social interaction/recognition/motivation tend to report a
deficit compared to tests of spatial memory where reversal of the
memory is typically measured (Monteiro and Feng, 2017).

The Effects of Alterations of Negative
Regulators of mTORC1 on Behaviors That
Denote Autism
Pten KO mice show lower interaction with conspecific mice or
novel mice and hyperactivity in the open field (Kwon et al., 2006).
Unusually, in GRIN2B+/C456Y mice that mimic a human ASC
mutation, NMDAR-dependent long-term depression (LTD)
is decreased and though there is normal social interaction,
there is an anxiolytic effect as measured by the elevated plus
maze; the molecular mechanisms underlying this phenotype
remain obscure (Shin et al., 2020). A similar anxiolytic effect
is seen in a comprehensive panel of behavioral tests of the
haploinsufficient SynGAP+/− mice which also show no deficit

in social interaction but hyperactivity and cognitive deficits
in working and reference memory (Ma et al., 2019) and in
a dentate gyrus-specific context discrimination task (Clement
et al., 2012). A similar deficit in spatial memory is seen in
two Shank2 PDZ-deletion models, combined with increased
self-grooming behavior and anxiety along with decreased
social interaction or novelty (Schmeisser et al., 2012; Won
et al., 2012). Impaired social interaction and novel object
recognition (NOR) along with hyperactivity is also seen in
Fmr1 KO mice (Qin et al., 2011; Bhattacharya et al., 2012).
For negative regulators of mTORC1, it is notable that spatial,
hippocampal-based tasks show deficit and hyperactivity is seen
in several models.

MOLECULAR MECHANISMS THAT LINK
DYSFUNCTIONS IN
NEUROMORPHOLOGY TO BEHAVIOR

Despite mTORC1 under and over-activation in rodent models
of autism due to mutations or loss of upstream positive
and negative regulators, it is notable that these models show
autistic-type behaviors. Therefore, it is of interest to understand
if common molecular pathways downstream of mTORC1 may
underlie autistic behaviors. One of the most prevalent ideas is
alteration in the excitation-inhibition (E/I) ratio (Rubenstein
and Merzenich, 2003) because of functionally altered excitatory
(Gibson et al., 2008) and inhibitory synapses (Wöhr et al.,
2015; Vogt et al., 2018), or in some cases alteration of both.
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Though somewhat simplistic, a number of reviews suggest
this as an useful framework to understand neurodevelopmental
disorders (Howell and Smith, 2019; Sohal and Rubenstein, 2019).
One caveat to keep in mind is that alteration of E/I ratio
could be a mechanism for homeostatic synaptic plasticity that
arises because of the primary deficit caused by mutation in
a gene that is a risk for ASC (Nelson and Valakh, 2015 and
references therein).

