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Neurological disorders include a wide spectrum of clinical conditions affecting the central
and peripheral nervous systems. For these conditions, which affect hundreds of millions
of people worldwide, generally limited or no treatments are available, and cell-based
therapies have been intensively investigated in preclinical and clinical studies. Among
the available cell types, mesenchymal stem/stromal cells (MSCs) have been widely
studied but as yet no cell-based treatment exists for neurological disease. We review
current knowledge of the therapeutic potential of MSC-based therapies for neurological
diseases, as well as possible mechanisms of action that may be explored to hasten the
development of new and effective treatments. We also discuss the challenges for culture
conditions, quality control, and the development of potency tests, aiming to generate
more efficient cell therapy products for neurological disorders.

Keywords: mesenchymal stem cells, extracellular vesicles, regenerative medicine, cell therapy, neurological
diseases, neuroprotection

INTRODUCTION

Mesenchymal stem cells (MSCs) are among the major cell types used in regenerative medicine
and represent a promising therapeutic tool for several presently incurable neurological disorders.
First found in bone marrow (Friedenstein et al., 1970), MSCs can be isolated from almost any
adult tissue, including fat, peripheral blood, muscle, skin, and teeth, in addition to birth-associated
tissues such as umbilical cord (Wharton’s jelly and cord blood), amnion, and placenta (Berebichez-
Fridman and Montero-Olvera, 2018). MSCs comprise a heterogeneous population of fibroblast-like
multipotent and self-renewing cells. Regardless of the source or harvest and expansion methods,
MSCs must meet three minimum criteria to ascertain their equivalence and stemness: (I) plastic
adherence under standard culture conditions; (II) expression of CD105, CD73, and CD90, and lack
of expression of CD45, CD34, CD14/CD11b, CD79α/CD19, and HLA-DR surface markers; and
(III) ability to differentiate into osteoblasts, adipocytes, and chondroblasts (Dominici et al., 2006).
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Despite these common defining characteristics, MSCs have
source-dependent differences that influence their applicability.
Currently, bone marrow (BM) is the most widely used source
of MSCs for clinical trials, followed by the umbilical cord (UC),
and adipose tissue (AT; Kabat et al., 2020). BM-MSCs have long
been considered the gold standard in cell therapy, with very
well-characterized properties. They are easily obtained by BM
aspiration from iliac crests, allowing autologous transplantation,
which reduces the risk of immunological rejection. However,
the harvesting procedure, in addition to being painful, has a
low cell yield that declines with increasing donor age, as do the
cell lifespan, proliferative capacity, and differentiation potential
(Zaim et al., 2012). In recent years, AT has been reported to be
a richer and more practical source of autologous MSCs in terms
of availability, abundance, and accessibility compared to BM, but
the sampling procedure is technically invasive (Chu et al., 2019).
Birth-related tissues such as UC have great advantages over other
sources, as they can be readily collected with no pain or risk to
either mother or child and are usually discarded. MSCs derived
from these tissues are considered more primitive according to
the expression profile of cell surface markers (Conconi et al.,
2011) and have intermediate features between embryonic and
adult stem cells, with multilineage differentiation potential, rapid
proliferation rate, low senescence, and hypoimmunogenicity,
which allows safe allogeneic transplantation (El Omar et al., 2014;
Nagamura-Inoue and Mukai, 2016). Furthermore, UC tissue
provides large quantities of harvestable MSCs, which can be
long-term cryopreserved for future cultivation (Vangsness et al.,
2015).

The therapeutic potential of MSCs is attributed to their
homing property, multilineage differentiation, and paracrine
function. MSCs can migrate toward injured tissues, engraft, and
differentiate into functional cells (Fu et al., 2019). However,
rather than cellular replacement, MSCs contribute to tissue
repair mainly by the paracrine action of their secretome, which
comprises a wide range of immunomodulatory, angiogenic,
antiapoptotic, and growth factors, supporting cell survival and
tissue regeneration (Teixeira and Salgado, 2020). These features
of MSCs make them promising for the treatment of neurological
diseases by modulating the inflammatory and inhibitory milieu
of injured/degenerating nervous tissue (Figure 1).

In this review, we discuss the methods currently employed to
foster the development of more efficient cell therapy products,
and also provide an overview of current research on therapeutic
applications of MSCs in neurological disorders.

MSC-DERIVED EXOSOMES AND
EXTRACELLULAR VESICLES (Evs)

Although the transplantation of MCSs has yielded promising
results in several preclinical and clinical studies, the risks of
transplantation of cells that are extensively manipulated during
culturing, transport, and storage persist. Furthermore, little is
known about the long-term behavior of transplanted cells. The
use of cell-derived products that reproduce the effects of cell
therapy could allay these concerns. Thus, extracellular vesicles
(Evs) derived from MSCs emerge as an alternative for therapy.

To date, 74 studies related to Evs are reported as completed,
are listed in clinicaltrials.org, and have posted their results and
shown the safety of using Evs (NCT04281901, NCT04491240,
NCT04491240; Shi et al., 2021). Evs are bilayer lipid-coated
structures containing intracellular contents that can be classified
by their origin and size. Exosomes are vesicles 40–150 nm in
diameter that are generated by endosomes; microvesicles are
vesicles 100–1,000 nm in diameter, generated from the budding
of the plasma membrane (Lindoso et al., 2017). Other forms of
Evs are apoptotic bodies and excretion vesicles, but in the present
context of MSC mechanisms, we will refer to both exosomes and
microvesicles as Evs. These Evs carry proteins, bioactive lipids,
and coding and non-coding RNA and can modify the physiology
of the cell target. As MSCs are very weakly immunogenic, their
Evs also have low immunogenicity, which makes them safe for
transplantation (Zhu et al., 2017; Montaner-Tarbes et al., 2018;
Saleh et al., 2019; Rodrigues et al., 2021).

MSC-derived Evs can be identified by their affinity to
certain molecules. Thus, exosomes have an affinity to
cholera toxin B, which binds to the GM1 ganglioside, while
annexin V and shiga toxin B bind to phosphatidylserine and
globotriaosylceramide, and their biogenesis is related to the
cytoplasm and nucleus, respectively (Lai and Lim, 2019).
The lipid composition of Evs can define their origins and
activity. The concentration of the lipid dilysocardiolipin
can affect the delivery activity of Evs (Haraszti et al.,
2019). Other lipids include ceramides, sphingomyelins,
phosphatidylcholines, phosphatidylethanolamines,
phosphatidylserines, phosphatidylinositols, eicosanoids, and
cholesterol (Le Saux et al., 2020). Moreover, Evs can carry
lipid mediators with immunomodulatory effects, such as
prostaglandin E2 and resolvins (Holopainen et al., 2019).

Proteins Related to MSC-Derived Evs
Proteins associated with MSC-derived Evs include antigens
(e.g., CD9, CD63, and CD81), adhesion molecules, and surface
receptors (e.g., PDGFRB, EGFR, and PLAUR; Kim H. S. et al.,
2012). Adhesion molecules such as the RAB family are important
to regulate the docking and fusion of Evs (Kim H. S. et al.,
2012). MSC-derived Evs carry proteins that can sustain cellular
homeostasis. In addition to typically extracellular proteins
and membrane-associated proteins, Evs can transport typically
intracellular proteins or even organelles, such as mitochondria
(Morrison et al., 2017; Zhang Z. et al., 2020). Antioxidant
enzymes such as catalase can be found in BM (Godoy
et al., 2017) and Wharton’s jelly (WJ), and MSC-derived Evs
have been shown to prevent oxidative stress in hippocampal
neurons (Bodart-Santos et al., 2019; Puig-Pijuan et al., 2020).
Inflammation can be modulated by EV-associated proteins such
as CD73, TGF-β, and PTX3 (Alvarez et al., 2018; Crain et al.,
2019; Kim et al., 2020). Furthermore, proteins found in AT-
MSC-derived Evs are related to the MAPK, VEGF, and Jak-Stat
pathways (Xing et al., 2020).

The protein composition of MSC-derived Evs can be modified
by their culture conditions. Human BM-MSCs cultured with 1%
O2 in a serum-deprived medium produced Evs with elevated
levels of transporters, peptidases, receptors, G-coupled receptors,
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FIGURE 1 | Mesenchymal stem cell therapy for neurological diseases. Mesenchymal stem/stromal cells (MSCs) can be isolated from several adult and perinatal
tissues, including bone marrow, umbilical cord, and adipose tissue. MSC neuroprotective actions are based on their paracrine action through secretion of cytokines,
trophic factors, and microRNAs, among other molecules, which are released directly into the extracellular space or packaged in microvesicles and exosomes. MSC
efficacy can be improved in vitro prior to transplantation, by different preconditioning methods and/or genetic engineering to increase the production or release of
specific factors.

and ion channels (Yuan et al., 2019). Priming endometrial
MSCs with interferon-γ (IFN-γ) increased immunomodulatory
proteins in their Evs (Marinaro et al., 2019). Serum deprivation
modified the composition of UC, AT, or BM-MSC-derived
Evs for 24 h in order to improve the delivery of exosomes,
but not their microvesicles, to target neurons (Haraszti et al.,
2019). Hypoxia also changed the proteomic profile of Evs in

MSCs, with an increase in proteins related to growth factors
and a decrease in proteins related to oxidative metabolism
(Gessner et al., 2021; Gregorius et al., 2021). A 3D culture using
CellHesionr VP increased EV production by MSCs and changed
their protein profile, with an increase in proteins related to
immune response (Kim E. S. et al., 2021). Priming of MSCs with
toll-like receptor III agonist poly(I:C) upregulated EV proteins
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related to immune response, among other processes (Pierce
and Kurata, 2021). Exosomes derived from human AT-MSCs
stimulated by LPS increased in angiogenic potential (Wu et al.,
2021). Preconditioning of MSCs with IFN-γ induced release of
Evs containing annexin-1, lactotransferrin, and aminopeptidase
N (Takeuchi et al., 2021). Priming of MSCs with melatonin
increased ubiquitin-specific protease 29 in their Evs, which
promoted increased microglia activation to the M2 phenotype
and resulted in better recovery of motor behavior (Liu W. et al.,
2021). Another molecule capable of enhancing the release of EVs
and their therapeutic effect is metformin (Liao et al., 2021).

miRNAs Related to MSC-Derived Evs
Many groups have shown that MSCs release miRNA-containing
Evs that modulate molecular pathways in the target cell. miRNAs
are non-coding RNAs approximately 22 nucleotides long, and
are involved in post-transcriptional regulation of gene expression
(Asgarpour et al., 2020). The importance of miRNA in the
therapeutic effects of MSC-derived Evs is evidenced by inhibiting
miRNA maturation or function. Knockdown of argonaute-2, a
key protein for miRNA function, abolishes the protective effects
of MSC-derived Evs in a model of optic nerve injury (Mead
and Tomarev, 2017). The miRNA content of BM-MSC-derived
Evsproved to be important for the neuroprotective effect in a
rat model of chemobrain (El-Derany and Noureldein, 2021).
Certain specific miRNAs were reported to have a pivotal role
in the MSC-derived Ev effect. Endometrial MSCs primed with
IFN-y 18 significantly altered miRNAs (Marinaro et al., 2019).
Evs derived from hydrogen sulfide-primed BM-MSCs had an
intensified therapeutic effect in a model of hypoxia-ischemia
through miR-7b-5p activity (Chu et al., 2020). BM-MSCs
transfer mir-29b-3p to neurons through Evs, preventing hypoxic-
ischemic injury (Hou et al., 2020). Inhibition of mir-21-5p
in BM-MSC-derived Evs attenuated the functional recovery
of rats subjected to a spinal cord injury (Zhou et al., 2019).
Overexpression of CDKN2B, a downstream target for mir-
106b, reversed the effect of mir106b-containing MSC-derived
Evs on a mouse model of Parkinson’s disease (Bai et al., 2021).
Interestingly, the overexpression of miRNAs in MSCs may be
reflected in their respective Evs. Mir-29b-3p is accumulated
in Evs derived from BM-MSCs overexpressing this miRNA,
and transfection with mir-29b-3p inhibitor downregulated it in
respective Evs (Hou et al., 2020). Transfection of BM-MSCs
with the mir-17-92 cluster enriched their Evs and improved
the tissue and functional behavior of rats subjected to a brain-
injury model (Zhang Y. et al., 2021). Silencing mir-29c-3p also
reduced the effect of BM-MSC-derived Evs in an AD model
(Sha et al., 2021). The miR-125a found in BM-MSCs promotes
M2 macrophage polarization, which was attenuated by the
knockdown of this miRNA (Chang et al., 2021). Transfection
of AT-MSCs with miR-22 mimics resulted in a mir-22 enriched
pool of Evs and reduced inflammation in a mouse model of
AD (Zhai et al., 2021). Also, Evs of MSCs transfected with
miR-26a-5p and miR-221-3p mimic, respectively, attenuated
ischemia/reperfusion injury and stroke (Ai et al., 2021; Cheng
et al., 2021). A gain- and loss-of-function study showed that
mir-26a is important for the neuroprotective effect of Evs from

AT-MSCs in a model of ischemia/reperfusion (Hou et al., 2021).
A recent study showed that viral transduction of MSCs may
impact their miRNA cargo in Evs (Zubkova et al., 2021). Priming
MSCs with conditioned medium of activated microglia changed
the miRNAs of Evs to a more immune-regulatory profile, which
resulted in inhibition of microglial and astrocyte activation and
better behavioral function (Markoutsa et al., 2022). Other stimuli
can alter the miRNA content in MSC-derived Evs, such as
exposure to glioblastoma-derived microvesicles (Garnier et al.,
2022).

