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immune-related genes in
aneurysmal subarachnoid
hemorrhage
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Subarachnoid hemorrhage (SAH) is a major cause of death and morbidity

worldwide, often due to rupture of intracranial aneurysms (IAs). Immune

infiltration and inflammatory activation play key roles in the process of

aneurysmal SAH (aSAH). This study aimed to elaborate the immune infiltration

and identify related biomarkers both in blood and tissue samples from

patients with aSAH. Expression data of aSAH and healthy control samples

were obtained from gene expression omnibus (GEO) database. Overall, a

blood sample dataset GSE36791 and a tissue sample dataset GSE122897 were

included. Differentially expressed genes (DEGs) between aSAH and healthy

samples were explored. We applied GO biological and Gene Set Enrichment

Analyses (GSEA) processes to access the functional enrichment. Then

feature elimination algorithms based on random forest were used to screen

and verify the biomarkers of aSAH. We performed three computational

algorithms including Cell type Identification by Estimating Relative Subsets

of RNA Transcripts (CIBERSORT), Microenvironment Cell Populations-counter

(MCPcounter), and xcell to evaluate the immune cell infiltration landscape to

identify the unique infiltration characteristics associated with rupturing. We

found 2,220 DEGs (856 upregulated and 1,364 downregulated) in the original

dataset. Functional analysis revealed most of these genes are enriched in

immunological process, especially related with neutrophil response. Similar

signaling pathway enrichment patterns were observed in tissue sample

dataset and ClueGo. Analysis of immune microenvironment infiltration

suggested neutrophils were abnormally upregulated in aSAH compared with

those in the control group. Key gene SRPK1 was then filtered based on feature

elimination algorithms, and transcription factor (TF) ZNF281 is assumed to

participate in immunomodulation by regulating expression of SRPK1. Several

immunomodulators such as CXCR1 and CXCR2 also appear to be involved in

the progression of aSAH. In the present study, we performed a comprehensive

stratification and quantification of the immune infiltration status of aSAH. By
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exploring the potential mechanism for aSAH based on several computational

algorithms, key genes including SRPK1 and ZNF281 were filtered. This study

may be of benefit to patients who are at high risk of suffering aSAH which

allows for early diagnosis and potential therapy.

KEYWORDS

subarachnoid hemorrhage, intracranial aneurysm, inflammatory activation,
neutrophils, immune cells

Introduction

It is estimated that 3% of the population live with unruptured
intracranial aneurysms (IA; Vlak et al., 2011). Rupture of
an intracranial aneurysm leads to aneurysmal subarachnoid
hemorrhage (aSAH), a devastating cerebrovascular disease.
Despite developments in medical care and surgical treatment,
the case fatality rate due to aSAH remains high. According
to the publications, the mortality rate is estimated to be
up to 66.7% (Macdonald and Schweizer, 2017). Even if
patients survive the initial bleeding, they are at high risk
of being left with disabilities and functional impairments.
It reported the permanent disability rates was approximately
50% (van Gijn et al., 2007). Of particular attention is the
much younger age of patients affected by aSAH compared
to ischemic stroke and the resultant higher socio-economic
burden (van Gijn et al., 2007; Macdonald and Schweizer,
2017). Therefore, it is important to understand the cellular and
molecular mechanisms involved in the progression and rupture
of intracranial aneurysms.

Numerous factors appear to contribute to early and late
brain injury after aSAH (Fujii et al., 2013). However, immune
reactions following SAH have been recognized as a pivotal
determinant in secondary brain injury (Prunell et al., 2005;
Schneider et al., 2018; Suzuki, 2019). Following rupture of
the aneurysm, components of the blood including broken
red blood cell debris, cytokines, and immune cells enter the
brain tissue and are key initiators of the inflammatory cascade
response (Muhammad and Hänggi, 2021). This pernicious cycle
of activity may lead to almost all processes involved in aSAH,
including apoptotic or necrotic cell death, cerebral vasospasm,
delayed cerebral ischemia, hydrocephalus, and multiple organ
infections (Heinz et al., 2021). Recently, emerging evidence
suggest that neutrophil-induced inflammation play a specific
role among these immune reactions (Tutino et al., 2018a,b).
For example, observational studies over the past four decades
reported an association between early elevated neutrophil counts
after the onset of aSAH and undesirable outcomes, including
hydrocephalus, vasospasm, diminished neurological function,
and death (Provencio et al., 2010; Chou et al., 2011; Zhang
B. et al., 2021; Zhang Y. et al., 2021).