Though E/I ratio can be altered by several mechanisms,
reduction of GABAergic afferents has been shown in several
models, including those with over-activation and under-
activation of mTORC1. For example, a meta-analyses of different
mouse ASC models including MeCP2 (a positive regulator
of mTORC1) and FMRP (a negative regulator of mTORC1)
reduction reveals a reduction of parvalbumin-positive (PV)
GABAergic interneurons such as chandelier and basket calls
in the CA1 hippocampus or somatosensory cortex suggesting
increased excitability (Gogolla et al., 2009). Supporting the
critical role of inhibitory afferents, a knockout of PV inhibitory
interneurons results in mice whose behavioral anomalies
recapitulate that seen in ASC, i.e., atypical social interactions
and repetitive behavior (Wöhr et al., 2015; Filice et al., 2020).
In four models of ASC including Fmr1−/y and Tsc2+/−, both
of which are negative regulators of mTORC1, there is greatly
reduced inhibition and a small reduction in excitation measured
in the feedforward circuit in L2/L3 pyramidal neurons of
the somatosensory cortex, suggesting that E/I ratio is altered
(Antoine et al., 2019) primarily due to decreases in inhibitory
feedforward mechanisms onto the postsynaptic neuron. Also,
hyperexcitability in the hippocampus of Tsc1 KO is due to
decreases in inhibitory afferents onto Tsc1 KO neurons and not
due to increases in intrinsic excitability, synaptic glutamatergic
afferents, or regulation of Arc-dependent synaptic homeostasis
(Zhao and Yoshii, 2019). However, the importance of an
optimal level of inhibitory transmission is shown by a recent
study whereby increasing hippocampal astrogenesis that in turn
increases GABAergic transmission induces ASC-like behavior
in mice such as lack of social preference in the 3-chambered
test and an increase in repetitive grooming (Chen et al., 2021a).
Contrary to the decreased inhibition seen in the above models,
the granule cells in the dentate gyrus of the Pten KO show
increased density of synapses, greater spike rates and are more
sensitive to depolarizing input, demonstrating hyperexcitability
(Williams et al., 2015). In addition, loss of PTEN causes increases
in basal dendrites that are contacted by other mossy fiber axons
leading to recurrent circuits (Pun et al., 2012). Though many
models of ASC that are mutated in genes that are negative
regulators of mTORC1 appear to show altered E/I ratio due to
decreased inhibition, the Pten example indicates that this is not
an universal mechanism.

Upstream Regulators of mTORC1 Regulate
Molecules at the PSD to Effect Changes in
Synaptic Physiology
One of the reasons for E/I imbalance could be altered spine
density/morphology or synaptic proteins, such as glutamate

receptors at the PSD that are often altered in rodent models of
autism that have alterations of the upstream regulator proteins of
mTORC1.

For positive upstream regulators of mTORC1:
Hyperexcitability and a higher E/I ratio in the CA1 is due
to higher localization of GluN2B and SAP102 in CdKl5-/y mice,
as revealed by subcellular fractionation of the hippocampal
PSD (Okuda et al., 2017). In Shank3 KO mouse striatum,
the disrupted interaction between Homer1b/c-mGluR5 also
results in increased mGluR5 at the PSD. Antagonists of the
mGluR5 receptor such as MPEP could reverse the increased
self-grooming in these mice, suggesting that receptor density
at the PSD is critical for behavior (Wang et al., 2016).
In mice carrying SHANK3 deletion of different domains,
several receptors such as NR1, NR2A, GluR2, and GluA2 are
decreased (Monteiro and Feng, 2017 and references therein).
Conversely, the decreased mEPSC amplitude in the Dip2a
KO is due to a smaller number of NMDA subunits at the
PSD (Ma et al., 2019). In MeCP2 overexpressing mice,
despite an increase in both mGluR and NMDA receptors
at the synapse in the somatosensory cortex (Chahrour
et al., 2008; Jiang et al., 2013), there is a reduction in the
EPSCs because NMDA/AMPA currents correlate to reduced
GluN1 expression; this is not due to reduction in GABAergic
interneurons (Sceniak et al., 2016) in the prefrontal cortex.
Rather, this suggests, as borne out by brain activity c-Fos
mapping, that reduced functional excitation rather than reduced
inhibition drives the decrease in E/I ratio in these animals
since this is reversed by ketamine, showing the importance
of post-synaptic glutamate receptors (Kron et al., 2012). This
could demonstrate that alteration in E/I ratio is driven by
different mechanisms in different brain regions since reduction
in the MeCP2 overexpressing somatosensory cortex is due to
a reduction in GABAergic parvalbumin neurons in that region
(Gogolla et al., 2009) but this is not true in the prefrontal cortex
(Sceniak et al., 2016).

