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Intracerebral hemorrhage (ICH) is a subtype of stroke that is characterized by high
morbidity and mortality, for which clinical outcome remains poor. An extensive literature
indicates that the release of ferrous iron from ruptured erythrocytes in the hematoma is
a key pathogenic factor in ICH-induced brain injury. Deferoxamine is an FDA-approved
iron chelator that has the capacity to penetrate the blood-brain barrier after systemic
administration and binds to iron. Previous animal studies have shown that deferoxamine
attenuates ICH-induced brain edema, neuronal death, and neurological deficits. This
review summarizes recent progress of the mechanisms by which deferoxamine may
alleviate ICH and discusses further studies on its clinical utility.
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INTRODUCTION

Intracerebral hemorrhage (ICH) is caused by the rupture of blood vessels in the brain. It accounts
for approximately 15% of all stroke types and affects about 2 million people worldwide each year
(Gross et al., 2019). The prognosis of ICH is worse than that of the more common ischemic stroke;
ICH has a 30-day mortality rate of 43–51%. Most patients that survive ICH have residual sequelae
such as neurological dysfunctions (Krishnamurthi et al., 2020). The adverse outcomes associated
with ICH are due to a combination of various pathophysiological processes, such as hematoma
formation, space-occupying effects caused by the enlarging hematoma, local cerebral blood flow
change, disruption of blood-brain barrier (BBB), and brain edema (Bai et al., 2020b; Chen et al.,
2020; Zhang et al., 2021). The mechanism of brain injury after ICH can be broadly divided into
primary injury caused by the mass effect of intraparenchymal hematoma, and secondary injury
induced by neuroinflammatory responses and oxidative stress (OS) (Zhu et al., 2019; Xue and Yong,
2020; Holste et al., 2021).

Iron, as one of the main degradation products of hemoglobin catabolism, can cause secondary
brain injury after ICH by promoting free radical formation and inflammatory responses (Zhu
et al., 2021). Iron overload can lead to brain injury in several ways, such as lipid peroxidation
and free radical formation (Stockwell et al., 2017). As an iron-chelating agent, deferoxamine can
rapidly cross the blood-brain barrier (BBB) after systemic administration, and also effectively
combine with iron ions to reduce the ferrous ion concentration in the hematoma area, thereby
ameliorating the secondary neurological damage caused by ICH (Zeng et al., 2018). In ICH
animal models, deferoxamine has been shown to be neuroprotective through several mechanisms,
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including reduction of hemoglobin-related edema and inhibition
of neuronal death; it improves neurological deficits and brain
atrophy after ICH (Cui et al., 2015; Zhang et al., 2022a). In
this review, we summarize the mechanisms and advances of
deferoxamine in the treatment of ICH.

ERYTHROCYTE LYSIS AND BRAIN
EDEMA FORMATION

Notably, hemoglobin and its degradation products are neurotoxic
and contribute to delayed neuronal injury and edema formation
after ICH (Wagner et al., 2003; Hua et al., 2007). At present,
the mechanisms of brain edema formation following ICH has
not been fully clarified and it may occur through a series of
pathophysiological processes, including platelet aggregation, clot
formation, activation of the coagulation cascade, iron overload
and hemoglobin toxicity, complement activation, secondary
injury after reperfusion, and disruption of the blood-brain barrier
(Appelboom et al., 2013; Wang et al., 2018). Studies have shown
that clots begin to dissolve on the first day after ICH, and
their by-products, including free hemoglobin, heme and free
iron, contribute to brain injury that may last days or weeks
(An et al., 2017).

Erythrocytes lyse after ICH and release large amounts of
ferrous ions, which contribute to brain edema formation (Perez
De La Ossa et al., 2010; Zhang et al., 2022d). In the rat model of
autologous blood-induced ICH, brain edema peaks on the third
or 4th day after the onset of ICH, and then resorbs and gradually
diminishes over time (Xi et al., 1998). In the thromboplastic-
induced rat model, the earliest peak of brain edema occurs
within 48 h (Yang et al., 1994; Zhang et al., 2021). The potential
toxic effects of erythrocyte degradation products have been
demonstrated, and results indicate that early erythrocyte lysis
in the hematoma facilitates brain injury including disruption of
BBB, brain iron overload, and neurological deficits within 24 h
in aged rats (Xue and Del Bigio, 2005; Balami and Buchan, 2012;
Figure 1).