It is important to note that most regular blood work-up
biomarkers remain largely the same between healthy individuals
and patients with unruptured aneurysms. Only recent studies
reported circulatory long non-coding RNAs or miRNAs
that might be of diagnostic values, however the prediction
accuracy of these models remain to be validated in external
cohorts (Poppenberg et al., 2020; Tutino et al., 2020). In
terms of mechanism, aSAH could be triggered by occult
and sudden pathophysiological changes at histological or
molecular level, regardless of the confirmed preceding aneurysm
development. This may commonly be observed in cases
like arterial dissecting aneurysms or blister-like aneurysms.
Moreover, many studies have implied most culprit subarachnoid
hemorrhage have minor sentinel bleeding that might alter the
microenvironment of arterial condition. Hence gaining a deeper
understanding between otherwise healthy individuals and
aneurysm rupture patients might be a promising study strategy
to consider.

To detect a circulatory predictor that may be indicative
of imminent aneurysmal hemorrhage and to further elucidate
the underlying mechanisms associated with IA progression and
rupture, we conducted this study and concentrated on the
cellular and molecular features involved in the progression of
aSAH. We aimed to identify novel molecules that are involved in
both blood and tissue inflammatory responses, which might be
beneficial for the timely diagnosis and identification of potential
therapeutic targets for this fatal disease.

Materials and methods

Data collection and expression analysis

Publicly available transcriptome data of blood samples
from aSAH patients and healthy participates with available
clinical information were systematically reviewed from the Gene
Expression Omnibus (GEO) database. One microarray dataset
named GSE36791 was included in the study. This dataset
contained 43 whole blood samples from aSAH patients and
18 healthy blood samples. Another RNA-sequencing (RNAseq)
dataset named GSE122897 was also included. This dataset
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contained 22 ruptured aneurysmal tissues and 16 healthy arterial
samples. All the RNAseq and microarray data were normalized
and log2 transformed before analysis. Besides, 24 pairs of artery
tissue samples and 12 pairs of blood samples from aSAH patients
and healthy controls were obtained from our hospital.

Western-blotting analysis

Human blood samples and artery tissue samples were
collected for western blot. Briefly, an equal amount of protein
from each sample was prepared and separated by an 10%
sodium dodecyl sulfate polyacrylamide, and transferred onto
polyvinylidene fluoride (PVDF) membranes. After that, the
membranes were blocked with skim milk buffer for 2 h,
and then incubated at 4◦C overnight with the following
antibodies: anti-SRPK1 (1:1,000 dilution, A12510, ABclonal,
China), anti-ZNF281 (1:2,000 dilution, A12650, ABclonal,
China), anti-S100A8 (1:1,000 dilution, A15315, ABclonal,
China), anti-S100A9 (1:1,000 dilution, A9842, ABclonal, China),
and anti-GAPDH (1:5,000 dilution, AC001, ABclonal, China).
After that, the PVDF membrane was incubated with a secondary
antibody (goat anti-rabbit antibody, 1:5,000 dilution, AS014,
Abclonal, China) for 2 h, and then washed with TBST three
times. The ECL detection kit (Epizyme biotech, China) was used
to visualize protein band. Images were analyzed by Image J
software (Image J 1.53, NIH, USA).

Immunofluorescence staining

Briefly, frozen artery tissues were sliced into 4–6 µm
sections. The slides were then blocked with 5% BSA for 1 h.
After that, primary antibodies against SRPK1 (1:100 dilution,
A12510, ABclonal, China), ZNF281 (1:100 dilution, A12650,
ABclonal, China), S100A8 (1:100 dilution, A15315, ABclonal,
China), and S100A9 (1:100 dilution, A9842, ABclonal, China)
were incubated overnight at 4◦C. After washing with TBS, the
cryosections were incubated for 1 h with the secondary antibody
(goat anti-rabbit antibody, 1:100 dilution, AS011, ABclonal,
China). The sections were visualized using a fluorescence
microscope. Images were analyzed by Image J software (Image
J 1.53, NIH, USA).