For negative upstream regulators of mTORC1: In Shank2
PDZ-deletion mice, the predominant pathway driving the
atypical (for a negative regulator) decrease in spine density and
social interaction deficit appears to be NMDA hypofunction
since cycloserine, a NMDA agonist, can restore functionality
(Won et al., 2012). However, AMPA receptors are also
important; for example, SynGAP dispersal from the synapse,
results in loss of Ras-ERK inhibition and leads to subsequent
mTOR-mediated increased AMPA receptor insertion at the
PSD, a prerequisite for LTP. Therefore, in SynGAP-deficient
mice, though the proportion of mature spines and basal
synaptic transmission are enhanced, no further enhancement
is possible since increased AMPA receptor insertion in the
basal state occludes LTP (Gamache et al., 2020). A third
negative regulator is Tsc1/2; a pan-neuronal KO of Tsc1 shows
reduced frequency of GABAergic mIPSC, resulting in increased
excitability in the cortex and an increased E/I ratio; however,
a PV-specific Tsc1 KO does not show altered E/I balance,
suggesting that the local hyperexcitability is not due to loss
of TSC signaling in PV interneurons (Zhao and Yoshii, 2019).
Similarly in the hippocampus, though homeostatic plasticity
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via decreased synaptic AMPA receptors is seen, in experiments
where homeostatic plasticity is not initiated, the increased E/I
ratio is primarily due to impaired mGluR5-LTD at hippocampal
synapses that may be because of reduced Arc and other proteins
in the Tsc1 KO that are required to stabilize LTD (Bateup et al.,
2013). In support of this idea, the Tsc1 mutant phenotype of
reduced LTD and context discrimination can be rescued by
an Fmr1-/y mutant that shows the opposite, i.e., exaggerated
mGluR5-LTD, suggesting that levels of PSD proteins maintained
by these mTORC1 regulators underlie the deficit despite the fact
that loss of Tsc1 and FRMP proteins both lead to overactivation
of mTORC1 (Auerbach et al., 2011). In the amygdala of the
Fmr1 KO mouse, principal cells show intrinsic hyperexcitability
and increased synaptic plasticity (Svalina et al., 2021), suggesting
that the enhancement of PSD-95 and Arc levels seen in the PSD
density of spines of hippocampal neurons (Yan et al., 2018)
may also be true of other limbic regions to result in greater
excitability.

Upstream Regulators of mTORC1 Regulate
Spine Morphology and Density via Pruning
and/or Spinogenesis
Though the relationship between spine density and synaptic
physiology appears to be complex, looking at spine morphology
paints a clearer picture (Tables 3 and 4), with an increase in
immature spines in many models. A number of knockout rodent
models of negative regulators such as FMRP, GRIN2B, and PTEN
show an increase in the proportion of thin or filopodial spines vs.
mushroom spines. Similarly, in theDip2aKO, there is an increase
in spine density but a decrease in mushroom shaped spines and
a flattening of the PSD with a decrease of NMDA receptors in a
smaller spine volume, possibly leading to a lower E/I ratio (Ma
et al., 2019).

Some of this could also be due to spine instability. This
is seen in Fmr1 KO mice where there is a developmental
delay in the transition from immature to mature spines in
Layer2/3 pyramidal neurons of the cortex; thin spines are
unusually unstable. Normally, these spines search for presynaptic
partners in a lengthening process facilitated by mGluR5;
however, mGluR5 agonists are unable to lengthen spines and
achieve this in Fmr1 KO mice (Ginsberg et al., 2012) suggesting
that stabilization via contact with pre-synaptic partners is
deficient when FMRP is absent. Interestingly, spines are
stabilized in an ERK-dependent manner solely in clusters whose
numbers are increased in mice overexpressing MeCP2 resulting
in a higher proportion of mushroom shaped spines; isolated
spines are formed and stabilized at the same rate as the wildtype
mouse. Such stabilization of spines at a young age is correlated
with increased stability on the rotarod, a marker of perseverative
behavior in these mice (Ash et al., 2021a,b) though it is unclear if
this is cause of effect. For example, repetitive task learning that is
cortex-dependent induced spines preferentially in clusters; these
clustered spines showed greater persistence past learning than
non-clustered spines (Fu et al., 2012) and hence the functional
interpretation of spine clustering in ASC models is difficult to
ascertain.