Long Noncoding RNAs Related to
MSC-Derived Evs
Other noncoding RNAs found in MSC-derived Evs are long
noncoding RNAs (lncRNAs) and circular RNAs (circRNAs).
To date, little is known about the roles of circRNAs and
lncRNAs in the therapeutic effect of MSC-derived Evs, especially
for neurodegenerative diseases. CircRNAs have been shown
to regulate gene expression by interacting with RNA-binding
proteins and functioning as miRNA sponges (Hansen et al.,
2013; Zang et al., 2020). Recently, transfection of AT-MSCs
with cicrAkap7 proved to enhance the neuroprotective effect
of their Evs in a mouse model of ischemic injury (Xu et al.,
2020). CircRNAs have also been implicated in the therapeutic
effect of Evs in several models, by regulating angiogenesis (Zhang
J. et al., 2021) and reducing pyroptose and cytotoxicity (Cao et al.,
2020; Yan et al., 2020). LncRNAs are the most abundant class of
non-coding RNAs, with >200 nucleotides (Policarpo et al., 2021).
In MSC-derived Evs, the lncRNA SNHG7 showed protective
potential in a model of diabetic retinopathy (Cao et al., 2021).

In vivo Delivery of MSC-Derived Evs
Treatment with Evs can be performed by either local or
systemic delivery, depending on the target and the injury model.
Because of their very small size, Evs can be easily systemically
injected without the risk of embolism. BM-MSC-derived Evs can
accumulate in the infarcted hemisphere after injection into the
tail vein in rats in a stroke model (Moon et al., 2019). Homing
of Evs to injured organs may be favored by their expression of
chemokine receptors such as CXCR4 (Kim S. J. et al., 2012).
Furthermore, Evs can cross the blood-brain barrier, although
this mechanism is not fully understood (Matsumoto et al., 2017).
Other organs can uptake Evs, as human MSC-derived Evs were
found in liver, spleen, and BM 6 h after intravenous injection
(Wen et al., 2019). MSC-derived Evs injected intraocularly
(Mead and Tomarev, 2017) or systemically (Seyedrazizadeh
et al., 2020) can protect retinal ganglion cells. Recently it was
shown that endometrial MSC-derived Evs were neuroprotective
in a hippocampal injury model after intranasal administration
(Leon-Moreno et al., 2020). Intranasally administered human
BM-MSC-derived Evs can reach the intact or injured forebrain
(Kodali et al., 2019). Systemic or intranasal administration of
AT or BM-MSC-derived Evs protect neurons and decrease
the memory deficit in mice with AD (Leon-Moreno et al.,
2020; Losurdo et al., 2020). Furthermore, Evs from BM, as
well as UC-MSCs inhibit apoptosis and improve functional
recovery in rodents subjected to brain ischemia (Han et al., 2020;
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Seifali et al., 2020; Xin et al., 2020). BM-MSC-derived
Evs systemically injected in rats subjected to subarachnoid
hemorrhage protected neurons from apoptosis (Gao et al., 2020).

MSC MODIFICATIONS

MSC Preconditioning
Pretreatment With Hypoxic Conditions
In order to enhance the therapeutic potential of MSCs, to
improve their proliferative and survival rate, which is important
considering the need for a large number of cells for transplants,
or to improve the secretion of factors related to neuroprotection
or reduction of inflammation, studies have evaluated the effects
of pre-treatment of MSCs, using different approaches (Omid
Sadatpoor et al., 2020).

In recent decades, studies have evaluated the effects of hypoxic
conditions on the biological characteristics of MSCs. Oxygen
concentration is an important factor in the function of stem
cells (Simon and Keith, 2008). An atmosphere of 1%–5% O2
shows effects on MSCs compared to normoxic conditions (20%)
in relation to proliferation, differentiation, migration capacity,
and metabolism (Grayson et al., 2006; Potier et al., 2007; Rosová
et al., 2008; Hung et al., 2012; Ejtehadifar et al., 2015; Kakudo
et al., 2015; Elabd et al., 2018). In a model of intracerebral
hemorrhage, olfactory mucosa MSCs under hypoxia alleviated
cellular senescence, with a 1.2-fold decrease in the percentage of
β-galactosidase-positive cells compared to cells under normoxia.
Additionally, an enhancement of autophagy promoted by the
increase in miR-326 expression could be seen in MSCs under
hypoxia (Liu J. et al., 2021). Moreover, when cultured under 5%
O2, significant increases in proliferation of MSCs at day 5 and in
the expression levels of markers such as C-Myc and Nestin were
observed. A reduction in the number of β-galactosidase-positive
cells was observed in all MSCs under hypoxia compared to those
in normoxia, demonstrating that hypoxic conditions affect not
only the proliferative potential of MSCs but also the senescence
process, which could interfere in the biological activity of the
cells, thus preventing the desired effects after transplantation
(Kwon et al., 2017). In another study, an atmosphere of 2% O2
affected the paracrine effects of aged BM-MSCs in an in vitro
model of ischemic stroke. The conditioned medium of aged
BM-MSCs under hypoxia showed an increase in VEGF levels
from 2 to 5–3 to 6 ng/ml, demonstrating that the treatment
was able to achieve the therapeutic level of above 1 ng/ml.
Therefore, hypoxia treatment of MSCs seems to contribute to
the neuroprotective effects of these cells after ischemic stroke.
Interestingly, the cells used in the study were from patients more
than 70 years old, which indicates that the treatment could also
contribute to restoring the beneficial effects of cells derived from
elderly donors since the age of the donors affects the biological
characteristics of MSCs (Zhang et al., 2019a).

Pretreatment With Growth Factor and Cytokines
Preconditioning with growth factors, cytokines, and
other biomolecules has been used to simulate the target
microenvironment of MSCs after transplantation, in order to

promote the prior adaptation of cells and secretion of important
molecules (Hu and Li, 2018).

The immunomodulatory activity of MSCs is widely discussed
as one of the most prominent roles of these cells. However,
other than being beneficial to modulate the inflammation site, the
secretion of growth factors and cytokines also has an autocrine
effect on MSC behavior, interfering with their proliferation and
differentiation (Eom et al., 2014). As a strategy to enhance those
autocrine effects, it is possible to manipulate MSC behavior
in vitro by adding certain growth factors and cytokines to
the culture, increasing cell survival, migration, and cytokine
secretion (Liu et al., 2011). Bone morphogenetic protein (BMP)-
3, fibroblast growth factor (FGF), vascular endothelial growth
factor (VEGF), and epidermal growth factor (EGF) are the
best factors to pretreat the MSCs to increase cell proliferation
and survival (Rodrigues et al., 2010). Other than optimizing
culture conditions, growth factors and cytokines can be used
to induce MSC differentiation toward neural identity in vitro;
some studies have demonstrated transdifferentiation of MSCs
into neural progenitor cells, using EGF and bFGF together with
neural induction factors such as N-2 and B-27 (Peng et al., 2019).

Another study using an in vitro model of LPS-induced
neuroinflammation managed to reduce the secretion of IL-6 and
TNF-α by 35% and 41%, respectively, in addition to a 13-fold
increase in the secretion of IL-10 by microglial cell line BV2 after
incubation in conditioned medium of MSCs preconditioned with
the cytokine IL-1. This anti-inflammatory effect was related
to the increased secretion of G-CSF in the supernatant of
the MSCs against the pro-inflammatory environment generated
by preconditioning with IL-1 (Redondo-Castro et al., 2017).
Likewise, in the model of periventricular leukomalacia induced in
neonatal rats, treatment with human UC-MSCs preconditioned
with IFN-γ increased the preservation of tissue myelin basic
protein (MBP) by about 18%, while treatment with control MSCs
reached only 2.5% protein preservation, both compared to the
untreated group. Genetic analysis of cells after preconditioning
revealed an increase in the expression of TGS-6 and IDO,
proteins with anti-inflammatory functions, which may explain
the results (Morioka et al., 2017).

In a more targeted method, MSCs conditioned with serum
from stroke victims were more effective in promoting functional
gains and reducing the Modified Neurological Severity Score
(mNSS) of animals with induced ischemic stroke, compared
with groups treated with cells stimulated by serum from healthy
donors or FBS. Analysis of the gene expression of the treated cells
showed an increase in the expression of 88 proteins in relation
to the controls, including important factors related to cellular
communication and signal transduction, such as FGF, VEGF,
EGF, BNDF, and MMP-9 (Moon et al., 2018). Preconditioning
of MSCs with TGF-β was able to increase homing of MSCs
carrying a lethal gene to treat a model of glioblastoma in
mice. Conditioning with TGF-β increased expression of the
CXCR4 receptor in MSCs, resulting in an increase in the
efficiency of these cells in delivering the therapeutic gene,
and consequently a 50% reduction of the tumor volume in
relation to the group treated with unstimulated MSCs (Li et al.,
2019). In a model of multiple sclerosis in mice, treatment with
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preconditioned MSCs with SDF-1α also promoted an increase in
CXCR4 expression in transplanted cells (about six times higher
than the levels expressed by unconditioned MSCs), which led to
a significant reduction in apoptosis of these cells, thus promoting
greater myelination and improving the spatial learning and
memory of treated animals compared to control groups (Beigi
Boroujeni et al., 2020). Taken together, these data suggest
that preconditioning with cytokines and growth factors is an
effective method to promote increased expression of receptors
and molecules of interest in MSCs, which can improve their
therapeutic potential for different neurological diseases.

Pretreatment With Pharmacological Agents and
Bioactive Molecules
Despite the recognized potential of MSCs to promote
neuroprotection and tissue repair in CNS lesions and diseases
via biomolecule secretion (Uccelli et al., 2011), some extrinsic
factors, such as the source of achievement, donor characteristics,
and culture conditions can interfere with their secretory activity
(Hagmann et al., 2013; Elahi et al., 2016; Heathman et al.,
2016). Therefore, in vitro preconditioning of MSCs with a
variety of active substances, ranging from inorganic compounds
to pharmacological agents, has been explored to increase or
standardize the therapeutic potential of MSCs.

Preconditioning with pharmacological agents has been used
to optimize the secretory profile of MSCs for application
in different models. Linares et al. (2016) investigated the
effect of preconditioning BM-MSCs with a combination of
mood-stabilizing drugs, lithium chloride, and valproic acid, for
the treatment of a Huntington’s disease model in rats. This
preconditioning resulted in an increase in the expression of genes
involved with trophic effects, stress response, antioxidants, and
anti-apoptosis, among others, which contributed to an increase
of approximately 60% in the survival of the treated cells after
the graft, compared to unconditioned MSCs, and contributed
to a better functional performance for the group treated
with preconditioned cells. In another study, the conditioned
medium of AT-MSCs preconditioned with the iron chelator
deferoxamine (DFX) was effective in promoting neuroprotection
and apoptosis reduction in a culture of DRG neurons challenged
by hyperglycemic insult. The reduced rate of apoptosis (1.6% for
preconditioned MSCs vs. 3.5% for control MSCs) was related
to increased expression of genes involved in neuroprotection,
such as GDNF, NGF, and NT3 (Oses et al., 2017). The
functional performance of rats in a stroke model due to middle
cerebral artery occlusion (MCAO) increased after treatment with
BM-MSCs that were preconditioned with sodium hydrosulfide
(NaHS). This result was accompanied by a reduction of
approximately 13.5% of the area affected by the infarction after
treatment with MSCs induced with NaHS compared to the
untreated group, due to the increased expression and secretion
of VEGF and BDNF in MSCs (Zhang et al., 2016).

MSCs in Three-Dimensional Cultures
An innovation of tissue engineering, a three-dimensional
culture of MSCs such as spheroid culture or 3D culture
using biomaterials such as scaffolds and hydrogels may confer

improvements in MSC properties compared to two-dimensional
culture methods.

3D MSC cultures show increased rates of cell proliferation,
viability, and survival compared to 2D cultures (Baraniak and
McDevitt, 2012; Alimperti et al., 2014; Murphy et al., 2014),
in addition to maintaining their multilineage differentiation
potential, favoring their use in cartilage and bone-repair models
(Murphy et al., 2014; Occhetta et al., 2015; Yan and Wu, 2020).
On the other hand, in the case of 3D MSC cultures with
biomaterials, physical characteristics related to the surrounding
environment, such as topography, surface tension, and matrix
rigidity are able to define the degree of differentiation and the
fate of MSCs, without the need for additional biochemical signals.
For example, the use of soft, elastic, or rigid matrices can direct
MSC differentiation into neural cells, myocytes, or osteoblasts,
respectively (Wang et al., 2010; Wen et al., 2014).

The immunomodulatory properties of MSC are also
regulated by 3D culture. Several studies using cultures of MSC
spheroids derived from different sources demonstrated that this
configuration was more effective in promoting the secretion of
immunosuppressive factors such as PGE2, TSG-6, and STC-1
(Bartosh et al., 2013), in addition to decreasing the proliferation
of immune cells (Miceli et al., 2019) and inducing macrophage
polarization for an anti-inflammatory profile (Ylöstalo et al.,
2012; Vallés et al., 2015). Similar results were obtained from 3D
MSC cultures in hydrogels, with increased secretion of PGE2 and
TSG-6, in addition to HGF (Papadimitropoulos et al., 2014;
Follin et al., 2015).

MSC spheroids also showed advantages compared to
two-dimensional culture, in the secretion of angiogenic factors
such as HGF, PDGF, TGF-β, VEGF, FGF1, GRO-α, SDF-1, and
EGF, and were able to induce increases in tube formation and
capillary maturity (Park et al., 2014). The secretome of MSC
grown in scaffolds was more efficient in promoting healing in
in vitro models of corneal wounds, compared to the secretome
obtained from a 2D culture. This result was related to higher
levels of HGF and ICAM-1 present in the secretome of a
3D culture compared to the concentrations produced by the
monolayer (Carter et al., 2019). The difficulty of gas exchange
and the gradient of cytokines created within the 3D cultures are
related to the increased expression of HIF-1 and HGF, explaining
their greater regenerative potential (Bhang et al., 2011).