Identification of differentially expressed
genes (DEGs)

R packages “limma” and “DESeq2” were used to obtain
differentially expressed genes (DEGs) for microarray data and
RNA-seq reads count data, respectively. The genes with an
absolute value of log2(foldchange) larger than 0.25 and adjusted
p-value less than 0.05 were considered as specific genes. The

R packages “pheatmap” and “ggplot2” were applied to present
results as heatmaps and volcano plots.

Gene ontology (GO) analysis and
reactome enrichment analysis

GO analysis on the aberrantly expressed genes between
aSAH and healthy control samples was performed based on the
Database for Annotation, Visualization and Integrated Discovery
(DAVID) database (Dennis et al., 2003). The list of gene IDs,
as well as their log2(foldchange) values was used as the input
file. GO terms with an adjusted p-value less than 0.05 were
considered statistically significant. The reactome enrichment
analysis was performed with the enrichPathway function in the
“ReactomePA” package.

Random forest and receiver operating
characteristic (ROC)

We used a random forest algorithm, which is based on a
multitude of decision trees. This method was applied to filter
the most important candidates associated with different features.
Candidate genes were used as the input of random forest to
construct prediction models. This procedure was applied using
the R package “randomForest” with 2,000 trees. The aim was to
identify the top 15 key genes.

ROC and the area under the curve (AUC) value were then
performed to compare the predictive sensitivity and specificity
of concerned genes in differentiating between aSAH samples and
control samples. These analyses were derived using the “pROC”
package.

Gene set variation analysis (GSVA)

GSVA enrichment was performed by the R package
“GSVA” using the heatmap function. This analysis was applied
to perform immunologic signature of GSEA. Using the
“limma” package, an adjusted p-value less than 0.05 with
false discovery rate (FDR) <0.05 was considered to represent
statistical significance between groups. Related datasets were
retrieved from Molecular Signatures Database (MSigDB;
Liberzon et al., 2015).

Evaluation of immune cell infiltration

The landscape of immune cell infiltration was evaluated
by three algorithms, named Cell type Identification by
Estimating Relative Subsets of RNA Transcripts (CIBERSORT),
Microenvironment Cell Populations-counter (MCPcounter),
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and xcell. All the methods were used to quantify the relative
or absolute abundance of immune cell populations in different
samples.

CIBERSORT algorithm provides an estimation of the
abundance of 22 human hematopoietic cell phenotypes using a
leukocyte gene signature matrix of 547 genes (Newman et al.,
2015). The analysis was performed using the CIBERSORT
source code. The abundance score of each immune cell
population was generated through the “MCPcounter” package
(Becht et al., 2016). MCPcounter is a method for quantifying
the relative abundance of immune cells in different tissues using
optimized marker genes. Ten different cell types including T
cells, B lineage, cytotoxic T cells, NK cells, myeloid dendritic
cells, monocytic lineage, CD8 cells, neutrophils, fibroblasts, and
endothelial cells were assessed. Xcell is a tool that calculates
independent enrichment scores of 64 kinds of immune and
stromal cells (Aran et al., 2017). This algorithm was used to
verify the findings from CIBERSORT and MCPcounter.

Statistical analysis and additional
bioinformatic

The correlation network involving different immune cell
types was generated using R package “corrr”. The correlations
between immune cells and genes were determined using
Spearman correlation analysis, and the linear relationships
between gene expression levels were evaluated by the Pearson
correlation analysis. All statistical analyses were performed
using the R software, and the comparison between different
groups were done by the Wilcoxon test. All statistical tests were
performed bilaterally, and p-values less than 0.05 were deemed
to be statistically significant.