HEMOGLOBIN AND BRAIN INJURY

Hemoglobin and its degradation products are crucial factors
in brain injury after ICH (Zhu et al., 2019). Heme oxygenase-
1 (HO-1) is a cytoprotective enzyme that catalyzes the toxic
heme into carbon monoxide (CO), biliverdin and ferrous iron
(Wang and Dore, 2007). Biliverdin is further converted to
bilirubin by biliverdin reductase, which possesses antioxidant
activity. Heme oxygenase-1 is known to be upregulated in the
brain (Schipper et al., 2019). In addition, zinc protoporphyrin
(ZnPP), an inhibitor of HO-1, suppresses brain edema and
neuronal damage (Zhou et al., 2014; Zhang et al., 2022d).
Also, intraperitoneal injection of deferoxamine in vivo may
minimize brain injury resulting from hemoglobin degradation.
In conclusion, hemoglobin itself and its degradation products,
especially iron, play a key role in secondary brain injury after ICH
(Huang et al., 2002).

FIGURE 1 | The mechanism of ICH-induced ferroptosis in the brain. Following
ICH, erythrocytes release hemoglobin, which produces a degradation
product, carbon monoxide (CO), biliverdin, and free iron. Excess Fe2+, the
reactive form of iron, can generate ROS and cause membrane lipid
peroxidation, and trigger ferroptosis. Deferoxamine can reduce the level of iron
ions and inhibit the production of ROS and the occurrence of ferroptosis. The
ferroptosis inhibitors CoQ10, Fer-1, and Lip-1 inhibit lipid ROS activity and
ferroptosis. CO, carbon monoxide; CoQ10, coenzyme Q10; Fer-1,
ferrostatin-1; Lip-1, liproxstatin-1.

IRON TRIGGERS
NEUROINFLAMMATION FOLLOWING
INTRACEREBRAL HEMORRHAGE

Iron and its homeostasis have been described as a hallmark of
neuroinflammation (Wu et al., 2011), and mounting evidence
supports that iron accumulation may lead to inflammatory
responses (Wessling-Resnick, 2010; Bai et al., 2020a). It has been
recognized that iron triggers a cascade of deleterious events,
including activating microglia/macrophages, and elevating the
levels of nitric oxide (NO) and reactive oxygen species (ROS)
(Zhang et al., 2022b), matrix metalloproteinases (MMPs), tumor
necrosis factor-α (TNF-α) and other inflammatory molecules,
exacerbating neuroinflammation (Wu et al., 2002; Yong et al.,
2019; Xue and Yong, 2020; Zhu et al., 2021).

The role of macrophages in iron homeostasis has
been studied. The results show that proinflammatory
microglia/macrophages tend to sequester iron, whereas
regulatory microglia/macrophages express genes that promote
iron release (Yong et al., 2019). Thus, neuroinflammation and
iron are tightly linked, as the inflammatory environment is
associated with iron accumulation and neuroinflammation
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following ICH may affect normal function throughout the entire
brain (Ke and Ming Qian, 2003; Zhang et al., 2015; Li et al.,
2016).

IRON TRIGGERS NEURONAL DEATH
FOLLOWING INTRACEREBRAL
HEMORRHAGE

Iron, as a trace element, is essential for the maintenance of
normal cellular physiological functions. It is also involved in the
synthesis of myelin and various neurotransmitters in the central
nervous system (Xiong et al., 2014), while the dysregulation of
iron homeostasis in the brain (iron overload or deficiency) can
contribute to multiple brain injuries, including hemorrhagic and
ischemic stroke (Garton et al., 2016). Excess iron generates large
amounts of ROS mainly through the Fenton reaction, triggering
inflammation and neuronal death, which can lead to long-term
cognitive dysfunction and early brain edema (Bai et al., 2020c;
Zhang et al., 2022c). Upon erythrocyte lysis, the concentration
of iron persists at a relatively high level. In a rat model of ICH,
the concentration of non-heme iron increases threefold and is
sustained at a high level for 28 days (Hua et al., 2006).

Iron overload contributes to brain edema and iron chelators
can attenuate the degree of hematoma-induced brain edema
(Qing et al., 2009). Countering the iron-induced phospholipid
peroxidation and DNA damage (Gu et al., 2011), deferoxamine
ameliorates neurological deficits, reduces the area of brain
edema and inhibits neuronal apoptosis after ICH in rats
(Nakamura et al., 2003).