Genetically Modified MSCs
As discussed above, many of the regenerative and protective
effects evoked by MSC therapy in CNS are due to a paracrine
action, mediated by trophic factors, cytokines, and other
molecules secreted by these cells. Genetic engineering of MSCs
to overexpress and/or secrete specific molecules of interest
in the damaged tissue is a valuable tool to enhance their
therapeutic potential (Nolta, 2016). An increase in the efficacy
of MSC therapy also implies a reduction in the number of
cells required per dose and consequently lowers the cost of
large-scale cell production. Several virus-based approaches have
been used for genetic engineering of MSCs, including retrovirus,
lentivirus, and adenovirus, each of which has advantages and
limitations. Recently, an efficient non-viral process using a
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cationic polymer for MSC programming has been described (Ho
et al., 2020). Other approaches, such as plasmid transfection,
can also be used to modify MSCs, but viral vectors are still
the most widely used tool for genetic engineering of MSCs
in preclinical trials, as in the majority of studies described in
this section. Therefore, numerous MSC lines overexpressing
several trophic factors have been developed and tested in
models of neurological diseases in recent years (for a detailed
review of engineered MSCs, different modification methods,
and applications in regenerative medicine, see Damasceno
et al., 2020). Neurotrophic factors, such as nerve growth
factor (NGF), brain-derived neurotrophic factor (BDNF),
and neurotrophin 3 (NT-3) and 4 (NT-4), are a family of
soluble proteins involved in a plethora of functions but mainly
related to neuronal survival. Mouse BM-MSCs overexpressing
BDNF were tested in a model of chronic retinal degeneration.
Intravitreal injection of BDNF-MSCs promoted a reduction
of apoptotic markers in the retina, resulting in long-term
neuroprotection of photoreceptors and better functional
outcomes in electroretinography analysis. In all parameters,
BDNF-MSCs induced better results than non-modified MSCs,
suggesting that genetic engineering improved the therapeutic
efficacy of the MSCs (Lejkowska et al., 2019). Intravitreal
injection of erythropoietin-expressing MSCs also increased
photoreceptor neuroprotection in a model of sodium iodate-
induced retinal degeneration, as shown by electroretinography
(Koh et al., 2021). Neuroinflammation is another key aspect of
several neurodegenerative conditions. Intracerebral injection
of BM-MSCs overexpressing interleukin IL-13 in cuprizone-
induced multiple-sclerosis mice induces anti-inflammatory
microglial activation and reduces demyelination and
oligodendrocyte loss, effects not achieved with naïve MSC
therapy (Le Blon et al., 2013).

An important aspect regarding the efficacy of cell therapy
is that the MSC secretome can be directly modulated by
the often-unfavorable host environment (Wang et al., 2014).
Therefore, genetic modification can also be used to improve
MSC survival, homing, and grafting after transplantation.
In a mouse model of acute spinal cord injury, BM-MSCs
overexpressing human insulin-like growth factor 1 (hIGF1-
MSCs) have increased survival after transplantation in relation to
naïve MSCs. Therapy with hIGF1-MSCs reduced demyelination
and promoted more-robust functional recovery than naïve
MSCs (Allahdadi et al., 2019). Human MSCs overexpressing
fibroblast growth factor (FGF) by plasmid transfection also
induced motor improvement in a spinal cord-injury model;
the proposed mechanism of this effect was through increased
differentiation of endogenous neural stem cells (Huang F. et al.,
2021). Although systemic circulation and interaction with other
cell types can be important for the activation of MSCs, an
increase in the number of cells that reach and remain in the
injury site can result in optimized therapeutic effects. Several
reports in murine models have indicated that a few hours
after systemic transplantation, MSCs tend to accumulate in the
lungs, and very few cells reach the brain or the spinal cord
(Dos Santos Ramalho et al., 2019; Mello et al., 2020). MSCs
overexpressing FGF increased their ability to migrate toward

the lesion site after intracerebroventricular injection in a mouse
model of traumatic brain injury, although the study did not
assess differences in functional outcomes (Shahror et al., 2019).
Although overexpression of integrin α4, a protein related to
transendothelial migration, did not increase homing of rat MSCs
in a model of stroke, it reduced cell aggregation and cerebral
embolism, increasing the safety of therapy (Cui et al., 2017).
Human UC-MSCs overexpressing the chemokine CCL2 by
plasmid transfection showed increased migration to the injury
site in rats submitted to middle cerebral arterial occlusion, a
classic model of stroke. Moreover, in the acute phase of lesion,
CCL2-MSC-treated animals showed a significant reduction in
lesion volume and improved functional outcome in comparison
to subjects treated with non-modified MSCs (Lee et al., 2020).
Similarly, a previous study using the same model showed that
MSCs overexpressing CCR2, the CCL2 receptor, had increased
migration rates to the injury site and induced improvement
in behavioral tests, due to the preservation of the blood-brain
barrier integrity (Huang et al., 2018). Huang Y. et al. (2021)
recently showed that small interfering RNA-mediated ablation of
CUEDC2, a novel protein related to cancer and oxidative stress,
in rat MSCs increased the efficacy of cell therapy in reducing
the infarcted area after stroke induction. Finally, human MSCs
that have been genetically modified are already being tested
in clinical trials, and some of these studies are discussed in
this review.

MSC THERAPY IN NEUROLOGICAL
DISEASES

In the following sections, we briefly discuss the most recent
studies regarding the safety, efficacy, and mechanism of action of
MSC-based therapy in several neurological conditions, including
amyotrophic lateral sclerosis, glaucoma, stroke, spinal cord
injury, and autism. Most of the preclinical data described
here were obtained from tests on animals, usually rats and
mice, submitted to allogeneic or xenogeneic transplantation of
human MSCs. Lesioned and transgenic rodent models have
been essential not only for understanding the etiology and
pathophysiology of these diseases, but also for evaluating the
efficacy of different therapeutic approaches regarding MSC
source, dosage, delivery route, and timing, as well as the
possible adverse effects, providing remarkable insight into
clinical translation of MSC transplantation to human patients.

Amyotrophic Lateral Sclerosis
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative
disease that mainly affects the motor neurons (MN), leading
to progressive muscle atrophy, paralysis, and death, usually
3–5 years after onset. The incidence of ALS is relatively constant
worldwide, with a rate of 1–2 cases per 100,000 inhabitants
(Brown and Al-Chalabi, 2017). Most ALS cases are idiopathic,
termed sporadic ALS. Approximately 5%–10% of ALS cases
are familial. Variations have been observed in approximately
120 genes that are associated with a risk of ALS, such as
C9ORF72, SOD1, TARDBP, FUS, and VAPB, among others
(Brown and Al-Chalabi, 2017). The discovery of genes associated
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with familial ALS allowed the development of animal models
to study ALS (Philips and Rothstein, 2015), and more recently,
the generation of patient-induced pluripotent cells has also
contributed to understanding the diversity and complexity of
ALS (Vasques et al., 2020).

It is not known exactly what process triggers the degeneration
of MN. ALS is considered a multifactorial disease, where different
mechanisms seem to be involved in its development. Some of the
proposed hypotheses include protein aggregation, glutamatergic
excitotoxicity, glial cell toxicity, neuroinflammation, oxidative
stress, mitochondrial dysfunction, lack of growth factors, and
dysfunction in axonal transport, among others (Mejzini et al.,
2019).

Currently, there are no effective treatments for ALS. Many
groups have been testing cell therapy as an alternative, especially
with MSCs. Different routes of administration, doses, and
injection times have been tested. BM is the main source of
MSCs tested in animal models of ALS. These cells, derived
from humans or rodents, have shown promising results, delaying
disease progression and increasing animal survival (Zhao et al.,
2007; Zhang et al., 2009; Kim et al., 2010; Forostyak et al., 2011,
2014; Uccelli et al., 2012; Zhou et al., 2013; Řehořová et al., 2019).
As an alternative, some groups have tested BM mononuclear cells
(BMMCs), a heterogeneous population of cells that contain a
small percentage of both MSCs and hematopoietic stem cells.
Preclinical studies using BMMCs have shown modest positive
results; in some cases, the treatment delayed disease progression
but with no change in survival (Gubert et al., 2016, 2019;
Martínez-Muriana et al., 2020). Other sources of MSCs, such as
AT and UC, have also been tested in ALS models (Marconi et al.,
2013; Kook et al., 2020; Ciervo et al., 2021). Both showed some
positive results, although more studies using these sources are
important to compare the efficacy of these sources.

Although most preclinical studies using MSCs for ALS have
shown positive results, this appears to vary according to the
dose and injection site. Habisch and co-workers (2007) showed
that 105 human BM-MSCs injected intrathecally in SOD1-G93A
mice had no effect on animal survival and delayed disease
progression only in females (Habisch et al., 2007). Zhou and
co-workers, using the same animal lineage, showed that a
single intrathecal injection with a dose 5× higher of human
BM-MSCs had a modest effect on motor performance and
survival, but multiple injections resulted in a positive outcome
(Zhang et al., 2009; Zhou et al., 2013). Testing different
doses (104, 2 × 105, or 106), Kim et al. (2010) showed that
only the higher doses produced a positive outcome, especially
106 human BM-MSCs. After intrathecal injections, few or no
cells were found in the regions most affected by the disease
(Zhang et al., 2009; Forostyak et al., 2014). Despite that,
using multiple injections, intrathecal cell therapy modulates
neuroinflammation, as observed by the reduction of microgliosis
and astrogliosis as well as decreased expression of iNOS and
TNF-α (Zhou et al., 2013).

As an alternative to the intrathecal route, some groups have
tested intraventricular injections. However, this route has not
shown promising results. Transplantation of 2.5× 105 UC-MSCs
protected MN and decreased neuroinflammation but had no

effect on disease progression and animal survival (Sironi et al.,
2017). In addition, lateral ventricle injection of human BM-MSCs
had a negative effect on both motor performance and survival
(Bursch et al., 2019). The authors attributed these results to an
increase in microgliosis.

In order to directly access the site of MN degeneration, some
groups have tested intraspinal injections. Vercelli and co-workers
showed that 105 human BM-MSCs injected into the lumbar
spinal cord slowed disease progression (Vercelli et al., 2008).
Using the same route, our group showed that BMMCs could
also affect motor performance, but only when the cells were
administered in the pre-symptomatic phase (Gubert et al., 2016).
In agreement with these results, Bursch and coworkers showed
an effect on disease progression but with no change in animal
survival after repeated intraspinal injections of human BM-MSCs
(Bursch et al., 2019).

In ALS, muscle atrophy results from the loss of
neuromuscular junctions (NMJ). Considering that it is necessary
not only to protect the motor neurons but to keep them
functional, some groups have tested intramuscular injections
of MSCs. Intramuscular injections of MSCs overexpressing
GDNF for three consecutive weeks preserved NMJ, slowed
disease progression, and increased animal survival (Suzuki
et al., 2008). Recently, Kook et al. (2020) showed that repeated
intramuscular injections (gastrocnemius muscle) performed
once a week from the 12th week of life also had positive effects
on motor performance and survival. They attributed these results
to modulation of the iNOS pathway and a reduction in levels of
intracellular reactive oxygen species (ROS) in the muscle (Kook
et al., 2020).

In ALS, the immune system has been increasingly studied.
Many research groups have tested intravenous injection as an
alternative route. In addition to being a less invasive and easy
to administer route, studies using this approach have shown
positive results, such as a reduction in disease progression and
an increase in animal survival (Zhang et al., 2007; Uccelli et al.,
2012). Interestingly, these effects were observed even when
the cells were administered after the onset of symptoms. As
mechanisms, the authors observed a reduction in the numbers
of microglia and astrocytes, as well as a reduction of IL-β and
TNF-α expression (Uccelli et al., 2012).

Each of the routes mentioned above could affect different
components of ALS. Therefore, many groups have proposed
combining routes of administration to achieve a better outcome.
Forostyak and co-workers reported positive effects on disease
progression and survival after intravenous and intraspinal
administrations at the onset of the disease (Forostyak et al., 2011).
The outcome improved when intrathecal and intramuscular
injections were combined, rather than when using the routes
individually (Řehořová et al., 2019). The injections were
administered three times, at onset and after 14 and 28 days. The
authors reported neuroprotection, modulation in necroptosis
pathways, and reduction of NF-κB and TNF-α expression.

Clinical trials with MSCs in ALS patients are underway. Most
of the groups have used autologous MSCs and demonstrated that
these cells are safe (detailed information regarding MSC-based
clinical trials in ALS in recent years is summarized in Table 1). A
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TABLE 1 | Clinical trials using mesenchymal stem/stromal cells in amyotrophic lateral sclerosis.

Identifier and
reference

Recruitment status MSC source MSC dose Delivery route Main results

NCT02987413 Completed Not available
(autologous)

1 × 108 cells
(2×)

Intrathecal No results posted

NCT03268603 Recruiting Adipose tissue
(autologous)

1 × 108 cells
(every 3 months; total
of 4)

Intrathecal No results posted

NCT01609283 Completed Adipose tissue
(autologous)

1 × 107 cells (1×)
5 × 107 cells (1×)
5 × 107 cells (2×)
1 × 108 cells (1×)
1 × 108 cells (2×)

Intrathecal No results posted

NCT01142856 Completed Adipose tissue
(autologous)

1 × 106 cells Intrathecal No results posted

NCT02881489 Unknown Bone marrow
(autologous)

Not available Intrathecal No results posted

NCT01777646
(Petrou et al., 2016)

Completed Bone marrow secreting
neurotrophic factors
(autologous)

94 × 106 cells
141 × 106 cells
188 × 106 cells

Intrathecal and
intramuscular

Therapy was safe and
well-tolerated.

NCT02492516 Completed Adipose tissue
(allogeneic)

2 × 106 cells/kg Intravenous No results posted

NCT02881476
(Barczewska et al.,
2019)

Unknown Wharton’s jelly 0.42 × 106 cells/kg Intrathecal Therapy was safe and well
tolerated

NCT01494480 Unknown Umbilical cord Not available Intrathecal No results posted

NCT03828123
(Sykova et al.,
2017)

Completed Bone marrow
(autologous)

15 ± 4.5 × 106 cells Intrathecal Therapy was safe and
well-tolerated. Reduction in
ALSFRS decline.