Results

Identification of DEGs and enrichment
analysis

After normalization and linear model fitting for gene
expression in both groups, a total of 2,220 genes were identified
as DEGs, with 856 upregulated and 1,364 downregulated
genes, based on the adjusted p-value less than 0.05 and
absolute log2(foldchange) more than 0.25. Volcano plot was
then performed to present gene distribution (Figure 1A),
and hierarchical clustering plots were used to check the
discriminatory ability of DEGs in blood samples between aSAH
and healthy controls (Figure 1B). The DEGs were further
analyzed to explore the potential function and information of
the genes in the progression of aSAH. The first 12 functions
of biological process (BP) in the GO term were shown in an

enrichment cluster diagram (Supplementary Figure 1). The
results suggested the potential functions were mainly enriched
in immunological process, especially related with neutrophil
(including neutrophil activation and neutrophil degranulation).
The top 10 functions associated with immunology and
neutrophil were then extracted and presented as bubble plot,
as shown in Figures 1C,D. As for GSEA, the results were
shown in Figures 1E–G, which revealed that immune system,
neutrophil degranulation, and neutrophil extracellular traps
(NETs) formation were enriched in aSAH group compared with
healthy controls.

Then we obtained DEGs between IA walls from aSAH and
healthy arterial tissues based on RNA-seq data. The genes were
then input to the Cytoscape to visualize the interaction network
of biological process. The results were shown in Figure 2A.
GO analysis and GSEA analysis further validated the current
findings, which suggested immunity is involved in the aSAH
process (Figures 2B–D). Enrichment of NETs formation was
also found from GSEA (Figure 2C).

Immune landscape in the peripheral
blood between aSAH and control
samples

Enrichment analysis showed that immune-related functions
and signaling pathways were predominantly activated in aSAH
blood samples compared to healthy controls. In order to further
investigate the different immune landscapes in peripheral
blood samples between aSAH patients and healthy persons.
We analyzed the proportion and expression level of different
immune cells in each sample using the CIBERSORT method.
Figure 3A clusters the distribution of the 22 immune cells.
Most immune cells were rarely expressed in blood samples,
while neutrophils were dominant in blood samples (Figure 3B).
The immune landscape results suggested that neutrophils were
abnormally upregulated compared with those in the control
group (Figure 3C). Besides, the peripheral blood samples in the
aSAH group had significantly increased M0 macrophages scores.
In contrast, the scores for lymphocyte in the peripheral blood
of aSAH patients were significantly decreased than those of the
control participants, such as CD8 T cells, memory CD4 cells, and
NK cell.

Predictive model construction and
evaluation of the key genes

To further investigate the genes mostly associated with
the inflammatory reactions in the progression of aSAH, we
performed random forest to select key genes correlated with
above infiltrated immune situation (Figure 4A). In addition,
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FIGURE 1

(A) Volcano plot and (B) heatmap showing the expression profiles between aSAH and control groups. (C) The top eight functions associated
with immunological processes between aSAH and healthy samples. (D) The top eight functions associated with neutrophil. (E–G) Representative
enriched pathways of GSEA. Each graph represents immune system, neutrophil degranulation, and neutrophil extracellular traps (NETs) formation.

recent publications on the same field were reviewed to identify
candidate genes. For the concerned genes, we performed ROC
and calculated the AUC values to evaluate the accuracy of the
models. As a result, SRPK1 was selected as a potential gene for
further exploration. The AUC of the model was 0.88, with 95%
confidence intervals ranging from 0.77 to 0.98, demonstrating
the robustness of SRPK1 in distinguishing between aSAH and
healthy blood samples (Figures 4B,C). Similarly, the AUC was

0.82, with 95% confidence intervals ranging from 0.68 to 0.95 in
the model of tissue samples (Figures 4D,E).

To explore the downstream biological processes in which
SRPK1 may be involved, we obtained DEGs between the
SRPK1 high expression group and low expression group
in the blood samples dataset (Supplementary Figure 2).
Then we performed GO analysis to predict the underlying
biological functions of SRPK1 relevant to immunological process
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FIGURE 2

Functional enrichment of DEGs in sample of arterial samples dataset. (A) The interaction networks of enriched biological processes analyzed by
ClueGO. (B) GSEA showing the enriched pathway in neutrophile degranulation. (C) Enrichment of NETs formation term analyzed by GSEA. (D)
GO enrichment analysis in the aSAH blood samples.