Spine morphology also has functional consequences; shRNA
targeting Pten results in increased spine density in the basolateral
amygdala (BLA) of the mouse with an increased mEPSC
amplitude and frequency in the BLA. This is most likely due
to a shift in spine morphology with an increased proportion of
mushroom spines but decreased filopodia (Haws et al., 2014).
Consistent with this finding, though granule cells of neonatal
PtenKOmice show hypertrophy and thereforemight be expected
to be less excitable, increased density of mushroom shaped spines
concomitant with increased dendrites and protrusions drives
the hyperexcitability observed in this ASC model (Williams
et al., 2015). This increase in spines is larger when Pten KO
granule cells are sparsely surrounded by wildtype cells when
compared to when they are densely surrounded by other
Pten KO cells (Skelton et al., 2019) though the mechanism
underlying this and its significance is unknown. It could be that
secondary effects on network activity amongst surrounding cells
and subsequent tertiary feedback effects by these neighboring
cells on the Pten KO neuron drive the ASC phenotype
(LaSarge and Danzer, 2014).

Upstream Regulators of mTORC1 Regulate Pruning
by Several Pathways
Though Tang et al. elegantly showed that pruning deficits are
critical for the increase in spine density in the Tsc2+/−mice (Tang
et al., 2014), other studies have also shown pruning deficits. In
some cases, such as MeCP2 overexpression, 2-photon imaging of
L5 apical dendrites emanating from cortical pyramidal neurons
reveals a slowing down of pruning and increased spinogenesis
with unstable spines as development proceeds, most likely
due to mTORC1 overactivation (Jiang et al., 2013). Microglia-
activated pruning is lower in the CA1 hippocampal neuron
in a mouse FXS model (Jawaid et al., 2018). Delivery of
shRNA to Raptor into the CA1 of FXS mice decreases the
PSD-95 and ARC proteins that are elevated in these mice
and decreases the spine density and reduces cognitive deficits.
Importantly, shRNA to Raptor in Fmr1 KO mice also decreases
filopodial spines and increases the proportion of mushroom
shaped spines (Yan et al., 2018). In Fmr1 KO neurons, higher
levels of eIF1α sequester the E3 ubiquitin ligase, murine
double minute2 (mdm2) which targets PSD-95 for degradation.
Hence, in response to neuronal activity in these Fmr1 KO
neurons, myocyte enhancer factor (MEF)-induced degradation
of PSD-95 degradation and synapse elimination/pruning does
not occur leading to higher spine densities (Pfeiffer et al.,
2010). Therefore, in the Fmr1 KO mouse, overactivation of
mTORC1 directly results in a decrease in pruning and higher
spine densities.

The converse—an increase in pruning leading to a decrease
in spines also exists. For example, in an inducible UBE3A
overexpression model of autism, an increase in pruning
over spine growth results in a decrease in spines. UBE3A
overexpression results in increased targeting and degradation
of a caspase inhibitor, XIAP, which leads to increased caspase
levels with concomitant increases in tubulin cleavage and spine
retraction (Khatri et al., 2018). Conversely, expression of a
dominant negative caspase could decrease tubulin cleavage and
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allow for more mature spines and increased spine density (Khatri
et al., 2018).