NCT01759797
(Nabavi et al., 2019)

Completed Bone marrow
(autologous)

2 × 106 cells/ kg Intravenous Therapy was safe and
well-tolerated.

NCT01771640
(Nabavi et al., 2019)

Completed Bone marrow
(autologous)

2 × 106 cells/ kg Intrathecal Therapy was safe and
well-tolerated.

NCT01051882
(Petrou et al., 2016)

Completed Bone marrow secreting
neurotrophic factors
(autologous)

1 × 106/kg cells (IT)
1 × 106 cells/site
(24 sites—IM)

Intrathecal or
intramuscular

Therapy was safe and
well-tolerated

NCT02917681 Unknown Bone marrow
(autologous)

Not available Intrathecal No results posted

NCT02290886 Completed Adipose tissue
(autologous)

3 × 106 cells/kg
6 × 106 cells/kg
12 × 106 cells/kg

Intravenous No results posted

NCT03280056
(Cudkowicz et al.,
2022)

Completed Bone marrow secreting
neurotrophic factors-
MSC-NTF, NurOwnTM

(autologous)

Not available Intrathecal Therapy was safe and
well-tolerated. Phase
3 study, only a subgroup of
treated patients retained
more function than placebo
group.

NCT02017912 Completed Bone marrow secreting
neurotrophic factors-
MSC-NTF, NurOwnTM

(autologous)

Not available Intrathecal and
intramuscular

No results posted

NCT03296501
(Kuzma-
Kozakiewicz et al.,
2018)

Active, not recruiting Adipose tissue
(autologous)

1.6 × 104 cells
5.6 × 107 cells

Intraspinal and
Intrathecal

Therapy was safe and
well-tolerated.

NCT04651855 Recruiting Wharton’s jelly Not available Intrathecal No results posted

NCT04745299 Recruiting Bone marrow
(autologous)
Lenzumestrocel
(Neuronata-Rr Inj.)

Not available Intrathecal No results posted

(Continued)
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TABLE 1 | Continued

Identifier and
reference

Recruitment status MSC source MSC dose Delivery route Main results

NCT04821479
(Petrou et al.,
2021a)

Completed Bone marrow
(autologous)

1 × 106 cells/kg
(1–4 injections)

Intrathecal Therapy was safe and
well-tolerated. Signs of
clinical efficacy, related to
the intervals between
administrations.

NCT05003921 Recruiting Umbilical cord 5 × 107 cells
(three injections)

Intrathecal No results posted

meta-analysis study analyzing data for 152 patients treated with
MSCs indicated a transitory effect of these cells after intrathecal
administration (Morata-Tarifa et al., 2021). One study showed
that patients with ALS who received intrathecal autologous
transplants could be divided into two groups: responsive and
non-responsive to treatment. In the responsive group, MSCs
had higher VEGF expression than MSCs in the non-responsive
group (Kim et al., 2014). This demonstrates that there are
differences between MSCs, justifying the search for a source that
can generate more-homogeneous cells with a higher capacity to
express trophic factors and cytokines. In line with this idea, a
randomized placebo-controlled phase 3 test was performed with
about 189 patients. Autologous BM-MSCs modified to secrete
higher levels of neurotrophic factors (NurOwnr) were injected
intrathecally three times (at 8-week intervals). The therapy was
safe and, although it did not reach the designated primary end-
point, analysis of a subgroup of patients that were at a less severe
stage of the disease revealed a significant preservation of function
compared to the placebo (Cudkowicz et al., 2022). Therefore,
MSC therapy for ALS seems promising, but considering the
enormous heterogeneity of the patients, larger clinical trials are
needed.

Glaucoma and Retinal Lesions
Vision impairments affect the economy and quality of life
and even increase the risk of death. It is estimated that
2.2 billion people worldwide have some visual impairment, and
approximately 36 million of them are blind (Bourne et al., 2017;
Williams et al., 2020). Cataract is the most common cause
of blindness but is reversible in most cases (Williams et al.,
2020). The leading cause of irreversible blindness, glaucoma,
affects about 64 million people worldwide, of whom 6.9 million
have some vision impairment or are blind (Williams et al.,
2020). Glaucoma is characterized by degeneration of the optic
nerve and death of retinal ganglion cells (RGCs), leading to
progressive loss of vision. RGCs die mostly by apoptosis and, like
other neurons, cannot be replaced. Furthermore, until now no
clinical treatment exists to sustain RGC survival and promote
the regeneration of axons to their central targets. Cell therapy
is an alternative approach that has yielded promising results.
BM cells were shown to provide long-term protection and
RGC regeneration and synaptic reconnection in the superior
colliculus in an optic-nerve crush model (Zaverucha-do-Valle
et al., 2011, 2014; Mesentier-Louro et al., 2014, 2019). These
were the first studies to report RGC reconnection resulting

from cell therapy. Moreover, BM-MSCs were also shown to be
neuroprotective in models of ocular hypertension (Emre et al.,
2015; Mead et al., 2016). Although UC-MSCs were reported to
have neuroprotective effects on RGCs subjected to an optic-nerve
injury (Nascimento-Dos-Santos et al., 2019; Wang Y. et al., 2021),
the effect was transient. In contrast, da Silva-Junior et al. (2021)
recently reported that human WJ-MSCs could protect RGCs
for a relatively long period and promote axonal regeneration to
brain targets after intravitreal injection in an optic-nerve crush
model. Millán-Rivero and colleagues (2018) showed that human
UC-derived-MSCs protected RGCs and some integrated into the
retina (Millán-Rivero et al., 2018). The same was reported with
BM-MSCs (Li et al., 2009). These findings contrast with other
reports that MSCs injected intravitreally did not integrate into
the rat retina (Hill et al., 2009), and even after 18 weeks post-
injection, the majority of BM-MSCs remained in the vitreous
body (Mesentier-Louro et al., 2014). Importantly, a recent study
indicated that care with the type of transplantation of cells
(syngeneic, allogeneic, or xenogeneic) may impact the results,
since MSCs from different donor species can exert different
effects (Norte-Munoz et al., 2021).

Diabetic retinopathy is a complication of diabetes that results
in damage to retinal blood vessels, and is expected to affect
about one-third of diabetics by 2045 (Williams et al., 2020).
To date, diabetic retinopathy is treated by laser coagulation,
anti-VEGF, or glucocorticoid drugs; however, these methods
have serious side effects and do not ensure the preservation
of vision (Gaddam et al., 2019). Systemic treatment with
BM-MSCs proved to be safe in patients with diabetic retinopathy
(Gu et al., 2018). Intravitreally injected BM-MSCs integrated
into the inner retina and improved the electrophysiological
retinal function of the retina in rats in a model of diabetic
retinopathy (Çerman et al., 2016). Systemic or local injection
of UC-MSCs attenuated angiogenesis and inflammation in the
retina in a model of diabetic retinopathy (Yu et al., 2020;
Zhao et al., 2020). Overexpression of LIF in MSCs was shown
to increase the neuroprotective effect in diabetic retinopathy
(Chen et al., 2021).

Optic neuritis is an inflammatory demyelinating disorder
of the optic nerve, often related to multiple sclerosis (Redler
and Levy, 2020). Intraperitoneal injection of human BM-MSCs
decreased RGC death and improved their function in a mouse
model of multiple sclerosis (Gramlich et al., 2020). BM-MSCs
administered intravenously proved to be safe for patients with
neuromyelitis spectrum disorder and improved neurological
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disability, with recovery in neural structures in the optic nerve
and retina for up 2 years after treatment (Fu et al., 2016). Another
study reported positive effects after follow up for 18 months of
treatment with UC-MSCs in patients with neuromyelitis optica
(Lu et al., 2012).

Many clinical trials with MSCs for optical disease are
registered on ClinicalTrials.org (Table 2). Studies using MSCs
have reported safety and effectiveness in the treatment of patients
with optic-nerve injuries (Kahraman and Oner, 2020; Sung
et al., 2020). One study investigated 29 patients with optic
atrophy, who were followed up to 1 year after suprachoroid
UC-MSC implantation and showed improvement in visual
parameters (Kahraman and Oner, 2020). Intravitreal injection
of BM-MSCs in patients with retinitis pigmentosa resulted in
visual improvement (Weiss and Levy, 2018; Tuekprakhon et al.,
2021). Nevertheless, there is much concern about the clinical
use of MSCs, since some reports described visual impairment
in patients after intraocular injection of BM-MSCs (Kasetty
et al., 2020). However, MSC-derived Evs are an alternative to
avoid the presence of cells in the vitreous body. Mathew et al.
(2021) reported the distribution of Evs on the retina in vitro
and in vivo. MSC-derived Evs were rapidly cleared from the
vitreous body and endocytosed by astrocytes, microglia, and
neurons in a dose-dependent manner (Mathew et al., 2021). Evs
from embryonic MSCs were shown to protect RGCs for at least
60 days and promote regeneration in an optic-nerve crush model
(Seyedrazizadeh et al., 2020). MSC-derived Evs were shown to
be neuroprotective in in vitro models of diabetic retinopathy
(Beltramo et al., 2014). Evs were also reported to protect RGCs in
a model of optic-nerve injury (Mead et al., 2016; Pan et al., 2019).
In contrast, the angiogenic potential of MSC-derived Evs was
reported to induce diabetes-like features of diabetic retinopathy
in vitro (Beltramo et al., 2014). However, Evs have been shown
to have protective effects on the retina in models of diabetic
retinopathy (Fu et al., 2021; Li W. et al., 2021; Xu et al., 2021).
Therefore, it is necessary to investigate which Ev components are
undesirable for this treatment and if it is possible to direct MSCs
to deliver Evs with appropriate molecules to enhance their effect.

Stroke
Stroke is the second leading cause of death and the main cause of
long-term disability, significantly reducing the patient’s quality of
life and representing an important economic burden. Ischemic
stroke is characterized by an interruption in blood flow to the
brain, generally due to a blood clot, causing oxygen and glucose
deprivation. The affected brain tissue can be divided into the core
area, where neural death occurs by necrosis, and the penumbra
area, in which neural cells are metabolically impaired but still
able to recover if the blood flow is rapidly restored. Ischemic
strokes are the most prevalent, accounting for 85% of cases,
and the mortality rate is around 15% (Ganesh et al., 2016). The
current FDA-approved treatment is the thrombolytic drug tissue
plasminogen activator if administered within 4.5 h after onset
of symptoms. After this time window, surgical removal of the
clot is the remaining option. In hemorrhagic stroke, a vessel
rupture allows extravasation of blood to the brain parenchyma,
subarachnoid or intraventricular spaces. This bleed causes a

primary lesion, inducing death of neural cells due to oxygen
and glucose deprivation and mechanical pressure from blood.
Blood metabolites trigger a secondary inflammatory response,
contributing to an increase in the initial injury (Zheng et al.,
2016). Although less frequent, the hemorrhagic-stroke mortality
rate is around 50%, comprising 60% of stroke-related deaths
(Yang et al., 2017). To date, the treatment options available
for hemorrhagic stroke are limited to cranial decompression
surgery, indicated in only a few cases; blood-pressure control;
and life-support measures (Fogarty Mack, 2014).

In recent years, several preclinical and clinical studies have
evaluated the therapeutic potential of MSC therapy in ischemic
and hemorrhagic stroke (for reviews fully dedicated to MSC
therapy in stroke, see Turnbull et al., 2019 and Li J. et al., 2021). In
a model of focal ischemic stroke induced by thermocoagulation
of blood vessels, our group demonstrated that in the acute
phase of the insult, only one-tenth of the dose of BM-MSCs
is needed to induce the same sensory-motor recovery as bone
marrow-derived mononuclear cell therapy (de Vasconcelos dos
Santos et al., 2010). A commonly used animal model of ischemic
stroke is the middle cerebral artery occlusion (MCAO). Rats
submitted to MCAO and treated with 3× 106 BM-MSCs injected
systemically showed better results in neurological severity scores
(NSS) 72 h after surgery, and lesion volume was also reduced
in relation to the vehicle group. Interestingly, Nogo-A and its
receptor, NgR, were downregulated in the ischemic core in the
BM-MSC-treated group. Nogo-A inhibits central axon growth
after lesion and inhibits neuronal repair after ischemia (Zhang
J. et al., 2020). Intra-arterial injection of 5 × 105 rat BM-MSCs
24 h after MCAO also induced a reduction in the infarct
area and improvement of motor function. BM-MSC-derived
mitochondria were detected in host cells post-transplantation,
which was correlated with an increase in angiogenesis in the
peri-infarcted area (Liu et al., 2019). Using the MCAO model,
a recent report demonstrated that rat BM-MSCs pretreated with
IFN-γ (aMSCγ) injected intravenously in the acute phase of the
lesion-induced a better outcome than naïve MSCs. Although
both aMSCγ- and naïve MSC-treated groups displayed similar
results regarding motor function improvement, NSS, lesion
volume reduction, and microgliosis attenuation in relation to the
vehicle group, aMSCγ therapy also induced the proliferation of
neural progenitor cells and oligodendrogenesis in the ipsilateral
subventricular zone (Tobin et al., 2020). BM-MSCs expressing
the BDNF receptor TrkB (BM-MSC-TrkB) directly injected
into the penumbra area 5 days after MCAO, in combination
with electroacupuncture therapy, improved motor function
in the rotarod test 15 days after the lesion. BM-MSC-TrkB
had higher survival rates post-transplantation and increased
migratory ability to the lesion site in relation to naïve MSCs
(Ahn et al., 2019). BM-MSC transplantation also improved
neurological outcomes and reduced the infarcted area after
MCAO in spontaneously hypertensive rats (Liu et al., 2022). It
has recently been proposed that the beneficial effects of BM-MSC
therapy in rats submitted to MCAO could be related to the
regulation of the gut microbiome (Zhao et al., 2021). In a chronic
model of ischemic stroke, 8 weeks after MCAO induction, three
weekly injections of MSCs promoted a better functional recovery
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TABLE 2 | Clinical trials using mesenchymal stem/stromal cells in retinal diseases.