(Supplementary Figure 3) and neutrophil related process
(Supplementary Figure 4). These results all suggested that high
expression of SRPK1 was associated with neutrophil activation
and neutrophil degranulation.

Relationships between SRPK1 and
immune cells and gene set variation
analysis

Next, we analyzed cell infiltration data and expression data to
explore the correlation between SRPK1 and 22 types of immune

cells. As presented in Figure 5A, SRPK1 was significantly
associated with neutrophils among all the immune cells. It
also showed strong correlations with S100A8 and S100A9, the
marked genes of neutrophils (Figures 5B,C). GSVA showed that
along with the upregulation of SRPK1 expression, inflammation-
related pathways also showed excessive activation (Figure 5D).

Expression profile of transcription factor
ZNF281 and its structure

Next, we predicted transcription factor (TF) which may
regulate SRPK1 expression (Figure 6A), and selected ZNF281 as
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FIGURE 3

Immune landscape in the arterial samples between aSAH and healthy groups analyzed by CIBERSORT method. (A) The heatmap showing the
distribution of the 22 immune cells. (B) The bar chart showing the enrichment scores in aSAH and healthy control groups. (C) The boxplot
comparing the cell compositions between aSAH and control groups. The statistical difference was compared by the Wilcoxon test (*p < 0.05,
***p < 0.001, ****p < 0.0001).

potential TF due to its high correlation (Figure 6B). We
assumed that ZNF281 can bind with polymerase (RNA) II
(DNA directed) polypeptide A (POLR2A), which could regulate
synthesis of message RNA. Then we adopted similar strategy in
ZNF281 and discovered that high ZNF281 expression associated
with neutrophils scores (Figure 6C). The RNA-seq data verified
our findings (Figures 6D,E).

Tissue data was used to validate the predictive capability of
ZNF281 (Figures 7A,B). The expression profiles of them were
shown in Figures 7C–F. The results remained consistent in the
blood sample as well as in the tissue sample. We also presented
the protein structures of SRPK1 and ZNF281 in Figures 7G,H.

The Western-blotting assay was performed to detect
expression level of neutrophil related proteins. We observed that

both S100A8 and S100A9 were elevated in the aSAH group both
in the blood samples and arterial tissues (Figures 8A–D). The
expression profiles of these key genes were also examined
by immunofluorescence assay. The results suggest that
arterial tissues in the aSAH group tends to accumulate
more SRPK1, ZNF281, S100A8, and S100A9 in cytoplasm
(Figures 9A–D).

MCPcounter and xcell verification

MCPcounter was a different algorithm to calculate
the landscape of immune cell infiltration, and was used
to verify the present findings from different perspectives.
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FIGURE 4

Identification of key genes. (A) Results of random forest showing the top 15 genes. To select key genes correlated with above infiltrated immune
situation. (B) The correlation coefficient between SRPK1 and neutrophils was 0.76 (p < 0.001) in the blood sample dataset. (C) The area under the
curve (AUC) was 0.877 (95% CI: 0.773–0.982). (D) The correlation coefficient between SRPK1 and neutrophils was 0.34 (p = 0.032) in the arterial
sample dataset. (E) The area under the curve (AUC) was 0.818 (95% CI: 0.681–0.954).

The abundance scores of the 10 subpopulations of immune
cells infiltrating the aSAH and healthy blood samples were
compared and were shown in the heatmap (Figure 10A).
Consistent with CIBERSORT, we found that the infiltration
of neutrophils was significantly higher in aSAH patients
compared to control ones. SRPK1 and ZNF281 also showed
significant relationship with neutrophil scores based on
this algorithm, as the expression of SRPK1 increased,
neutrophil enrichment also became greater (Figures 10B,C).
Similar findings were presented in Figures 10D–F using the
RNAseq dataset.

Next, various immunomodulators were employed to
detect the correlation with SRPK1 (Figure 11A). Our
analysis demonstrated that the top seven immunomodulatory
factors that positively associated with the expression levels of
SRPK1 were CXCR2, CXCR1, ENTPD1, IL10RB, TNFSF13B,
CXCL16, and IL6R. Meanwhile, these factors were highly
expressed in blood samples and tissue samples from aSAH
patients (Figures 11B,C).