BRAIN IRON METABOLISM AFTER
INTRACEREBRAL HEMORRHAGE

The brain needs iron for its own metabolism and dysfunction
occurs when iron homeostasis is imbalanced (Ke and Qian, 2007).
The iron in the central nervous system is mainly transported
through the BBB, while another part of iron is directly absorbed
by brain cells. Iron transport across the BBB is mostly through
the transferrin–transferrin receptor system (Tf-TfR) (Chiueh,
2001). As a plasma glycoprotein, transferrin binds to its receptor
and plays an indispensable role in the transfer of iron. In
addition, the blood cerebrospinal fluid (CSF) barrier has similar
characteristics to the BBB regarding iron transport, which may
be another important pathway for iron to enter the brain
through the choroid plexus (Nnah and Wessling-Resnick, 2018).
After being transported across the BBB or blood-CSF barrier,
iron can rapidly bind to Tf secreted by oligodendrocytes and
choroid plexus epithelial cells, thus facilitating uptake by brain
cells (Bradbury, 1997). In the brain, ferritin is an iron storage-
protein, expressed mainly in neurons and glial cells, consisting
of a heavy chain (H-ferritin) and a light chain (L-ferritin),
respectively (Connor et al., 2001). Ferritin plays a pivotal role in
iron storage and maintenance of intracellular iron homeostasis
(Yang et al., 2021).

DEFEROXAMINE REDUCES BRAIN
INJURY AFTER INTRACEREBRAL
HEMORRHAGE

Deferoxamine is an iron chelator used clinically to treat severe
anemia and iron overload disorders caused by repeated blood
transfusions (Selim, 2009). Deferoxamine has a high affinity
for Fe3+ and binds directly to iron in plasma and tissues,
contributing to the formation of a stable, non-toxic, water-soluble
complex. The subsequent excretion of the complex from the body
thereby protects brain against iron overload (Zeng et al., 2018).

After systemic administration, deferoxamine can penetrate the
BBB, reduce iron content around the hematoma site, and thus
attenuate secondary injury after ICH (Wan et al., 2019). As well,
deferoxamine can catalyze the degradation of hemoglobin by
increasing the expression of HO-1, thereby protecting against
the toxic effects of free heme released during hemoglobin
degradation mediated by glutamate (Schipper et al., 2019).
Additionally, deferoxamine attenuated ICH-induced CD163
upregulation and brain cell death in vivo, and hemoglobin-
induced CD163 elevation and neuronal death in vitro (Liu
et al., 2017). Moreover, deferoxamine may reduce the production
of reactive hydroxyl radical by inhibiting the Fenton and
Haber—Weiss reactions (Matsuki et al., 1999). Our recent
study found that the combination of deferoxamine with
minocycline provided prominent neuroprotection after ICH
(Sheng et al., 2018). Minocycline, a broad-spectrum tetracycline,
can provide neuroprotection through its anti-inflammatory
properties, including inhibiting microglia activity and reducing
the expression of matrix metalloproteinases (Xue et al., 2010;
Zhang et al., 2022a). Minocycline has also iron chelation
capacity (Zhao et al., 2016; Liu et al., 2021). An obvious
neurovascular protective effect by minocycline was observed in
ICH models in rats (Lee et al., 2003). Our study revealed that
the extent of brain damage, neuronal death, and the activation
of microglia/macrophages were significantly reduced after ICH
in minocycline and deferoxamine combined treatment. There
was also decreased iron accumulation in the area around the
hematoma in the combination treatment group (Figure 2),
and animals recovered from their neurological deficits better
(Li et al., 2021).