Upstream Regulators of mTORC1 Regulate
Spinogenesis by Several Pathways
Apart from pruning, a second pathway to alter spine density
is spinogenesis, driven by several Rho/ROCK pathways that
activate LIMK; these include the Rac/p21-activated kinase (PAK)
pathways that can activate cortactin and/or LIM kinase (LIMK;
Costa et al., 2020). For example, in the Dip2A KO which shows
increased spine density but a flattened PSD, there is a reduction
of acetylation of cortactin, a protein activated by PAK that
increases spine stability (Schnoor et al., 2018); DIP2A mutations
implicated in ASC are in regions of the protein that contact
cortactin. Administration of an acetylated cortactin mimic into
the cerebral cortex rescues not only the flattened PSD and
decreases spine density but also decreases the self-grooming
and marble burying behavioral phenotype (Ma et al., 2019).
Similarly, a knockdown of all Shank isoforms using miRNA
in rat hippocampal neurons resulted in a decrease in spine
density (specifically of mushroom shaped spines) and cortactin
levels, that could not be rescued by a SHANK2 isoform deficient
in cortactin binding, suggesting that SHANK isoforms recruit
and stabilize cortactin in the PSD (MacGillavry et al., 2016)
to grow mushroom-shaped spines. Indeed, Shank3 KO show
lower levels of Rac1 and PAK proteins and an increase in
actin depolymerization and behavioral ASC-like phenotypes in
this mouse could be rescued by increasing Rac1, suggesting
that actin dynamics and spine density were critical in driving
behavior (Duffney et al., 2015). Interestingly, S6K activation
activates Rac/PAK in ovarian cancer cells (Ip et al., 2011)
while loss of mTORC1 leads to constitutive activation of
ROCK in the epidermis (Asrani et al., 2017), suggesting that
these pathways may also be present in the CNS, to regulate
spinogenesis.

Amongst negative regulators of mTORC1 such as FMRP,
a decrease in phosphorylated active SLINGSHOT protein, an
inhibitor of LIMK combined with an increased phospho-LIMK
due to increased Rac/PAK levels, leads to a decreased level of
active cofilin and subsequent actin depolymerization (Pyronneau
et al., 2017). This could be the mechanism that underlies the
increase in filamentous spines in this model. Sequestration of
proteins in the spinogenesis pathway is also a mechanism for
regulation by mTORC1 regulators. For example, the cytoplasmic
FMRP interacting protein (CYFIP1) sequesters and inhibits
eIF4E to repress translation along with FMRP but this protein
by itself is also part of the WAVE-Rac complex that increases
spine protrusion. In the absence of FMRP in hippocampal
neurons, the balance shifts towards spine protrusion and
away from translation repression to increase spine growth, a
phenomenon that can be reversed by the administration of 4EGI-
1, which creates more free eIF4E that can bind CYFIP1 away
from the WAVE complex (Santini et al., 2017). A caveat to
these studies is that direct inhibition of spinogenesis pathways
may be more important in some cases than regulation via
mTORC1. NF-1, a negative regulator of mTORC1, leads to
an overall decreased spine density when deleted in neurons,

possibly due to inhibition of the ERK pathway which is
required for spine stabilization (Ash et al., 2021a), suggesting
that ERK-driven spinogenesis may supercede mTORC1-driven
pruning. Indeed, as can be seen many of the upstream regulators
of mTORC1 employ several mTORC1-independent means to
regulate spine density.

Upstream Regulators of mTORC1 May
Preferentially Regulate Corticostriatal
Circuitry
Corticostriatal circuitry which underlies motivated sensorimotor
by interacting with the limbic system is the focus of several
neurodevelopmental disorders, including autism (Shepherd,
2013), with several alterations to this circuit. In ASC individuals,
intrinsic functional connectivity studies done using fMRI
imaging shows that those with highly repetitive behaviors
show reduced frontoparietal and motor connectivity with
the striatum but increased connectivity with the limbic
system compared to those with low repetitive behaviors,
underscoring the importance of the corticostriatal circuit
(Abbott et al., 2018). These differences in neuroanatomy
particularly for the striatum are underscored by a longitudinal
structural imaging study which revealed a faster growth
rate of the caudate nucleus during late childhood to early
puberty in ASC individuals that was strongly correlated with
repetitive behaviors seen in these individuals that developed
during the preschool period (Langen et al., 2014). These
alterations in mice are linked to spines; conditional dorsal
pallium-specific KOs of Met, a tyrosine kinase that regulates
spinogenesis, demonstrates local hyperconnectivity in this circuit
with stronger afferents from corticostriatal neurons in layer
2/3 to layer 5 projection neurons in the anterior frontal
cortex in heterozygotes and KOs compared to WT controls
(Qiu et al., 2011).