Identifier and
reference

Recruitment status MSC source MSC dose Delivery route Main results

NCT02638714 Recruiting Bone marrow Not available Not available No results posted

NCT01364246 Unknown Umbilical cord Not available Not available No results posted

NCT02249676
(Fu et al., 2016)

Completed Bone marrow 1 × 108 cells Intravenous MSC infusion is safe,
reduces the relapse
frequency, and mitigates
neurological disability

NCT01834079 Unknown Bone marrow 1 × 108 cells Intrathecal No results posted

NCT01920867
(Weiss et al.,
2015a,b, 2016a,b)

Unknown Bone marrow ∼3.48 × 108 cells Retrobulbar
Subtenon
Intravenous
Intraocular
Intra-optic nerve

Treatment with BMSCs is
safe and provided
improvement in vision.

NCT03011541
(Weiss et al., 2017;
Weiss and Levy,
2018, 2019, 2020,
2021)

Recruiting Bone marrow ∼3.48 × 108 cells Retrobulbar
Subtenon
Intravenous
Subretinal
Intraocular
Intravitreal

Treatment with BMSCs is
safe and provided
improvement in vision.

NCT02795052
(Bhasin et al., 2012;
Anbari et al., 2014;
Weiss and Levy,
2016)

Recruiting Bone marrow 54.6 × 106 cells Intravenous
Intranasal

Cell therapy is safe and
feasible, which may
facilitate restoration of
function in chronic ischemic
stroke.

NCT02330978 Completed Bone marrow 1 × 106 cells Intravitreal No electroretinographic
function.
Retinal detachment with
proliferative
vitreoretinopathy was noted
in one patient.

NCT05147701 Recruiting Umbilical cord 1 × 106 cells Intravenous
Subtenon

No results posted

NCT04224207
(Özmert and Arslan,
2020a)

Completed Wharton’s Jelly 2–6 × 106cells Subtenon WJMSC treatment was
safe and resulted in
electroretinography

NCT04315025 Completed Umbilical cord Not available Peribulbar No results posted

NCT01531348
(Tuekprakhon et al.,
2021)

Completed Bone marrow 1 × 106 cells Intravitreal Intravitreal injection of
BM-MSCs appears to be
safe and potentially
effective

NCT04763369
(Kahraman and
Oner, 2020;
Özmert and Arslan,
2020a)

Recruiting Umbilical cord 5 × 106 cells Subtenon
Suprachoroidal

Suprachoroidal
administration ofUC-MSCs
has beneficial effect on
visual function

NCT00395200
(Connick et al.,
2011, 2012)

Completed Bone marrow 2 × 106 cells/kg Intravenous Autologous mesenchymal
stem cells were safely given
to patients with secondary
progressive multiple
sclerosis. The evidence of
structural, functional, and
physiological improvement
after treatment in some
visual endpoints is
suggestive of
neuroprotection.

NCT02144103 Unknown Adipose tissue Not available Subtenon No results posted

NCT03437759 Active, not recruiting MSC-derived exosome 20 or 50 µg Intravitreal No results posted

(Continued)

Frontiers in Molecular Neuroscience | www.frontiersin.org 12 June 2022 | Volume 15 | Article 883378

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Soares et al. MSC Therapy for Neurological Diseases

TABLE 2 | Continued

Identifier and
reference

Recruitment status MSC source MSC dose Delivery route Main results

NCT02016508 Unknown Bone marrow Not available Intravitreal No results posted
NCT04877067
(Özmert and Arslan,
2020a,b)

Completed Wharton’s Jelly 2–6 × 106cells Subtenon No serious adverse events
or ophthalmic/systemic
side effects for 6 months
follow-up

NCT03173638 Active, not recruiting Bone marrow Not available Intravitreal No results posted

than a single injection, an effect that seems to be correlated
to increased preservation of corpus callosum fibers (Takemura
et al., 2021).

Human-derived MSCs also exert important neuroprotective
effects in rats submitted to MCAO. Stereotaxic injection of
1 × 107 human BM-MSCs into the cerebral cortex 3 days after
injury-induced functional preservation in relation to the vehicle,
up to 4 weeks post-lesion. Therapy also decreased the infarcted
area and increased the expression of neural markers, such as
βIII-Tubulin and GFAP (Xie et al., 2019). Combined therapy of
human BM-MSCs with minocycline, a broad-spectrum antibiotic
that inhibits microglial activation, resulted in better effects than
isolated therapies. The group that received both therapies—
1.5 × 106 cells injected intravenously 72 h after MCAO and
5 g/ml minocycline injected intraperitoneally daily for 2 weeks
post-surgery—had improved NSS results and better motor
outcome 21 days after the lesion, as well as a reduced infarcted
area (Cho and Jeun, 2018). Culture methods also can improve the
efficacy of MSC therapy. Three-dimensional culture of human
BM-MSCs increased the persistence of injected cells around
the injury site and improved the functional outcome in rats
submitted to MCAO in relation to a standard monolayer culture
(Yuan et al., 2019). Donor age is another important determinant
of the regenerative capacity of human MSCs. Human BM-MSCs
from older donors secrete less BDNF in vitro than younger
MSCs. Rats submitted to MCAO treated with younger human
BM-MSCs showed better functional recovery than the group
treated with older human BM-MSCs (Yamaguchi et al., 2018).

Our group has recently demonstrated that intravenous
injection of 3 × 106 human WJ-MSCs reduced the hematoma
volume in rats submitted to moderate intracerebral hemorrhage
(ICH) by intrastriatal collagenase injection. Animals treated with
human WJ-MSCs showed no significant functional difference in
relation to the sham group in the elevated body swing test 8 days
after lesion, differently from vehicle-treated animals, which
displayed an increased percentage of swings to the contralateral
side of the lesion (Mello et al., 2020). Human placenta-derived
MSC therapy also reduced mortality from 50% to 8% in relation
to the vehicle, when injected via tail vein in the acute phase
of moderate collagenase-induced ICH. Hematoma volume was
also significantly reduced in animals that received cell therapy,
as well as brain edema, ventricular enlargement, and neuronal
death (Choi et al., 2018). Similarly, rat AT-MSCs injected directly
into the peri-lesioned area 48 h after collagenase injection
in mice reduced the brain edema, improving the functional
outcome. These positive effects were attributed to a reduction

in apoptosis in the hematoma area and diminished expression
of pro-inflammatory markers and aquaporin-4, a water channel
found in astrocytes also associated with inflammation and
edema formation (Zhang et al., 2019b). Intraventricular injection
of BM-MSCs exerted similar neuroprotective effects in a rat
model of ICH due to autologous blood injection: functional
improvement along with reduced levels of IL-1α, IL-6, and IFN-γ
(Huang et al., 2019).

MSC-derived products have already been tested in stroke
models. Intranasal injection of human AT-MSC-derived Evs 24 h
after a thermocoagulation ischemic lesion-induced a reduction
in infarct volume and re-stabilization of vascularization in
the peri-infarct area, culminating in behavioral improvement
(Rohden et al., 2021). Recently, Zhao et al. (2020) showed
that exosomes isolated from rat BM-MSCs overexpressing
microRNA-223-3p injected into the tail vein 24 h and
14 days after MCAO induced an improvement in NSS, in
relation to naïve-BM-MSC exosomes, but both groups were
significantly different from the vehicle. The infarct area was
also reduced in all exosome-treated groups, especially in
microRNA-223-3p subjects. Interestingly, exosomes from rat
BM-MSCs overexpressing microRNA-133b, related to functional
recovery in spinal cord injury and cerebral ischemia, reduced
apoptosis and the number of degenerating neurons in a rat
model of hemorrhagic stroke (Shen et al., 2018). A previous
study also indicated that knocking-down microRNA-133b in
MSCs and their exosomes reduced the therapeutic potential of
cell therapy after MCAO. Alternatively, MSCs overexpressing
microRNA-133b induced a significant increase in functional
recovery in relation to naïve MSCs, emphasizing the importance
of this specific molecule in the beneficial effects of MSC therapy
in ischemic stroke (Xin et al., 2013).

Several clinical trials using human MSCs in stroke have been
conducted in recent years. In February 2022, 31 clinical trials
using MSCs from different sources in stroke were registered at
clinicaltrials.gov, most of them using ischemic patients. Several
trials have shown that different doses of MSCs, injected through
different delivery routes, are safe, and some have indicated
a certain degree of efficacy (detailed information regarding
active MSC-based clinical trials in stroke in recent years is
summarized in Table 3). A phase I/II trial demonstrated the
safety of intravenous transplantation of allogeneic BM-MSCs
from a single donor, cultured under low oxygen (5%) conditions
(ischemia-tolerant MSCs). The dose of 1.5 million cells/kg
was used in 21 patients in phase II after it was considered
safe in the prior phase in five individuals. The behavioral
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TABLE 3 | Clinical trials using mesenchymal stem/stromal cells in stroke.

Identifier and
reference

Recruitment status MSC source MSC dose Delivery route Main results

NCT01287936
(Steinberg et al.,
2016, 2018)

Completed Bone marrow
(allogeneic—modified
to express human
Notch-1 intracellular
domain—SB623 cells)

Three cohorts:
2.5 × 106, 5.0 × 106,
or 10 × 106 cells

Surgical transplantation
at residual lesion site

SB623 cells were
considered safe and
improvement in clinical
outcome after 24 months of
follow-up was suggested

NCT01297413
(Levy et al., 2019)

Completed Bone marrow
(allogeneic)

Phase I: 0.5, 1.0, and
1.5 × 106 cells/kg
Phase II: 1 × 106

cells/kg

Intravenous The 1 × 106 cells/kg dose
was safe and behavioral
improvement was
suggested after 12 months
of follow-up

NCT00875654
(Jaillard et al., 2020)

Completed Bone marrow
(autologous)

Two cohorts: 1 × 108

or 3 × 108 cells
Intravenous Both doses were

considered safe and
improvement in clinical
outcome after 24 months of
follow-up was suggested

NCT03356821 Completed Bone marrow
(allogeneic)

5 × 107 Intranasal No results posted

NCT03371329 Completed Bone marrow
(allogeneic)

Four cohorts:
Cohort 1: 5 × 106

cells/kg
Cohort 2: 1 × 106

cells/kg
Cohort 3: 2 × 106

cells/kg
Cohort 4: 0.5 × 106

cells/kg

Intravenous (cohorts 1,
2 and 3) or
Intraventricular (cohort
4)

No results posted

NCT02378974 Completed Umbilical cord
(allogeneic)

Two cohorts:
Cohort 1: 2 × 107 cells
on day 0
Cohort 1: 2 × 107 cells
on day 0 and 7

Intravenous No results posted

NCT01678534 Completed Adipose tissue
(allogeneic)

1 × 106 cells Intravenous No results posted

NCT04811651 Recruiting Umbilical cord 1 × 108 Intravenous No results posted

NCT05158101 Recruiting Umbilical Cord 1 × 108 Intravenous No results posted

NCT04434768 Recruiting Umbilical Cord
(allogeneic)

Not available Combination of
intra-arterial intravenous

No results posted

NCT04280003
(de Celis-Ruiz et al.,
2021)

Recruiting Adipose tissue
(allogeneic)

1 × 106 cells/kg Intravenous No results posted

NCT04097652 Recruiting Umbilical Cord
(allogeneic)

Three cohorts with
different cell doses (low,
medium, and
high—specific values
are not mentioned)

Intravenous No results posted

NCT03384433 Recruiting Exosomes from
allogeneic
MSCs-enriched by
miR-124

Not available Intra-parenchymal No results posted

NCT04953663 Recruiting Bone marrow
(allogeneic)

Several cohorts, from
0.5–2 × 106 cell/kg

Intravenous No results posted

NCT05008588 Not yet recruiting Umbilical cord Cohort 1:
1–2 × 106 UC-MSCs
Cohort 2:
1–2 × 106 UC-MSCs
+ 160 µl
MSC-conditioned
medium

Intranasal
(MSC-conditioned
medium) and
intra-parenchymal
(UC-MSCs)

No results posted

(Continued)
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TABLE 3 | Continued

Identifier and
reference

Recruitment status MSC source MSC dose Delivery route Main results

NCT04590118 Not yet recruiting Not available Different doses ranging
from 0.5–2 × 106

cells/kg

Intravenous No results posted

NCT04093336 Recruiting Umbilical Cord
(allogeneic)

2 × 106 cells/kg Intravenous No results posted

NCT01716481
(Lee et al., 2022)

Unknown Bone Marrow
(autologous) expanded
with autologous serum
from acute phase of
stroke

1 × 106 cells Intravenous Motor score was
significantly higher in the
MSC group than in control.
Neuroimaging analysis
indicate better preservation
of corticospinal tract in
MSC group.

end points suggest significant neurological improvement after
12 months of follow-up (Levy et al., 2019). Different doses
of allogeneic BM-MSCs genetically modified to express the
Notch-1 receptor intracellular domain injected directly into
the residual lesion area in chronic ischemic-stroke patients
were also considered safe, although about 20% of the subjects
showed adverse effects, more likely due to the surgical procedure
than to the cell therapy itself. An improvement in clinical
outcome after 12 and 24 months of follow-up, which correlated
with a reduced lesion volume, was also suggested (Steinberg
et al., 2016, 2018). Autologous BM-MSCs have been tested
in a cohort of 16 subacute ischemic-stroke patients, where
different cell doses, ranging from 10 × 107–30 × 107 and
injected intravenously, were shown to be safe. An indication
of functional improvement was detected (Jaillard et al., 2020).
A recent post hoc analysis suggests that younger patient
age and reduced time after the ischemic injury to start
the therapy were the main factors related to lower limb
recovery after autologous MSC transplantation in ischemic
stroke patients (Chang et al., 2021). There is currently only
one active trial using hemorrhagic-stroke patients. The purpose
of this study is to evaluate the safety and feasibility of
different doses of allogeneic BM-MSCs, injected intravenously
or intraventricularly in the acute phase of hemorrhagic stroke.
No results are presently available (NCT03371329). Therefore,
despite the encouraging results described above, further studies
are necessary to validate the efficacy of MSC therapy, especially
in hemorrhagic stroke.