PROGRESS IN THE TRANSLATIONAL
RESEARCH OF DEFEROXAMINE IN
INTRACEREBRAL HEMORRHAGE

The efficacy of deferoxamine in treating hemorrhage-induced
brain damage in animal models has been previously summarized
(Selim, 2009; Cui et al., 2015; Zeng et al., 2018; Hu et al.,
2019). Deferoxamine reduced the effects of ischemic and hypoxic
brain injury, particularly in the cortex and hippocampus, and
attenuated ICH-induced brain atrophy and neurological deficits
(Okauchi et al., 2010; Hatakeyama et al., 2013). In the collagenase-
induced ICH in mice, systemic administration of deferoxamine
lowered local iron-deposition, inhibited secondary inflammation,
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FIGURE 2 | The combined therapy of deferoxamine and minocycline
attenuated iron deposition and reduced the area of brain damage after ICH.
Paraffin sections from rats at day 3 after ICH were analyzed, and
representative images of Hematoxylin and Eosin staining showing the brain
damage area, and Perls’ blue staining to reveal iron-labeled cells, are
displayed. Scale bar, 50 µm.

reduced neuronal cell death, and improved recovery from
neurofunctional deficits (Okauchi et al., 2009). Other studies
have shown that deferoxamine diminished parenchymal iron
levels but failed to attenuate functional impairment or lesion
volume after ICH (Auriat et al., 2012). In the piglet model
of ICH, deferoxamine treatment reduced the number of iron-
positive cells, neuronal death, and iron accumulation around the
hematoma (Gu et al., 2009; Hu et al., 2019). Similarly, Xie et al.
showed that deferoxamine decreased white matter edema and
TNF-α levels after ICH in piglets, both of which are supportive
of deferoxamine as a potentially effective therapeutic agent for
ICH patients (Xie et al., 2014). Our study demonstrated that
deferoxamine reduced neuronal death, suppressed the activation
of microglia/macrophages, decreased iron accumulation around
the hematoma, lessened the area of brain injury, and improved
neurological deficits in ICH (Li et al., 2021).

Deferoxamine is being tested in human clinical trials. A phase
I multicenter, multi-quantitative trial was conducted to assess
the tolerability and safety of deferoxamine in ICH (Selim et al.,
2011). Deferoxamine was administered for 3 consecutive days
by intravenous infusion starting within 18 h after the onset
of ICH. The results found deferoxamine to be well tolerated
in patients with ICH and was not associated with serious
adverse events or mortality. A phase II clinical trial (NCT
01662895) was subsequently conducted (Selim et al., 2019). This
placebo-controlled, randomized, double-blind trial was designed
to investigate whether high-dose deferoxamine was effective in
improving neurological function in patients with ICH, and to
assess whether the drug should be investigated in a phase III
trial. The results show that deferoxamine was safe and improved
the chances of a good clinical outcome. The recent i-DEF

trial (Intracerebral Hemorrhage Deferoxamine Trial) assessed
modified Rankin Score (mRS) longitudinally by following ICH
patients from day 7 to the end of the 6-month (Foster et al.,
2022). The results revealed that a large proportion of patients
continued to improve up to 6 months after ICH, signaling that
deferoxamine may accelerate and alter the trajectory of recovery
as assessed by mRS. Nevertheless, deferoxamine caused a series of
adverse reactions, including allergic reactions, systemic allergies,
and cardiovascular, hematologic, and neurotoxic effects (Yeatts
et al., 2013). In addition, deferoxamine may increase cytotoxicity
by inhibiting DNA synthesis (Liachenko et al., 2003).

FUTURE DIRECTIONS

Encouraging, over the past decade, an increasing body of
knowledge gained from basic science research on ICH has
advanced considerations of therapeutic options. Targeting iron
is one of this translation, with the appreciation that iron plays
an important role in the formation of hematoma, neuronal
death, and behavioral deficits following ICH. Accordingly,
deferoxamine has been scrutinized for the treatment of secondary
brain injury in patients with ICH.

Currently, while deferoxamine is listed as a promising
treatment for ICH, there is no validated clinical trial data to
confirm the clinical effectiveness of deferoxamine. At present,
the following open questions remain and should be interrogated:
(1) whether deferoxamine is indeed efficacious in Phase III
trials in ICH; (2) although deferoxamine can slow the formation
of brain edema and improve resorption of hematoma after
ICH (Nakamura et al., 2003), the mechanisms underlying the
relationship between the rate of hematoma resorption and the
degree of brain edema require further investigation; (3) whether
deferoxamine could improve neurological function in patients
with ICH when tested at different doses and at earlier treatment
initiation times; and (4) whether patients can accept the potential
toxic effects of deferoxamine, such as growth retardation or
abnormal bone growth, hearing impairment, nephrotoxicity, and
other treatment-related adverse events. Further clinical trials
should be conducted to control the occurrence of adverse events
and to investigate the best therapeutic options that are safe
and well tolerated.
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