Developmental studies of Shank3, a positive regulator of
mTORC1, show that the striatal excitability is higher due
to increased cortical glutamatergic efferents to the striatum
(Peixoto et al., 2016) at early postnatal stages but there is
reduced corticostriatal connectivity and EPSCs as adults (Mei
et al., 2016; Wang et al., 2016). In addition, disruption of the
dopaminergic receptor D1R-SYNGAP complex in the prefrontal
cortex during development results in decreased migration
of GABAergic interneurons with concomitant increased
cortical excitability. This cortical excitability that develops as
a result of disruption of the function of SYNGAP and D1R is
instrumental in the social deficits seen in this model during
adulthood (Lai et al., 2021). In Tsc2+/− mice, resting state fMRI
reveals functional hyperconnectivity within the corticostriatal
circuit due to increased synaptic coupling possibly as a result
of increased spine density; this was strongly correlated to
repetitive behaviors. All parameters, i.e., connectivity, spine
density, synaptic coupling, resting state default mode network
signatures, and social behaviors are rescued to normal levels
with rapamycin, suggesting that mTORC1 overactivation
in this circuit is crucial to spine dynamics that underlie
social behaviors. This hyperconnectivity signature is valid
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cross-species—children with ASC showed similar fronto-
insular-striatal hyperconnectivity and mTORC1 interacting
genes are enriched in the ASC cortical transcriptome,
suggesting that this Tsc-mTORC1 pathway is a critical driver of
functional hyperconnectivity (Pagani et al., 2021). Cross-species
connectivity is also shown with mutations of NF1, a negative
regulator of mTOR similar to Tsc1/2, though Nf1 KO mice
show decreased spine density. Children with NF1 mutations
with ASC show reduced functional connectivity between the
striatum and the frontoparietal network and increased striatal
functional connectivity with the limbic system. Similar to the
human scenario, Nf1+/− mice also show disrupted corticostriatal
connectivity, as revealed by resting state imaging (Shofty
et al., 2019). This shows that both positive, e.g., SHANK and
negative regulators. e.g., TSC of mTORC1 typically show
spine density alterations in the corticostriatal circuit that are
commensurate with local connectivity signatures and may
underlie the repetitive behaviors seen in both humans and
rodent models.

CONCLUSION/FUTURE DIRECTIONS

Despite a number of studies that show both spine dynamics
and social behavior alterations in ASC rodent models, a number
of questions persist. Many models are homozygous deletion
models in order to obtain more robust effects whereas they
tend to be haploinsufficient conditions in the human (Monteiro
and Feng, 2017) and data from ASC rodent models that
identify molecular processes that are dysregulated may not
translate to the human. For example, though reduction in
GABAergic transmission has been identified in FXS (Section
‘‘Upstream Regulators of mTORC1 Regulate Molecules at the
PSD to Effect Changes in Synaptic Physiology’’), use of a
selective GABA-B receptor agonist arbaclofen showed limited
improvements in social behaviors only in young but not older
children and adults in a Phase 3 clinical trial (Berry-Kravis et al.,
2017). Similarly, mTOR inhibition in TSC patients has shown
improvements for epileptic symptoms (Mizuguchi et al., 2019)
but not for ASD-associated behaviors (Overwater et al., 2019),
suggesting that treatment must be given in the critical period
or that mTOR signaling is less important in ASC symptoms
in humans.