Spinal Cord Injury
Spinal cord injury (SCI) is a devastating neurological disorder
that compromises sensory, motor, and autonomic functions,
resulting in paraplegia or tetraplegia. The pathophysiology
of SCI is temporally divided into acute (<48 h), subacute
(2–14 days), intermediate (2 weeks to 6 months), and chronic
(>6 months) phases and includes a primary injury that usually
arises from compression, contusion, or transection of the
spinal cord, and a secondary injury cascade that exacerbates
the initial damage, causing even greater loss of neurological
function (Ahuja et al., 2017). The current treatment for SCI
includes surgical decompression, steroid administration, and

rehabilitation therapies, which provide poor outcomes. In recent
years, MSC transplantation has yielded encouraging results in
preclinical and clinical research.

Most preclinical studies use MSCs derived from BM, AT,
and UC in acute/subacute SCI models, while few studies have
evaluated the efficacy of cell therapy in models of chronic SCI,
which is more clinically relevant. Transplantation of BM-MSC
sheets in acute and subacute SCI rat models reduced infiltration
of inflammatory cells and the area of the injury lesion, promoted
axonal regeneration, and attenuated glial scar formation, one
of the major limiting factors to functional recovery after SCI
(Okuda et al., 2017; Yamazaki et al., 2021). Basso, Beattie, and
Bresnahan (BBB) scores showed improved locomotor function
in sheet groups. Intravenously or intraperitoneally injected
BM-MSCs were able to migrate toward the lesion site, where they
survived up to 8 weeks and increased local expression of trophic
factors such as BDNF, NGF, and NT3. Better tissue preservation
with enhanced fiber sparing and/or regeneration was observed,
in addition to the motor and sensory recovery (Ramalho
et al., 2018; Dos Santos Ramalho et al., 2019). The benefits of
BM-MSCs in acute SCI models were even greater when the
cells were transplanted into biomaterial scaffolds. Better motor
function recovery, neuroprotection, axonal regeneration, and
reduced cavitation were observed 8 weeks after implantation of a
nanofibrous silk-fibroin scaffold seeded with 5 × 105 BM-MSCs
(Wang X. H. et al., 2021) or an NGF persistent-delivery
scaffold seeded with 1 × 105 cells (Ji et al., 2021). Even better
outcomes were achieved when BM-MSCs were differentiated
in vitro into nerve cells prior to transfer onto scaffolds.
In a chronic SCI model, intravenous infusion of BM-MSCs
promoted neovascularization and improved the integrity of
the blood-spinal cord barrier (BSCB). Axonal regeneration and
remyelination process were observed, resulting in significant
locomotor recovery (Morita et al., 2016).

AT-MSCs also exert positive effects on rats with SCI.
AT-MSCs embedded in a fibrin matrix reduced microglial
infiltration and astroglial activation as well as upregulated
the expression of angiogenic and anti-apoptotic proteins,
contributing to less cavitation, tissue retention, and motor-
function recovery (Mukhamedshina et al., 2018). Human
AT-MSCs transplanted into an acute compressive SCI model
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TABLE 4 | Clinical trials using mesenchymal stem/stromal cells in spinal cord injury.

Identifier and
reference

Recruitment status MSCs source MSCs dose Delivery route Main results

NCT02482194
(Satti et al., 2016)

Completed Bone marrow
(autologous)

2 or 3 doses:
1.2 × 106 cells/kg

Intrathecal Repeated doses were safe
with no associated adverse
reactions

NCT02152657
(Larocca et al.,
2017)

Completed Bone marrow
(autologous)

2 × 107 cells Percutaneous injection Intervention was safe and
feasible

NCT01909154
(Vaquero et al.,
2016)

Completed Bone marrow
(autologous)

100–230 × 106

+ 30 × 106 cells
1 month after first
injections

Injury site + intrathecal Dose-dependent
improvement of infralesional
motor activity, sensation,
and sphincter control

NCT02165904
(Vaquero et al.,
2017)

Completed Bone marrow
(autologous)

Four doses of 3 × 107

cells
Lumbar puncture Motor improvement in 60%

of cases; improvement in
sexual function in 25% of
men; 88.8% improvement
in bladder function

NCT02570932
(Vaquero et al.,
2018)

Completed Bone marrow
(autologous)

Three doses of 1 × 108

cells
Lumbar puncture Improvement of

urodynamic parameters in
66.6% of patients; 55.5%
improvement in
somatosensory or
motor-evoked potentials;
44.4% improvement in
voluntary muscle
contraction

NCT02981576 Completed Bone marrowvs
Adipose tissue
(autologous)

Three doses of
BM-MSCs or AT-MSC
values not available

Intrathecal No results posted

NCT04288934 Completed Bone marrow
(autologous) vs.
Wharton’s Jelly
(allogeneic)

Not available Intraspinal No results posted

NCT02352077 Unknown Bone marrow +
NeuroRegenscaffold

Not available Injury site No results posted

NCT02574585 Unknown Bone marrow
(autologous)

Not available Percutaneousinjections No results posted

NCT02574572 Unknown Bone marrow
(autologous)

Not available Intralesional No results posted

(Hur et al., 2016) Completed Adipose tissue
(autologous)

9 × 107cells Intrathecal Mild improvements in
neurological function

NCT01769872 Completed Adipose
tissue(autologous)

2 × 108 cells/20 ml
5 × 107 cells/2 ml
2 × 107 cells/1 ml

Intravenous
Intrathecal
Intraspinal

No results posted

NCT02917291 Recruiting Adipose tissue
(FAB117-
HC)(allogeneic)

Phase 1:
Two cohorts: 2 × 107

or 4 × 107 cells
Phase 2: administration
of the maximum
tolerated dose in
phase 1

Intramedullary No results posted

NCT04520373 Recruiting Adipose tissue
(autologous)

Not available Intrathecal No results posted

NCT03308565
(Bydon et al., 2020)

Active, not recruiting Adipose tissue
(autologous) 1 × 108 cells

Intrathecal Administration and dose
were safe and feasible with
meaningful signs of
improved neurologic status

NCT01873547 Completed Umbilical Cord
(allogeneic)

Not available Lumbar puncture No results posted

(Continued)

Frontiers in Molecular Neuroscience | www.frontiersin.org 16 June 2022 | Volume 15 | Article 883378

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Soares et al. MSC Therapy for Neurological Diseases

TABLE 4 | Continued

Identifier and
reference

Recruitment status MSCs source MSCs dose Delivery route Main results

NCT02481440
(Yang et al., 2021)

Completed Umbilical cord
(allogeneic)

Four doses of 1 × 106

cells/kg
Intrathecal Intervention was safe with

any adverse events and
improved scores on
sensory, motor, and
functional assessment
scales and in bladder and
bowel function

NCT03003364
(Albu et al., 2021)

Completed Wharton’s Jelly
(allogeneic) 1 × 107cells

Intrathecal Sensory improvement in the
segments adjacent to the
injury site

NCT04213131 Unknown Umbilical cord and
umbilical cord blood
(allogeneic)

5 × 107 cells/100 ml
5 × 107 cells/5 ml
1 × 105 cells/µl,
16 µl/point (4 points)

Intravenous
Lumbar
Injury site

No results posted

NCT03521323
NCT03521336
NCT03505034

Unknown Umbilical cord
(allogeneic)

Four doses of 1 × 106

cells/kg
Intrathecal No results posted

NCT02510365
(Xiao et al., 2018)

Unknown Umbilical cord +
NeuroRegen Scaffolds
(allogeneic)

4 × 107cells
Injury site One patient was able to

walk voluntarily under the
help of brace and the other
was able to raise the leg
and move toes

NCT02688049 Unknown NeuroRegen
scaffold/MSC

1 × 107 cells Intraspinal No results posted

induced angiogenesis in the perilesional area and recruited
resident pericytes through secretion of paracrine factors,
improving BSCB integrity and contributing to the maturation
of newly formed blood vessels. Revascularization reduced
astrogliosis, promoted neuronal recovery, and correlated with
functional improvement (Menezes et al., 2020).

The above-mentioned advantages regarding methods to
obtain UC-MSCs and their properties have encouraged their
use in the treatment of SCI. In different subacute SCI
mouse models, injection of human UC-MSCs into the center
of the injury area decreased the local levels of several
proinflammatory cytokines such as TNF-α, IFN-γ, IL-6, and
IL-7, in addition to promoting the transition of macrophages
to the M2 type, attenuating the local inflammatory response
and resulting in tissue repair and motor-function recovery
(Bao et al., 2018; Wu et al., 2020). Differences in the
ability to inhibit the inflammatory response between human
UC-MSCs from different donors are determinants of their
effectiveness in the recovery of mice after SCI (Zhu et al.,
2022). Intrathecal transplantation of human UC-MSCs in rats
with subacute SCI promoted regeneration and remyelination,
as well as reduced astrogliosis, decreased cavity and glial scar
formation, and supported functional recovery (Yang et al.,
2020; Cao et al., 2022). The application of WJ-MSCs has
also been promising. Intrathecal transplantation of WJ-MSCs
following SCI improved neurological function in rats by
inhibiting the inflammasome complex (Mohamadi et al.,
2019), and their regenerative effect has been shown to
be dose-dependent and potentiated by repeated application
(Krupa et al., 2018).

In recent years, MSC-derived Evs have been extensively
explored as a potential therapeutic strategy for SCI. Both
MSC-derived exosomes and small extracellular vesicles are
effective in promoting recovery of locomotor function in rodent
SCI animal models, mainly by dampening the post-traumatic
inflammatory process. The anti-inflammatory effect of BM-
MSC-Evs has been shown to be mediated, through different
mechanisms, by inhibition of the TLR4/NF-κB signaling
pathway (Fan et al., 2021; Nie and Jiang, 2021). Additionally,
MSC-Ev infusion promoted macrophage polarization toward
the M2-phenotype (Chang et al., 2021; Nakazaki et al., 2021)
and improved their phagocytic ability to clear myelin debris,
creating a favorable environment for axonal regeneration (Sheng
et al., 2021). Greater BSCB integrity was also observed, due to a
reduction in pericyte pryoptosis, which was essential for tissue
preservation and neuroprotection (Zhou et al., 2022).

Several clinical trials have supported the feasibility and safety
of transplantation of MSCs in treating patients with SCI (Satti
et al., 2016; Larocca et al., 2017; Albu et al., 2021). However, the
trials have not well replicated the motor-function improvement
reported in preclinical studies, showing efficacy mainly in
sensory recovery. Intrathecal administration of autologous
BM-MSCs in patients with SCI promoted variable improvement
of sensitivity, motor and sexual functions, spasticity, sphincter
control, and urodynamic parameters, regardless of the level
or degree of injury (Vaquero et al., 2016, 2017, 2018).
Recently, results from a phase 2 study supported the safety
of intravenous infusion of autologous BM-MSCs performed
in 13 patients approximately 50 days after SCI. The subjects
showed improvements in neurological functions and quality
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of life 6 months after the intervention (Honmou et al.,
2021). Combined intrathecal transplantation of these cells with
autologous Schwann cells has also promoted improvements,
especially in the sensation of bladder and rectal filling (Oraee-
Yazdani et al., 2021). Few clinical studies have evaluated the
efficacy of AT-MSCs in SCI treatment. Hur and collaborators
performed autologous AT-MSC transplantation in patients with
complete or incomplete SCI, but only mild improvements
in neurological function were achieved (Hur et al., 2016). A
preliminary report of an ongoing phase I study conducted at
the Mayo Clinic (NCT03308565) using autologous AT-MSCs
described promising outcomes and no adverse events (Bydon
et al., 2020). Impressive results have been described regarding
the efficacy of UC-MSC transplantation in patients with SCI. In
a phase I trial with two patients with acute complete injuries,
human UC-MSCs loaded on collagen scaffolds (NeuroRegen
scaffolds) transplanted into the injury site promoted recovery of
the bowel and bladder sensory function and significant motor
improvement. Six months post-surgery, one patient started to
walk voluntarily with the support of a brace and the other could
raise his leg and move his toes (Xiao et al., 2018). The results
of long-term follow-up of these and other enrolled subjects
showed that three patients with an acute complete injury who
received human UC-MSCs recovered the ability to walk and the
remaining four patients had significant improvements in sensory
and motor functions (Tang et al., 2022). Key completed and
ongoing clinical trials of SCI using MSCs are summarized in
Table 4.

Autism
Autism was first described in 1930 as a clinical disorder that
affects social interaction and communication (Kanner, 1943).
Currently, it comprises a series of disorders that are described
as Autistic Spectrum Disorders (ASD). ASDs encompass a
spectrum of neurological disorders related to an abnormal
neurodevelopment process. These disorders affect individuals
early in life, with clinical symptoms manifesting until the age of
5 years (Lord et al., 2006). The diagnosis, which is performed by
clinical evaluation, follows international standards determined
by the standards described in DSM-5 (Diagnostic and Statistical
Manual of Mental Disorders) and takes into account deficiencies
in social interaction, communication, limited interest, and
repetitive behavior (Lord et al., 2006).

According to the Autism and Developmental Disabilities
Monitoring (ADDM) Network and the Centers for Disease
Control and Prevention (CDC), responsible for surveillance
of ASD in the United States, about 1 in 54 children has an
autism spectrum disorder, with an approximately fourfold higher
incidence in males (Maenner et al., 2020). The number of patients
diagnosed with autism has increased exponentially, which may be
related both to an increase in the number of affected individuals
and to an increase in previously undetermined diagnoses that are
now included within the ASDs.