Discussion

Although significant progress has been made in terms of
medical care and surgical treatment, aSAH remains a destructive
disorder with high morbidity and mortality. For a long time,
immune cell infiltration has been shown to have a major role
in the onset and progression of aSAH. This complex process
not only triggers neuroinflammation in the brain, but also
contributes to a systemic inflammatory response (Lee et al.,
2012). The excessive inflammatory response and subsequent
tissue damage is mediated by the infiltration and activation of
various immune cells from brain tissue and blood sources, which
ultimately lead to brain injury (Savarraj et al., 2018; Coulibaly
and Provencio, 2020). The engagement of the inflammatory
reaction in the process resulting in rupture is also supported
by observational studies with human patients. For example,
consumption of medications with anti-inflammatory effects,
such as statins and NSAIDs, may reduce the risk of SAH
due to IA rupture (Zeyu et al., 2021). Therefore, it is crucial
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FIGURE 5

(A) Relationships among infiltration levels of 22 immune cell types and SRPK1 expression profiles by Spearman’s analysis. (B,C) Correlation of
marker gene of neutrophils S100A8 and S100A9 with SRPK1. The correlation coefficient was 0.60 (p < 0.001) and 0.50 (p < 0.001) respectively.
(D) GSVA of significant immunologic signature pathways between aSAH and healthy samples along with SRPK1 expression in the blood sample
dataset.

to thoroughly explore the role of infiltrating immune cells in
SAH. In this study, we assessed the difference in immune
infiltration profile between aSAH and healthy arterial samples
using three algorithms including CIBERSORT, MCPcounter,
and xcell. Different algorithms use different statistical methods
for deconvolution analysis, for example, CIBERSORT is based on
linear support vector regression (Newman et al., 2015). Similar
results were obtained by different algorithms, which confirmed
the reliability of the findings. Eventually we identified SRPK1 as

a potential diagnostic biomarker and possibly a potential
therapeutic target for aSAH through extensive bioinformatics
analysis.

Although much is known about inflammation and the
progression of aSAH, previous studies have mainly focused on
monocytes/macrophages (Thomas et al., 2018). The potential
role of neutrophils in promoting the progression of aSAH
remains insufficiently described. In this study, GO enrichment
analysis showed that DEGs with higher expression in the whole
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FIGURE 6

(A) The correlation heatmap visualized the relationship between transcription factor (TF) which may regulate SRPK1 expression and immune cells.
(B) The loci of ZNF281 and POLR2A at chromosome 6 indicates ZNF281 binds to the promoter of SRPK1. (C) Relationships among infiltration levels
of 22 immune cell types and ZNF281 expression profiles by Spearman’s analysis. (D,E) Correlation of marker gene of neutrophils: S100A8 and
S100A9 with ZNF281. The correlation coefficient was 0.42 (p < 0.001) and 0.41 (p < 0.001) respectively.

blood from aSAH patients were related to immune process,
especially pathways related to neutrophil-associated response.
Further enrichment analysis of tissue samples validated our
findings. Clinical observations suggest that neutrophils may
serve as a potential contributor in the development of IAs.
On the one hand, circulating neutrophils carry IA associated
features and are potential molecular biomarker to distinguish
patients with IA (Tutino et al., 2018b). On the other hand,
neutrophils promote the rupture of IAs and elevated peripheral
neutrophils are significantly associated with prognosis of
patients following subarachnoid hemorrhage (Zhang Y. et al.,
2021). Experimental studies have also demonstrated the role

of neutrophils in the pathophysiology of IAs. For example,
a higher degree of neutrophil infiltration was observed in
ruptured IAs than unruptured ones (Tulamo et al., 2006). It
has been noted that neutrophils may play a key role in the
maintenance and aggravation of the inflammatory response
(Miyata et al., 2019; Kushamae et al., 2020). In response
to the cytokines present in situ, neutrophils can generate a
substantial amount of pro-inflammatory factors, such as TNF-
α and PGE2 (Kang et al., 2020; Kushamae et al., 2020). This
process may act in conjunction with macrophages activated
by the cytokines produced by neutrophils to exacerbate the
inflammatory response.
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FIGURE 7

The area under the curve (AUC) of ZNF281 was 0.877 and 0.810 in the (A) blood sample and (B) tissue sample dataset, respectively. (C,D)
Expression profile of SRPK1 and ZNF281 in the blood sample dataset and (E,F) in the tissue sample dataset. (G,H) Protein structures of SRPK1 and
ZNF281 (***p < 0.001, ****p < 0.0001).