Furthermore, though several of the upstream regulators
such as SynGAP and SHANK have isoforms, the differential
contribution of isoforms is not clear and deserves more attention.
For example, SynGAPα1 is the only isoform capable of being
anchored at the PSD due to the presence of its unique C-terminal
PDZ binding domain and is sufficient for the enlargement
of spine heads by AMPA receptor insertion upon chemically
induced LTP as well as increase in PSD-95-positive puncta.
SynGAPβ isoform rescues the reduction in dendritic arborization
seen in cultured hippocampal neurons when SynGAP levels are
reduced (Araki et al., 2020). Compensation by isoforms also
confounds interpretation of the results, particularly in the case
of conserved SHANK proteins.

In addition to isoform-specific functions of
mTORC1 upstream regulators, the role of these genes has

typically been studied in two major brain regions, i.e., the
hippocampus and cortex and region-specific differences exist
(Figure 4). For example, in Shank3−/− mice, mGluR5 is
increased in the striatum but not in the cortex (Wang et al.,
2016), possibly pointing to the importance of the corticostriatal
synapse in modulation of social behaviors that have reward
potential. Shank3 mice deleted for the ankyrin repeat domain
show reduced excitation but increased frequency of sIPSCs
at Schaffer collateral synapses in pyramidal neurons in the
hippocampus. However, prelimbic layer 2/3 pyramidal neurons
in the medial prefrontal cortex show decreased frequency of
sIPSCs, though the basis of this difference is not known (Lee
et al., 2015). In Shank2 PDZ-deletion mutant mice, NMDA
hypofunction also leads to lower LTD and lower LTP at Schaffer
collateral synapses but not in the prefrontal cortex (Won et al.,
2012), suggesting that microcircuitry in the hippocampus and
cortex may lead to different E/I ratios. There are also cell-specific
differences in regulation. For example, FMRP transcripts are
greatly reduced in cerebellar Purkinje cells in the Tsc1 mutant
(Dalal et al., 2021) and theoretically could lead to elevated levels
of FMRP target genes such as mTOR (Casingal et al., 2020),
leading to an overactivation of mTORC1. However, although
FMRP functions as a general translational repressor, it may also
regulate ribosome binding to specific transcripts; indeed a recent
study in cortical neurons saw destabilization of specific but not
all transcripts (Shu et al., 2020) despite FMRP loss. However,
in hippocampal slices derived from Tsc2+/− mice, there was
increased expression of FMRP targets (Hien et al., 2020), most
likely due to differences in Tsc-Fmr1 regulation in the cerebellum
vs. the hippocampus. Apart from the hippocampus, cortex and
cerebellum, many social behaviors are regulated by nuclei in the
social behavior network which includes hypothalamic nuclei
(Newman, 1999; Greenberg and Trainor, 2016) in a sexually
dimorphic manner and spine dynamics in these regions in these
ASCmodels is under-explored. Given the difference in incidence
of ASC symptoms between the sexes with males showing greater
incidence than females (Zhang et al., 2020), this would be timely
to investigate.

Though the picture for changes in spine dynamics upon
deletion or duplication of these genes is complex, it can
be simplified when seen through the lens of regulation of
mTORC1 as part of a larger grouping (Tables 3 and 4); this
is especially true of positive regulators of mTORC1 (Table 3;
Figures 4C,F). For some genes such as FMRP, it is clear that
both mTORC1-dependent and mTORC1-independent means of
regulating spine density and synaptic physiology exist with the
contribution of each not clearly understood though the weight of
studies suggest an overall increase in spine density (Figure 3).
In addition, spine density and in particular spine morphology
studies tend to be time consuming and analyses is frequently
done manually. In the coming years, it would be advantageous
to investigate spine dynamics using 2-photon imaging as well
as artificial intelligence algorithms (Mancuso et al., 2013) for
additional information on spine motility and stability, including
spine clustering, in several of these rodent ASC models to
probe the relationship between spine morphology, stability,
neurocircuitry, and behavior.
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