As ASDs include a diversity of disorders, there is wide
heterogeneity both in the severity of symptoms and in the
molecular mechanisms that lead to the development of ASD
(Geschwind and Levitt, 2007). In most cases, ASDs are associated

with genetic factors; more than 100 conditions have been
directly associated with these disorders, with dozens of genes
described as susceptibility factors (Betancur, 2011). The genetic
changes described so far are related to transcriptional control,
chromatin remodeling, protein synthesis, cell metabolism,
function, and development of synapses (Thapar and Rutter,
2021). Several environmental risk factors are also involved in
the development of ASD, and the complex interaction between
genetic and environmental factors might determine the impact
on neurodevelopment and the severity of neural-cognitive
impairments. Among the physiological impairments, a critical
one is neuroinflammation (Bilbo et al., 2018), and abnormal
activation of microglia has been reported in the brain of ASD
patients (Vargas et al., 2005; Morgan et al., 2012; Lee et al.,
2017). While in a healthy environment, microglia are associated
with synaptic organization and brain repair, when abnormally
activated, microglia leads to inflammation and damage (Conti
et al., 2020), as observed in degenerative neurological diseases
such as Alzheimer’s (Wang et al., 2015) and Traumatic Brain
Injury (Hernandez-Ontiveros et al., 2013). Other than microglia,
immune system molecules such as TGFβ, IL-1, and LIF are
important for brain development because they are directly
involved in the normal formation of synaptic neural circuits and
cell differentiation, and the imbalance in the expressions of these
molecules may lead to devastating consequences (Deverman and
Patterson, 2009).

Currently, none of the diseases within the spectrum has a
cure; treatments include therapies to assist the interaction of
these individuals with society, behavioral therapies, and the use
of drugs to treat associated symptoms such as seizures (Eissa
et al., 2018). However, the role of inflammation in some of the
disorders in the autistic spectrum opens a possibility for the use
of immunomodulation as a strategy for the development of new
therapies (Marchezan et al., 2018). In light of this, MSCs emerge
as a promising tool, since these cells have the ability to migrate
to inflammation sites and modulate the immune response
through the paracrine secretion of several anti-inflammatory,
pro-survival, and neurotrophic factors, and are also able to
engraft into the neural network (Siniscalco et al., 2018). Animal
models available for studies of ASD include BTBR T+tf/J, a
mouse strain that shows impairment in communication, deficits
in social interaction, repetitive behaviors, and anxiety, mimicking
the main symptoms observed in ASD patients (Chao et al.,
2018). Studies with these mice suggested an improvement in
neurogenesis, specifically in the hippocampal area, and in social
behavior in animals treated with MSCs, where an amelioration
of repetitive behavior, a decrease in cognitive rigidity, and in
the autism severity composite score as a whole were observed
(Segal-Gavish et al., 2016). Another study with MSCs pretreated
with hbFGF, PDGF-AA, and Heregulin β1 to induce higher
secretion of neurotrophic factors, also found an improvement
in mouse social behavior, communication through vocalization,
and reduction in repetitive behavior and cognitive rigidity (Perets
et al., 2017).

MSCs were rapidly included in clinical studies of ASD. To
date, three studies conducted in three different countries have
been completed, and demonstrated the safety of using MSCs
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TABLE 5 | Clinical trials using mesenchymal stem/stromal cells in autism spectrum disorder.

Identifier and
reference

Recruitment status MSC source MSC dose Delivery route Main results

NCT02192749 Completed Umbilical cord 9 × 106 cells/infusion
(four infusions)

Intravenous UC-MSC infusions were
safe and tolerable

NCT03099239 Completed Umbilical cord 2 × 106 cells/kg Intravenous Overall, infusions were safe
and well tolerated

NCT01343511 Completed Mononuclear and
Umbilical cord

2 × 106 cells/kg
CBMNCs and 1 × 106

cells/kg UC-MSCs

Intravenous and/or
intrathecal

There were no significant
safety issues related to the
treatment and no observed
severe adverse effects

NCT04089579 Recruiting Umbilical cord 6 × 106 cells/kg Intravenous No results posted

NCT04484077 not yet recruiting Umbilical cord 2 × 106cells/kg (max
10 × 107)

Intravenous No results posted

NCT04294290 not yet recruiting Umbilical cord 2 × 106/kg Intravenous No results posted

in ASD patients (Table 5). The preferred source of MSCs in
the ASD clinical trials was UC since these cells are weakly
immunogenic and powerfully immunosuppressive (Nagamura-
Inoue and He, 2014). The first clinical study, published in
2013 (Lv et al., 2013) performed a trial using mononuclear
cells and UC-MSCs. They separated 37 patients into three
groups: 14 received only mononuclear cells, nine received
both mononuclear and UC-MSCs, and 14 served as a control
group; all groups received rehabilitation therapy. The study
found functional and subjective improvements in patients of
both groups treated with cells, assessed through the change
in scores on the Childhood Autism Rating Scale (CARS) and
Aberrant Behavior Checklist (ABC). In 2019, another group
performed a phase I-II clinical trial using only UC-MSCs
to treat ASD patients and evaluated the effects on cytokine
levels (Riordan et al., 2019). Twenty participants (children
around 10 years of age) received four intravenous infusions
of 9 × 106 cells over the course of 1 week, three times
(infusions in weeks 1, 25, and 37), and were followed for up
to 89 weeks after the first injection. The investigators opted for
multiple UC-MSC injections based on their clinical observations
that the effect of MSC infusion decays 3–6 months after the
cell administration. The authors observed this tendency even
after multiple injections in a group of patients, who showed
slight improvement but then regressed to the initial scores in
CARS. Another set of patients, however, was able to sustain
the improvement in test scores, in both behavioral (CARS)
and cytokine scores [macrophage-derived chemokine (MDC)
and thymus, and activation-regulated chemokine (TARC)].
However, the positive results for this small group were not
statistically significant. Nevertheless, this study helped to support
the safety of repeated, periodic administration of UC-MSCs
in a long-term treatment in children with ASD (this article
was retracted due to ethical/financial issues, but the clinical
trial data are valid and available). The third and most recently
published clinical trial with UC-MSCs in ASD is a phase I clinical
study with cord-tissue mesenchymal stromal cells (hCT-MSC)
administered intravenously, 2 × 106 cells/kg, to 12 young ASD
children (2–11 years old; Sun et al., 2020). This study did not
find an improvement in any behavioral parameter, but focused

on the safety of the treatment, showing that HLA antibodies
were generated against some of the cell lines, suggesting that it is
important to evaluate if this could affect the treatment. Despite
the presence of anti-HLA antibodies, the study demonstrated
the safety of transplanting hCT-MSCs. This group has planned
three additional clinical studies to investigate the effect of
hCT-MSC transplantation in ASD adults (18–35 years of age;
NCT04484077), toddlers (18–48 months; NCT04294290), and
a larger study with 164 children (4–11 years), presently in the
recruitment stage (NCT04089579).

Clinical trials have so far shown the safety of using MSCs
in ASD patients, and a promising, but still incipient, the
potential for improving the condition of the patients. Another
aspect of these studies is the enormous quantity of cells that
are necessarily specific for each patient, which could limit
the widespread use of the therapy. Considering those aspects,
new preclinical studies have shown that ASD individuals could
benefit from the MSC effects without the need to manufacture
such a large quantity of cells from different donors, or
other issues such as immunogenicity and tumor formation,
by using exosomes instead. Exosomes might be isolated from
the expansion of a single donor MSC and used allogeneically
to treat multiple patients (Mendt et al., 2019). The Perets
group, who demonstrated the efficacy of BM-MSCs to improve
autistic-like behavior in BTBR T+tf/J (BTBR) mice in 2017,
has shown that administration of MSC-exosomes had similar
effects, increasing male-to-male social interaction and reducing
repetitive behaviors, as well as female vocalizations and maternal
behaviors (Perets et al., 2018). Moreover, exosomes could be
administered as a non-invasive intranasal treatment, loaded with
gold nanoparticles that are able to cross the blood-brain barrier
and preserve all their properties; this would make the treatment
appealing commercially and clinically, especially considering the
unstable behavior of ASD patients (Geffen et al., 2020; Perets
et al., 2020). Independently, another group performed a similar
experiment, with intranasal administration of exosomes, and
demonstrated improvement in mouse social behavior; reduction
of the pro-inflammatory cytokines IL-1b, IL-6, and TNFα; and
increase of the anti-inflammatory cytokine IL-10 in the brains of
treated mice, suggesting that exosomes have anti-inflammatory

Frontiers in Molecular Neuroscience | www.frontiersin.org 19 June 2022 | Volume 15 | Article 883378

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Soares et al. MSC Therapy for Neurological Diseases

and neuroprotective roles in the autistic brain (Liang et al., 2020).
Further studies are required to evaluate the efficacy of MSC
exosome therapy and unravel the molecular pathways involved
in the effector mechanisms.

Additional information regarding current MSC-based
clinical trials in other neurological disorders such as multiple
sclerosis, Alzheimer’s, Parkinson’s, and Huntington’s diseases
is summarized in Table 6. All clinical trials reported here were
accessed on clinicaltrial.gov between January and March 2022.

QUALITY CONTROL OF MSCs FOR
NEUROLOGICAL DISEASES

Quality control refers to examining whether the characteristics
of a product meet a series of pre-specified criteria. Critical quality
attributes such as differentiation, proliferation, genomic stability,
sterility, and functionality depend on the cell type, sources of
origin, and the purpose of the research. Quality controls for MSC
culturing and release testing must be appropriately quantified
and characterized, to ensure that the manufacturing process is
robust and consistently produces MSCs with identical properties
from one batch to the next.

With several clinical trials involving MSCs currently
underway, there is a critical need to develop standards that can
be applied to processing methods and to establish a consensus
on assays for both MSC processing control and MSC product
release.

Since the advent of clinical translation of MSCs, assays, and
test protocols have been required by regulatory agencies to
evaluate the sterility, safety, viability, identity, purity, stability,
and potency of the cell product to be administered to patients.
Additionally, GMP is concerned with both production and
quality control. The U.S. Food and Drug Administration (FDA)
and the European Medicines Agency (EMA) have similar
requirements. As defined, GMP guidelines cover not only the
actual physical process of making the cell product but also the
quality assurance that the product is produced under conditions
that are consistent, safe, and effective for their intended use.

In the United States, guidelines for cell-based therapeutics
are regulated by the FDA (U. S. Department of Health and
Human Services Food and Drug Administration, Center for
Biologics Evaluation and Research, 2001) and are included
in the drug manufacturing regulations as described in Title
21 of the Code of Federal Regulations (CFR), including
the use of human tissue and cell products (21CFR1271). In
Europe, the European Medicines Agency (EMA) produces
the Guideline on Human Cell-based Medicinal Products
(EMEA/CHMP/410869/2006—European Medicines Agency,
2008). The same approach has been adopted by MHRA in the
UK (Medicines and Healthcare Products Regulatory Agency,
2015). According to these regulatory bodies, hMSCs should be
characterized based on their most critical attributes, according to
the legal requirements previously established by their guidelines
and which are summarized in Table 7.

For each step in a process, whether it involves cell isolation
or enrichment, in vitro culture, genetic modification, or final
product fill-and-finish, the overall approach should be to

reduce the risk of contamination of the product, establish
documentation to verify that the entire process is correctly
performed, and minimize variability in the process while
maintaining the salient characteristics and function of the cells of
interest. To demonstrate process control and monitor variability,
assays should be developed to determine the cell phenotype,
genotype, and/or function at the critical steps of the process. The
final product should be tested for identity, safety (viral), purity,
potency, sterility, endotoxin, and mycoplasma.

To date, one MSC-based product has been approved for
neurological diseases. This is Lenzumestrocel (Neuronata-Rr

Inj), produced by Corestem Inc., a SouthKorean biotech
company. Corestem launched Lenzumestrocel for amyotrophic
lateral sclerosis, and the product was approved as an orphan
drug for the treatment of ALS by the Ministry of Food and
Drug Safety (MFDS) in South Korea in 2014. Lenzumestrocel
is based on autologous BM-derived MSCs that are isolated and
mixed with cerebrospinal fluid collected from the patient, to
be administered as the final product by intrathecal injection.
The first Lenzumestrocel injection takes place 4 weeks after the
first bone-marrow extraction, followed by a second injection
4 weeks later. The proposed mechanism of action is based
on several effects that can prevent motor-neuron death and
slow the progression of ALS, such as an action on regulatory
T lymphocytes, a neuroprotective effect by the expression
of growth factors, and an anti-inflammatory effect due to
microglial cells (Oh et al., 2015, 2018). More specifically, for
Lenzumestrocel release, the manufacturers adopted the following
criteria: viability (94%), sterility (0% contaminants), identity
(CD29, CD44, CD73, CD105, CD34, and CD45), and as potency,
the level of VEGF measured in pg per 104 cells (Oh et al., 2018).
These criteria are not dissimilar to the requirements within the
FDA and EMA regulatory frames.

For MSC-based products, cell sources and isolation processes
vary widely, and it is best to address any concerns early in
development. Among the available assays to characterize MSCs,
cell phenotyping by multiparametric flow cytometry has been
most often used to identify and enumerate cell subsets (Robb
et al., 2019).

While a consensus on MSC identity has matured, it remains
challenging to establish assays to measure and predict the
mechanisms of action of MSCs in neurological disorders, the
so-called potency assay. This is the measure of activity using
a suitably quantitative biological assay and is based on the
product attribute(s) associated with the relevant biological
properties. A correlation between the expected clinical response
and the activity in the biological assay should be established in
pharmacodynamic or clinical studies (Rudge and Nims, 2017).
While mandatory for more-advanced phase III studies, this
is an aspect to consider during early clinical investigations
(phase I/II).

The definition of potency particularly applied to MSCs
for neurological diseases, is a critical aspect of quality testing
(Bravery et al., 2013; Galipeau et al., 2016). Several aspects must
be considered, starting from the likelihood that a single assay
may not provide an adequate definition of MSC potency for
neurological diseases where cells may have complex mechanisms
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TABLE 6 | Clinical trials using mesenchymal stem/stromal cells in other neurological disorders.