Recent studies suggest that NETs are involved in the
progression of intracranial aneurysm (Kang et al., 2020;
Korai et al., 2021). The neutrophils infiltrate into the
damaged brain tissue following SAH. Upon stimulation
by various biochemical factors, neutrophils release DNA,
granulins, and histones. These fibrous matrices are known
as NETs. Formation of NETs promote tissue-damaging
immunopathology in an inflammatory state. There is growing
evidence that NETs exacerbate inflammatory events after
SAH and impair revascularization and increase post-stroke
blood-brain barrier damage. Furthermore, resolution of formed

NETs or pharmacological removal of NETs by inhibition
of peptidylarginine deiminase has shown to be a potential
therapeutic strategy to prevent IA rupture (Zeng et al., 2022).

NET generation is a physiologic way of cell death
called NETosis (Kolaczkowska and Kubes, 2013). Components
of NETs include DNA fragments, histones, and neutrophil
granule proteins. The family members of S100 proteins
S100A8 and S100A9 originate predominantly from neutrophils
and monocytes which are involved in neutrophil activation
and NET-induced inflammation (Austermann et al., 2018).
Increasing evidence suggests a crucial role for the S100 family
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FIGURE 8

(A) Representative Western blot bands of S100A8, S100A9, SRPK1, and ZNF281 expression in blood samples in different groups. (B) Quantitative
analysis of S100A8, S100A9, SRPK1, and ZNF281 expression in blood samples in different groups. n = 3/group. (C) Representative Western blot
bands of S100A8, S100A9, SRPK1, and ZNF281 expression in arterial walls and aneurysms walls from different groups. (D) Quantitative analysis of
S100A8, S100A9, SRPK1, and ZNF281 expression in arterial samples in different groups. n = 3/group. Healthy control: Healthy middle meningeal
arteries; Aneurysm: Ruptured aneurysm tissue (∗p < 0.05, ∗∗p < 0.01).
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FIGURE 9

(A) Representative photographs of immunofluorescence staining showing S100A8 (marked with green) and DAPI (marked with blue) in
healthy group and aSAH group, and quantitative analysis of positive cells. n = 3/group; p = 0.0033. (B) Representative photographs of
immunofluorescence staining showing S100A9 (marked with red) and DAPI (marked with blue) in healthy group and aSAH group, and quantitative
analysis of positive cells. n = 3/group; p = 0.0003. (C) Representative photographs of immunofluorescence staining showing SRPK1 (marked with
yellow) and DAPI (marked with blue) in healthy group and aSAH group, and quantitative analysis of positive cells. n = 3/group; p = 0.0027. (D)
Representative photographs of immunofluorescence staining showing ZNF281 (marked with yellow) and DAPI (marked with blue) in healthy
group and aSAH group, and quantitative analysis of positive cells. n = 3/group; p = 0.0077. Healthy control: Healthy Middle meningeal arteries;
Aneurysm: Ruptured aneurysm tissue. Scale bar: 75 µm (∗∗p < 0.01, ∗∗∗p < 0.001).
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FIGURE 10

Immune landscape in the tissue samples between aSAH and healthy samples analyzed by MCPcounter and xcell algorithm. (A) The heatmap
showing the overall enrichment of 10 immune cells in the blood sample. (B) The boxplot showing the MCPcounter enrichment scores of
neutrophils between aSAH and healthy groups. (C) The boxplot showing the xcell enrichment scores of neutrophils between aSAH and healthy
groups. (D) The heatmap showing the MCPcounter results of the arterial sample dataset. (E,F) The boxplot showing the MCPcounter and xcell
enrichment scores of neutrophils between aSAH and healthy groups in the arterial sample dataset.

proteins in driving inflammation in cancers and in non-cancer
diseases. For example, NET-S100A9-MMP9 acts as a critical
component in connective tissue destruction (Akiyama et al.,
2019). Levels of NET protein and S100A8 have also been shown
to be important markers for predicting the prognosis of patients
with ovarian cancer (Muqaku et al., 2020).

SRPK1 is a highly conserved protein in eukaryotic organisms
which belongs to the SRPK family and contained a protein
kinase-like domain. It has been found to be expressed in
both the cytoplasm and nucleus. Previous studies reported that
SRPK1 was involved in the regulation of a number of cellular
processes, such as chromatin structure, mRNA maturation, and
reproductive cell development (Giannakouros et al., 2011). By
regulating the phosphorylation of SR splicing factors, SRPK1 can

influence the splicing of pre-mRNAs and thus gene expression.
Reports have shown that elevated levels of SRPK1 expression
are associated with risk and prognosis in liver, breast, and lung
tumors, while the specific mechanisms of SRPK1 in cancer
progression remain to be classified (Nikas et al., 2019). In
addition, previous studies have revealed that SRPK1 is expressed
in the human central nervous system (Mytilinaios et al., 2012).
It may have a key role in regulating the expression of neuron-
specific protein isoforms, including the expression of various
neurotransmitter receptor subtypes. SRPK1 has recently been
suggested as a potential new molecular target that could be
employed to facilitate the treatment of patients with early-stage
gliomas, owing to its ability to regulate cell growth, metastasis,
chemosensitivity and glioma angiogenesis (Sigala et al., 2016).
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FIGURE 11

(A) Correlation of immunomodulators with SRPK1. (B,C) The expression difference of immunomodulators with correlation coefficient more than
0.5 between aSAH and control tissues in the blood and tissue samples (*p < 0.05, **p < 0.01, ***p < 0.001).

Also, researchers have found that silencing of
SRPK1 increases vascular smooth muscle cells proliferation and
promotes vascular remodeling in IA, suggesting SRPK1 as a
molecular target for treatment of IA (Li and Wang, 2019). In
the present study, we assumed that SRPK1 exerts a facilitative
effect on the progression and rupture of IAs, and this process
was probably regulated by ZNF281.

We also observed the dysregulation of inflammation and
a potential role of immunomodulators in our bioinformatics
analyses. CXCR1 and CXCR2 are receptors for IL8 which is
a powerful neutrophil chemotactic factor (Ludwig et al., 1997;
Osuka et al., 2021). Activation of CXCR1 and CXCR2 not
only recruits neutrophils to the lesion, but also triggers
extrusion of NETs (Teijeira et al., 2020). TNFSF13B is also
known as a marked gene of neutrophil activation (Besteman
et al., 2020). CXCL16 was reported to have great value for
predicting UIA rupture, and is significantly associated with
poor outcome in patients with aSAH (Shan et al., 2021;
Xu et al., 2021). It is possible that SRPK1 promotes SAH
progression by interacting with these immunomodulators, for
example by affecting the maturation of mRNAs transcribed
by target genes. Future studies are needed to investigate the
underlying mechanisms.

Several limitations of the present study need to be
resolved by further research. First, survival data were
not available, it was therefore unable to explore the
association between the key genes and prognosis of patients.
Second, additional experiments to investigate the specific
function of the concerned genes are required. Although we
uncovered the predictive value of SRPK1 in aSAH diagnosis;
further in vivo and in vitro studies should concentrate
on the signaling pathways involved in the interaction of
SRPK1 with immune factors in aSAH. For example, whether
SRPK1 promotes aSAH progression by interacting with
CXCR1 and CXCR2.

In summary, the immune landscape of aSAH was
comprehensively stratified and quantified. Neutrophils
represent an important immune cell population involved
in the pathophysiological progression following aSAH. The
key genes SRPK1 and ZNF281 could serve as effective
biomarkers to distinguish patients with aSAH, and potential
therapeutic targets. Moreover, several immunomodulators
such as CXCR1 and CXCR2 also appear to be involved in
the progression of SAH. Our findings present convincing
insights into the pathogenesis of and potential therapeutic
targets for SAH and provide a foundation for future studies.
The findings of the present study should be validated in a
larger cohort.
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