Condition Identifier and
reference

Recruitment
status

MSC source MSC dose Delivery route Main results

Huntington disease NCT02728115
(SAVE-DH
Study—Phase I)

Active, not
recruiting

Not available Cohort 1: 1 × 106

cells/kg

Cohort 2: 2 × 106

cells/kg

(Both cohorts
receive
three injections
—1 each month for
3 months)

Intravenous No results posted

Huntington disease NCT03252535
(ADORE-DH
Study—Phase II)

Complete Not available Cohort 1: 1 × 106

cells/kg

Cohort 2: 2 × 106

cells/kg

(Both cohorts
receive nine
injections, divided
in three cycles)

Intravenous No results posted

Huntington disease NCT04219241
(ADORE-EXT
Study—Phase II/III)

Not yet recruiting Not available 2 × 106 cells/kg

(12 injections—three
administrations per
cycle). Each
administration will
occur every
30 days and cycles
every 180 days
(total of four cycles)

Intravenous No results posted

Multiple sclerosis NCT01730547
NCT01854957
NCT02403947
NCT01745783
NCT01606215
NCT02035514
NCT02239393
(Uccelli et al., 2019)

Unknown
Unknown
Terminated
Active, not
recruiting
Completed
Completed
Completed

Bone marrow
(autologous)

1–2 × 106 cells/kg Intravenous No results posted

Multiple sclerosis NCT02326935 Terminated Adipose tissue
(autologous)

1.5 × 108 cells Intravenous No results posted

Multiple sclerosis NCT02034188
(Riordan et al.,
2018)

Completed Umbilical cord 2 × 107 cells Intravenous Therapy was safe
and well-tolerated.
Symptom
improvements
observed 1 month
after treatment

Multiple sclerosis NCT01228266
(Llufriu et al., 2014)

Terminated Bone marrow 1–2 × 106cells Intravenous Therapy was safe
and well-tolerated.
Tendency to reduce
inflammation
parameters. No
significant
differences
detected in the
secondary
endpoints.

(Continued)
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TABLE 6 | Continued

Condition Identifier and
reference

Recruitment
status

MSC source MSC dose Delivery route Main results

Multiple sclerosis NCT00395200
(Connick et al.,
2011, 2012)

Completed Bone marrow
(autologous)

1.1–2 × 106cells/kg Intravenous Therapy was safe
and well-tolerated.
Visual acuity and
visual evoked
response latency
improvement.

Multiple sclerosis NCT03326505
(Alghwiri et al.,
2020)

Completed Wharton’s Jelly 1 × 108 cells (IT)
and 5 × 107 (IV)—
2×, 1 month apart

Conditioned
medium (IT –Third
month)

Intrathecal
Intravenous

No results posted

Multiple sclerosis NCT01933802
NCT03355365
(Harris et al., 2018)

Completed
Active, not
recruiting

Bone marrow
mesenchymal stem
cell-derived neural
progenitor
(autologous)

1 × 107 cells per
dose (3×, 1 month
apart)

Intrathecal Therapy was safe
and well-tolerated.

Multiple sclerosis NCT00813969
(Cohen et al., 2018)

Completed Bone marrow
(autologous)

1–2 × 106 cells/kg Intravenous Therapy was safe
and well-tolerated.

Multiple sclerosis NCT04749667 Recruiting Bone marrow
(autologous)

Not available Intrathecal No results posted

Multiple sclerosis NCT04823000
(Petrou et al.,
2021b)

Completed Bone marrow
(autologous)

Multiple injections
(up to eight
courses) of 1 × 106

cells/kg

Intrathecal and
intravenous

Therapy was safe
and well-tolerated.
Indication of clinical
benefits.

Multiple sclerosis NCT02495766 Completed Bone marrow
(autologous)

Not available Not available No results posted

Multiple sclerosis NCT00781872
(Karussis et al.,
2010)

Completed Bone marrow
(autologous)

6 × 107 cells
intrathecal and
2 × 107 cells
intravenous

Intrathecal and
Intravenous

Therapy was safe
and well-tolerated.

Multiple sclerosis NCT05003388 Recruiting Umbilical cord 1 × 108 cells Intravenous No results posted

Multiple sclerosis NCT05116540 Recruiting Adipose tissue
(autologous)

Six infusions
Dose not available

intravenous No results posted

Multiple sclerosis NCT03822858 Temporarily not
available

Bone marrow
(autologous)

Not available Intrathecal No results posted

Multiple sclerosis NCT03799718 Completed Bone marrow
secreting
neurotrophic
factors– MSC-NTF,
NurOwnTM

(Autologous)

Not available Intrathecal No results posted

Alzheimer’s disease NCT02600130 Completed Bone marrow
(Longeveron)

Two cohorts:
2 × 107 or 1 × 108

cells

Intravenous No results posted

Alzheimer’s disease NCT02833792 Recruiting Bone marrow
Stemedica
(allogeneic)

1.5 × 106 cells/kg+
Lactated Ringer’s
Solution

Intravenous No results posted

Alzheimer’s disease NCT03117738 Completed Adipose tissue
(autologous)

Not available Intravenous Treatment related
adverse events in
54.5% of subjects

(Continued)
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TABLE 6 | Continued

Condition Identifier and
reference

Recruitment
status

MSC source MSC dose Delivery route Main results

Alzheimer’s disease NCT04388982 Recruiting Adipose tissue
exosomes
(allogeneic)

Three cohorts: 5 µg
MSC-Exos/1 ml,
10 µg
MSC-Exos/1 ml or
20 µg
MSC-Exos/1 ml
twice a week for
12 weeks

Nasal drip No results posted

Alzheimer’s disease NCT04482413 Not yet recruiting Adipose tissue
(autologous)

Two doses of
2 × 108/20 ml
every 4 weeks from
week 0 to week 16

Intravenous No results posted

Alzheimer’s disease NCT02054208
(Kim H. J. et al.,
2021)

Completed Umbilical cord
blood
–NEUROSTEMr

(allogeneic)

Three doses of
1 × 107 cells/2 ml
or Three doses of
3 × 107 cells/2 ml

Intraventricular
(Ommaya
Reservoir)

Interventions were
feasible, relatively
and sufficiently
safe, and
well-tolerated

Alzheimer’s disease NCT03172117
(Kim H. J. et al.,
2021)

Recruiting Umbilical cord
blood
NEUROSTEMr

(allogeneic)

Two cohorts: Three
doses of 1 × 107

cells/2 ml or Three
doses of 3 × 107

cells/2 ml

Intraventricular
(Ommaya
Reservoir)

Interventions were
feasible, relatively
and sufficiently
safe, and
well-tolerated

Alzheimer’s disease NCT04954534 Not yet recruiting Umbilical cord
blood
NEUROSTEMr

(allogeneic)

Three doses of
3 × 107 cells/2 ml

Intraventricular
(Ommaya
Reservoir)

No results posted

Alzheimer’s disease NCT04040348 Active, not
recruiting

Umbilical cord
(allogeneic)

Four doses of
1 × 108 cells

Intravenous No results posted

Alzheimer’s disease NCT02672306 Unknown Umbilical cord
(allogeneic)

Eight doses of
0.5 × 106 cells/kg

Intravenous No results posted

Alzheimer’s disease NCT02899091 Unknown Placenta
CB-AC-02
(allogeneic)

Stage 1: 1 or Two
doses of 2 × 108

cells
Stage 2: Two doses
of 2 × 108 cells

Intravenous No results posted

Alzheimer’s disease NCT04684602 Recruiting Amnion and
umbilical cord
(allogeneic)

Not available Not available No results posted

Parkinson’s disease NCT04876326 Recruiting Adipose tissue
Umbilical cord

Two doses of
5 × 107

Intrathecal No results posted

Parkinson’s disease NCT01824121
(Giordano et al.,
2014; Canesi et al.,
2016; Giordano
et al., 2021)

Recruiting/Unkown Bone marrow 1.2–2.0 × 106

cells/kg
Intra-arterial The overall safety

and efficacy results
are still
inconclusive,
because of the low
number of patients
and consequently
the poor statistical
power of the study.

Parkinson’s disease NCT03550183 Enrolling by
invitation

Umbilical cord 1–2 × 107 cells Intravenous No results posted

Parkinson’s disease NCT01446614
(Zhang et al., 2008)

Recruiting/Unknown Bone marrow 6 × 105 cells/kg Intravenous MSCs derived from
PD patients’ bone
marrow may be a
promising cell type
for cellular therapy

Parkinson’s disease NCT04506073 Active, not
recruiting

Bone marrow Two doses of
1 × 107 cell/kg

Not available No results posted

(Continued)
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TABLE 6 | Continued

Condition Identifier and
reference

Recruitment
status

MSC source MSC dose Delivery route Main results

Parkinson’s disease NCT04146519
(Boika et al., 2020)

Recruiting Bone marrow 0.5–2 × 106

cells/kg
Intravenous
Intranasal

Decrease in the
severity of motor
and nonmotor
symptoms

Parkinson’s disease NCT05152394 Not yet recruiting Umbilical cord 1 × 108 cells Intravenous No results posted

Parkinson’s disease NCT04064983 No longer available Adipose tissue 2 × 108 cells Intravenous No results posted

Parkinson’s disease NCT05094011 Not yet recruiting Adipose tissue 1 × 108

cells/hemisphere
Intrastriatal No results posted

Parkinson’s disease NCT03684122
(Jamali et al., 2021)

Active, not
recruiting

Umbilical cord 80–120 × 106 cells Intrathecal
Intravenous

Study chart
implementation,
data collection, and
analysis are
ongoing.

Parkinson’s disease NCT00976430 Terminated Bone marrow Not available Not available No results posted

Parkinson’s disease NCT04928287 Active, not
recruiting

Adipose tissue Not available Intravenous No results posted

Parkinson’s disease NCT04995081 Recruiting Adipose tissue Not available Intravenous No results posted

Parkinson’s disease NCT04772378 No longer available Adipose tissue 2 × 108 cells Not available No results posted

Parkinson’s disease NCT04798066 Available Adipose tissue 2 × 108 cells Intravenous No results posted

TABLE 7 | Release specifications for hMSC-based products according to GMP standards of the two major regulatory authorities.

Parameter Assays Acceptance criteria Regulatory frames

FDA EMA/MHRA

Cell identity
Phenotype Flow cytometry Identification of markers

depending on the cell
population and origin

21 CFR 610.14 Guideline on Human
Cell-Based Medicinal
Products (May, 2008) 4.2.3

Cell purity Indication and quantity of
unwanted cells

Impurities
Adventitious viruses In-vitro adventitious viral

agent test
Negative USP <1050.1> Practical

Approaches to ICH Q5A
Guideline on Human
Cell-Based Medicinal
Products (May, 2008) 4.2.3

Viability
Viable cells Living/dead cell count >70% (FDA)

>80% (EMA)
USP <1046> Cell and
Gene Therapy Products

Eur. Ph. (2.7.29.) Nucleated
cell count and viability

Potency
Biological activity ELISA

(as possible example of
potency)

Specific for cytokine 21.CFR 610.10 Guideline on Human
Cell-Based Medicinal
Products (May 2008) 4.2.3

Microbiological control
Sterility Direct inoculation No growth –21 CFR 610.12 Sterility

–USP <71> Sterility
– Eur. Ph.: (2.6.27)
Microbiological control of
cellular products
–Eur. Ph.: (2.6.1.) Sterility

Endotoxin detection LAL test No detection – USP: <85> Bacterial
Endotoxins Test, USP
33 Reissue
–21 CFR 600.3
–21 CFR 610.9

Eur. Ph. (2.6.14.)
Monograph on Bacterial
endotoxins

Mycoplasma test PCR Negative USP <63> Mycoplasma
Tests

Eur. Ph. (2.6.7.) Monograph
Mycoplasmas

Abbreviations: LAL, Limulus amebocyte lysate; ELISA, enzyme-linked immunosorbent assay; Eur. Ph., European Pharmacopoeia; FDA, Food and Drug Administration; EMA, European
Medicines Agency; USP, United States Pharmacopeia; PCR, polymerase chain reaction.

of action. In addition, MSCs can have multiple active ingredients
and/or multiple biological activities, which may be influenced

by host-related microenvironmental signals. Finally, a single
biological assay may not be quantitative or be insufficiently
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robust to define the properties of MSCs. Therefore, investigators
should make efforts to translate the biological hypothesis, driving
early research on assays that may quantify, for example, MSC
pro-angiogenic, anti-apoptotic, or anti-inflammatory properties
(Jiao et al., 2011) to be progressively validated within preclinical
in vivo and clinical developments.

While protocols for quality testing of MSC products are
now available, such as immunophenotyping, microbial sterility,
endotoxin, and mycoplasma testing, and karyology, better-
defined tests of potency and clinical efficacy are required. This
is a concerning aspect in the cell-therapy field, calling for the
development of international standards. This endeavor will not
only benefit all discoveries related to MSC biology but will firmly
establish the promising MSC therapeutic profile for still-lethal
neurological diseases.

CONCLUSION

MSC-based cell therapies are among the strategies most often
used for the treatment of neurological disorders in preclinical
studies, because of the several advantages provided by these
cells, such as an increase in cell survival and proliferation,
neuroprotection and regeneration, immunomodulation, as well
as a delay of disease progression in some cases. Additionally, the
potential of MSCs could be enhanced by genetic modification
of these cells, aiming toward overexpression of factors involved
in cellular regeneration, or by pre-treatment of MSCs under
different culture conditions. Besides, due to their secretory
capacity, cell-free approaches using MSC-derived exosomes and
extracellular vesicles emerge as another possible strategy. In

addition, although some results are not entirely promising,
clinical studies have also shown positive effects such as safety,
tolerability, and functional improvements after transplantation
of MSCs. However, further studies might aid in developing better
strategies to obtain larger quantities of healthy cells for use in
cell therapies and to reduce the variability of results due to the
biological characteristics of MSCs.
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